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Computational textural mapping harmonises sampling
variation and reveals multidimensional histopathological
fingerprints
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BACKGROUND: Technical factors can bias H&E digital slides potentially compromising computational histopathology studies. Here,
we hypothesised that sample quality and sampling variation can introduce even greater and undocumented technical fallacy.
METHODS: Using The Cancer Genome Atlas (TCGA) clear-cell renal cell carcinoma (ccRCC) as a model disease, we annotated
~78,000 image tiles and trained deep learning models to detect histological textures and lymphocyte infiltration at the tumour core
and its surrounding margin and correlated these with clinical, immunological, genomic, and transcriptomic profiles.
RESULTS: The models reached 95% validation accuracy for classifying textures and 95% for lymphocyte infiltration enabling
reliable profiling of ccRCC samples. We validated the lymphocyte-per-texture distributions in the Helsinki dataset (n= 64). Texture
analysis indicated constitutive sampling bias by TCGA clinical centres and technically suboptimal samples. We demonstrate how
computational texture mapping (CTM) can abrogate these issues by normalising textural variance. CTM-harmonised
histopathological architecture resonated with both expected associations and novel molecular fingerprints. For instance, tumour
fibrosis associated with histological grade, epithelial-to-mesenchymal transition, low mutation burden and metastasis.
CONCLUSIONS: This study highlights texture-based standardisation to resolve technical bias in computational histopathology and
understand the molecular basis of tissue architecture. All code, data and models are released as a community resource.
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BACKGROUND
Histopathological examination of haematoxylin and eosin-stained
(H&E) tissue sections remains one of the cornerstones in the
diagnostics and prognostics of human cancers. In computational
histopathology, image analysis algorithms are trained for detec-
tion and classification tasks generally performed by pathologists
[1]. Deep learning-based models such as convolutional neural
networks (CNNs) and visual transformers have been able to
identify both standard histological patterns such as tumour grade
[2] and mitosis [3] but also novel patterns related to genomic
alterations [4–6], gene expression [7, 8] and viral tumourigenesis
[9]. However, no standardisation steps are applied to resolve
sampling variations, which are evident even at low magnification,
although this could severely bias study results.
Given the promising efficacy of immunotherapy as adjuvant

[10] or first-line combination therapy [11], computational histo-
pathology could provide an inexpensive tool to identify patients
associated with poor survival or treatment sensitivity such as by
quantifying tumour-infiltrating lymphocytes to predict immu-
notherapy response [12, 13].
With over 10,000 diagnostic slides and associated genomic,

transcriptomic, epigenomic, and clinical data from 32 cancer

types, The Cancer Genome Atlas (TCGA) is a unique multi-omics
archive for biomedical research [14]. Previous reports on ccRCC
genetics have illustrated remodelling of cellular metabolism [15],
abundant indel mutation [16], and adaptive immunity [17]. TCGA
image data have been used to indicate that PBRM1-mutated
ccRCC samples can be identified from H&E images [7], and that
combination of genomic and image data can improve prognos-
tication compared to standard staging [18, 19].
Here, we explored the lymphocyte infiltration and textural

architecture in TCGA H&E-stained ccRCC digital sections. Inspired
by a recent normalisation technique evaluated on TCGA RNA-seq
data [20], we propose computational texture mapping to over-
come sampling variation and illustrate its value in harmonising
lymphocyte infiltration. Finally, we uncover the intricate network
between histopathological architecture and clinical, immunologi-
cal, genomic, and transcriptomic correlates.

METHODS
TCGA and Helsinki ccRCC patient cohorts
We collected histology images from TCGA portal (https://
portal.gdc.cancer.gov/) and clinical, processed transcriptome data and
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CIBERSORT-based immune fractions from https://gdc.cancer.gov/about-
data/publications/panimmune [21] and https://gdc.cancer.gov/node/905/
(Fig. 1a). Samples were digitised mainly with an imaging resolution of
~0.25mm/px (n= 497), except for 18 samples scanned at ~0.50mm/px,
which were excluded (Fig. 1b and Supplementary Table S1). A feature
matrix of all available data was built, consisting of only numeric or binary
features as rows, with missing data reported as NA. Categorical variables
were transformed into binary factors.
The somatic mutation calls (SNVs and indels) were collected from the

Supplementary Table S1 by Ricketts et al. [22]. Briefly, the dataset was
assembled using six different algorithms (MuTect, MuSE, Pindel, Somatic
Sniper, VarScan2, and Radia) from four centres. Mutation calls were not
available for all patients with transcriptome and clinical data.
The Helsinki dataset is composed of 64 ccRCC patients (Fig. 1a). For

these, diagnostic H&E-stained histopathological slides have been digitised
~0.25mm/px. Moreover, a tissue microarray has been previously prepared
and stained with 6-plex T cell antibody panels using multiplex
immunohistochemistry [13].

Image annotation strategy
TCGA H&E slides have been stained at distinct participating clinical sites
and scanned with varying resolution and digital scanner types into SVS
format. Helsinki H&E slides have been acquired in MIRAX format. To ensure
algorithm generalisability, we included annotations from all clinical
centres.
First, we determined the main texture classes to annotate. We prioritised

classification reliability and therefore minimised the number of tissue
classes as often tiles included multiple texture types and some histological
patterns commonly co-occurred, for example smooth muscle, fibrous
stroma, and blood vessels. In addition, some patterns were challenging to
differentiate reliably from individual tiles without larger context informa-
tion for example torn, adipose, and necrotic tissue. We ended up with the
following texture classes: renal cancer (“cancer”; n= 13,057 image tiles,
24.8% of all tiles); normal renal (“normal”; n= 8652, 16.4%); stromal
(“stroma”; n= 5460, 10.4%) including smooth muscle, fibrous stroma and
blood vessels; red blood cells (“blood”; n= 996, 1.9%); empty background
(“empty”; n= 16,026, 30.4%); and other textures including necrotic, torn,
and adipose tissue (“other”; n= 8522, 16.2%; Fig. 1c). We annotated in total
52,713 randomly selected tiles sized 300 × 300 px located in the centre of a
larger 900 × 900 px image to improve the annotation accuracy. Images
from both TCGA and Helsinki datasets were used in both training and test
datasets to ensure that models are robust to sampling, digitisation and
image format variability.
To quantify lymphocytes, we annotated 256 × 256 px tiles (n= 25,095)

containing none or few lymphocytes as “Low” (n= 20,092, 80.1%) and the
rest as “High” (n= 5,003, 19.9%; Fig. 1d). As areas of high lymphocyte
density were substantially less common, we speeded up annotation by
extracting regions of high lymphocyte aggregates and from regions of low
lymphocyte infiltrate using the open-source software QuPath [23] 0.2.0. We
selected ~20 digital TCGA samples originating from various clinical sites.
All texture and lymphocyte images were evaluated twice to minimise
annotation errors.

Texture classification
For texture classification, we trained a multi-class CNN. We employed the
deep residual network ResNet as it has been commonly used in computer
vision tasks [24]. Transfer learning is the process of repurposing parameters
of a previous algorithm to optimise training on a new dataset [25]. Here,
we adapted transfer learning by combining the ImageNet-pretrained
ResNet-18 infrastructure with a fully connected layer, a rectified linear
activation function (ReLU) activation and a softmax layer for prediction.
Training occurred at all CNN layers, with the Adam optimiser tuned with a
fixed learning rate of 10−4, batch size 4, and the cross-entropy loss
function until the validation loss did not decrease for 5 consecutive
epochs. We randomly cropped 256 × 256 px tiles from the annotation
images and augmented these with horizontal–vertical rotation and
without balancing texture classes. Models were composed with Python
3.9.1. with libraries Pytorch 1.9, Torch 1.11.0, and Torchvision 0.12.0.
The classification resulted in tessellated texture areas (Supplementary

Fig. S1). For instance, cancer regions were disrupted by sporadic tiles of
other textures. To smooth texture masks, we slid the 3 × 3 tiles’ window
size and stride of 2 over the texture map and unified the texture class in
each window by the most common texture. In some occasions, two tissue
textures occurred equally often for instance 4 cancer, 4 stroma and 1 blood

tiles. If the most common class was a tie between cancer and another
texture, the cancer class was prioritised. If the most common class was a tie
between stroma and another texture, the stroma class was prioritised
except if the other was cancer. Stroma and cancer textures were prioritised
as these occurred most in tiles of multiple textures. In other cases of tie, the
pooled texture type was randomly selected from the equally most
occurring textures.

Lymphocyte classification
For the lymphocyte classification, we trained a binary-class CNN using the
same model infrastructure and hyperparameters as was used in the texture
classification. However, to quantify the lymphocyte infiltration in a
continuous range [0–1], we used the argmax function on the sigmoid
layer. Therefore, no post-pooling of lymphocyte masks was performed.

Tumour margin
To analyse the histological and lymphocyte content immediately exterior
to the tumour, we defined the tumour margin as the first two non-cancer
tiles around each cancer tile with the maximum_filter function of the
Python Scipy 1.8.1. library. The margin was 512 px or ~128 μm wide. For
reference, the average lymphocyte diameter is ~10 μm. The remaining
tissue not included as tumour or tumour margin was classified as the non-
margin tissue. To avoid sampling bias, we included only samples with ≥1%
normal texture.

Model metrics
We divided annotation datasets into training (70%), validation (20%), and
test (10%) sets. The final model fitness was evaluated in the test set by
comparing classification accuracy and a confusion matrix.

Statistical analysis
Median and interquartile ranges (IQRs) were used to report average values
and ranges. We compared two continuous variables with the Wilcoxon
rank-sum test (unpaired, two-tailed) and three or more continuous
variables with the Kruskal–Wallis test. We compared categorical variables
with the χ2 test. To adjust p values, we used Benjamini–Hochberg
correction. We evaluated 5-year overall survival with the Kaplan–Meier
analysis (log-rank test). We limited comparisons with transcriptomic data to
the protein-coding genes with a median expression value of >8 CPM
(n= 9645). For pathway analyses, we included the Chromosome, Hallmark,
PID, Reactome, Biocarta, and KEGG gene sets v.6.2. We performed
statistical analyses with R 3.5.1.

Textural mapping of lymphocyte infiltration
The texture-specific lymphocyte infiltration varied by clinical centres partly
due to differing texture proportions reflecting sampling conventions. We
harmonised total lymphocyte infiltration in two steps. First, we multiplied
the proportion of each texture area by its relative lymphocyte proportion.
The relative lymphocyte proportion reflects the lymphocyte enrichment to
each texture in comparison to other textures. Thus, the sum of relative
lymphocyte proportion in blood + cancer, + normal + blood + other =
100%. In the second step, we divided the sum of the normalised
lymphocyte proportions by the total sample area, e.g.

α ¼
PT

t ρtAtPT
t At

where ρ represents the relative lymphocyte proportion (%) and A the area
(px) of the texture t, which is part of the texture list T ∈ [blood, cancer,
normal, stroma, other].
To fully normalise staining differences, we categorised samples into

“High” and “Low” infiltration based on their lymphocyte density compared
to the clinical centre median density. Small batch size increases the high
risk for nonparametric data distribution. Therefore, we included only
centres with more than 20 samples to the lymphocyte analyses.

RESULTS
CNNs can reliably detect tissue textures and lymphocyte
proportion
We trained CNNs to detect textures and lymphocyte infiltration in
H&E-stained diagnostic tissue sections of ccRCC patients in two
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Fig. 1 Study design. a Digital haematoxylin and eosin (H&E)-stained slides of clear-cell renal cell carcinoma (ccRCC) patients were collected
from The Cancer Genome Atlas (TCGA). Six texture subtypes as well as lymphocytes were detected and quantified with convolutional neural
networks. Imaging data were integrated with clinical, genomic, transcriptomic and transcriptome-based immune profiling data. b Flow chart
of the patient number included in this study. c Image tile examples annotated by texture subtypes and d lymphocytes. e Classification
accuracy of the computational texture mapping (CTM) and lymphocyte classifiers. f Heatmap of median proportion of texture subtypes by
participating TCGA clinical site. g Cancer tissue proportion by participating TCGA clinical site. The box plots indicate the interquartile ranges
and median values.
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datasets (Fig. 1a, b). First, we thoroughly annotated 52,713 image
tiles to one of six distinct texture classes and 25,095 tiles to low or
high lymphocyte classes (Fig. 1a–d). The 18-layered ResNet
(ResNet-18) correctly classified 95.0% of lymphocyte tiles in the
test set (n= 2510). The ResNet-34 achieved 95.7% and the ResNet-
50 95.3% classification accuracy indicating that increasing model
depth slowed training but did not improve model fitness. Detailed
classification metrics are visualised in Fig. 1e and Supplementary
Fig. S2.
For consistency, we used the ResNet-18 infrastructure also for

computational texture mapping (CTM). The algorithm achieved
94.5% total classification accuracy in the test set (n= 5272)
ranging from 75.2% for blood texture to 98.2% to empty areas
(Fig. 1e). Most of the classification errors were related to tiles
composed of a mixture of textures. For instance, haemorrhage is a
typical histopathological finding in ccRCC due to neovascularisa-
tion and structural instability of rapidly growing blood vessels [26].
Therefore, the misclassification of blood tiles as Other texture was
observed due to their co-occurrence with torn tissue. The
algorithm misclassified only 10 out of 1335 (0.7%) cancer texture
images as normal renal tissue and 8 out of 822 (1.0%) normal renal
tissue images as renal cancer indicating excellent distinction.

TCGA clinical sites differ by their texture characteristics
TCGA ccRCC samples have been collected from 16 participating
clinical sites. The tissue procurement protocol has been previously
described [14]. However, the actual sampling uniformity remains
unknown, although this may significantly hamper the integrity of
TCGA studies.
We used first CTM results to compare texture composition of

samples by their clinical site. We observed 2.3-fold variation (36.4-
84.0%) in the median proportion of cancer texture (Fig. 1f, g).
Consistently, we noted substantial differences also in other texture
types (Supplementary Fig. S3). Samples with >5% median normal
renal proportion originated from MD_Anderson_Cancer_Center
and MSKCC indicating centre-specific conventions to collect
intratumoural or a mixture of intra-peritumoural samples (Fig. 1f
and Supplementary Fig. S3).
To further measure data quality, we examined in detail samples

with <5% cancer texture and excluded 51 samples from 48 TCGA
patients (9.6%; Fig. 1b and Supplementary Table S1). CTM
provided excellent functionality for quality control as the reason
for low cancer proportion was atypical or non-ccRCC histology
(n= 22), poor histological quality (n= 21), necrotic sample (n= 4),
and lack of cancer tissue (n= 4). In summary, CTM can be used to
identify sampling bias, technically suboptimal images and non-
ccRCC samples prior to other histopathological analyses.

Tissue haemorrhage is associated with lower metastasis rate,
less frequently mutated mTOR, and lower infiltration of
regulatory T cells
Next, we aimed to resolve the textural landscape of ccRCC patients
and its clinical and molecular correlates. As expected, renal cancer
tissue was the most prevalent texture (median 54.3%), followed by
stroma (14.3%), other (9.6%), blood (2.3%) and normal tissue
(1.3%; Fig. 2a and Supplementary Fig. S4A). In total, in 191/447
(42.7%) samples the tissue section was covered by less than 50%
of cancer cells implying high textural heterogeneity. In the
Helsinki dataset, the distribution was nearly identical (Supple-
mentary Fig. 4A, B). Normal renal tissue was the second most
frequent texture as the dataset was designed to cover tumour
border. The proportion of samples with >50% cancer tissue was
48.4%, which is in line with TCGA dataset.
Besides tumour biology, the varying site-specific sampling

protocols likely affected the textural content. We reasoned that by
dividing TCGA ccRCC samples by absence (<1%, “N−”) and
occurrence of normal tissue (≥1%, “N+”) we could undermine the

variation and examine tissue textures in two histologically more
coherent cohorts (Fig. 2b, c). N− samples were composed of more
cancer texture (median 67.7% [IQR 46.5-84.9%]) representing the
tumour core compared with (46.6% [33.0-60.0%]) in N+ samples
reflecting a broader tumour microenvironment (Fig. 2d and
Supplementary Fig. S4C–E).
As the proportion of normal renal tissue reflected tissue

sampling practices and the “other” texture class included various
histological types, we focused on blood and stroma-associated
phenotypes. Higher haemorrhage in N+ samples was associated
with less frequent metastasis, lower tumour stage and superior
Eastern Cooperative Oncology Group (ECOG) performance status
(Fig. 2e, f). Yet, no association with survival was evident
(Supplementary Fig. S5). We also noted that the peripheral blood
(PB) platelet count gradually decreased with increasing proportion
of tumour haemorrhage in N+ samples (Fig. 2g). Elevated
pretreatment platelet level is a biomarker of poor survival and is
incorporated in the prognostic Heng score [27]. Thus, low PB
platelet count could be due to high angiogenic activity and
consequent tumour haemorrhage. When examining N− samples,
we observed similar but less significant association of tumour
haemorrhage suggesting peritumoural haemorrhage to have a
more significant role in disease pathology (Fig. 2e).
We investigated next genomic alterations. In N+ samples,

mTORmut occurred in 24/396 patients (6.1%) and associated with
lower haemorrhage (Fig. 2h). While mTOR has been described to
increase angiogenesis via HIF1α and VEGF-regulated pathways,
VHLmut was not associated with haemorrhage indicating another
mechanism. No additional association with gene alterations,
mutation burden or aneuploidy was observed in either N+ or N-
samples (Supplementary Tables S2 and S3).
To identify haemorrhage-associated transcriptomic signatures,

we first compared the expression of individual genes (Fig. 2i and
Supplementary Fig. S6A). In N− samples, the HMOX1 gene was
highly expressed in conjunction with haemorrhage (Fig. 2i). Heme
oxygenase 1 (HMOX1) catalysers heme to biliverdin and increased
heme catabolism is consistent with increased tissue haemorrhage
[28]. We observed upregulated epithelial-to-mesenchymal (EMT)
and hypoxia-related pathways in samples without normal tissue
but little difference in immune profiles (Fig. 2j and Supplementary
Fig. S6B, C). In summary, our findings indicate that peritumoural
and intratumoural haemorrhage differ by their clinical, mutational,
transcriptional, and immunological profiles.

Tissue fibrosis is associated with high histological grade, low
mutation burden and an adaptive immune response
Next, we examined fibrosis-related manifestations. In N− samples,
we observed association between stroma and histological grade
(Fig. 2e, k). Similar relation was less evident in N+ samples
indicating that intratumoural but not peritumoural stroma would
be linked with poor renal cell differentiation (Fig. 2l). In line, N-
stroma associated with other established adverse prognostic
biomarkers such as tumour size, stage and anaemia (Fig. 2e).
When studying genomic alterations in N+ samples, PBRM1wt

and diploid haplotype were associated with higher proportion of
stroma (Fig. 2m, n and Supplementary Table S4). In N− samples,
SETD2mut indicated lower fibrosis (Supplementary Table S5).
Fibrosis in N− samples was associatedwith fewermacrophages and

enrichment of regulatory T cells and activated NK-cells (Fig. 2j and
Supplementary Fig. S6D–F). As mutation burden and PBRM1 genotype
have been implicated with immunotherapy response, quantifying
fibrosis could provide an inexpensive biomarker to increase their
precision or select patients for targeted sequencing [29–31].
Next, we inspected fibrosis-associated transcriptional pro-

grammes. As expected, the TGFβ response pathway was enriched
both in N+ and N− samples with high stromal composition
(Fig. 2j). High histological stroma associated only in N+ samples

O. Brummer et al.

686

British Journal of Cancer (2023) 129:683 – 695



with transcriptome-derived stromal score (Fig. 2j). We reasoned
this to be due to more abundant stroma in N+ compared to N−
samples as visually confirmed by large peritumoural stromal
margins compared to intratumoural fibrotic islets (Supplementary
Fig. S7A).

Established stromal signalling pathways regulating EMT and the
formation of integrin, syndecan, and myogenesis were elevated in
both N+ and N− samples (Fig. 2o). Moreover, fibrosis was
associated with chromosomal locus 1q32 activation, coagulation
and hypoxia (Fig. 2o). The apoptosis pathway was overactivated

N+ N+N– N–

Blood Stroma

N+N+

<1% normal tissue ≥1% normal tissueN– N+

n = 237

n = 210

n = 214

n = 182Clinical and gene
expression data 

(n = 447)

Mutation
data

(n=396)

N+ N+

Lower Blood % Higher

N–
N+

N+N–

Stroma % HigherLower

Higher
stroma %

Lower
stroma %

N– N+

Normal tissue in sample

N+ N+N– N–

Blood Stroma

qpo

k l m n

ig

e f h j

dcb

a

Cancer NormalStroma

+ –

100

75

50

25

0

100

75

50

25

Gender male

Leukocyte fraction

Stromal fraction

Intratumor heterogeneity

Proliferation

IFN-gamma response

TGF-beta response

Neoantigens

Indels

BCR richness

TCR richness

Th1 cells

Th2 cells

Th17 cells

B cells memory

Eosinophils

Macrophages M1

Macrophages M2

Monocytes

Neutrophils

NK cells activated

Plasma cells

T cells CD4 memory activated

T cells CD4 naive

T cells CD8

T cells gamma delta

T cells regulatory tregs

Dendritic cells

Macrophages

60 60

40

20

0

5

8

0.1

0.0

-0.1

6

4

2

0

4

3

2

1

0

0.0 0.1 0.2 0.3
Fold-change (log)

Significance ns p<0.01 & FC<1 p<0.01 & FC>1

–0.1

0.0 0.1

CCDC80

PCOLCE

TGFBI

KRT19NXN

C1QTNF1

COL1A2

COL18A1

SORT1

PLEKHA4

ETFA

GALK2

DAB2

HADHB

ETFDH

RASSF6

CAT

HADHAFMO1

SLC13A1
SLC17A3

SPATS2L

HSDL2

SPAG9 METTL9

PHYHIPLTINAG AFTPH

RTN4SPATA18GBA3

ACAT1 RAB7L1

0.2
Fold-change (log)

Significance
Sig

ns

N+

N+&N–

N–

AdjP>0.10p<0.01 & FC<1 p<0.01 & FC>1

–0.2 –0.1
0.0 0.1 0.2

MFAP4

KRT19

SMOC2

IGF2
TGFBI

LUM
EFNA5

MT1E

CTHRC1
CREB3L3

PKLR
AZGP1

TINAG
SLC5A1

NPR3

SCGN

SLC39A8

FAM134C

LMOD1

ACTG2

TAGLN

ACTA2 TPM2

CSRP1

LOG10 fold-change in gene expression
–0.2 –0.1

40

20

0

0

Low Normal Elevated

PLT

1 MUT

TRAPPC2

EPM2AIP1

PLIN3ANXA2P2

SERINC2

HMOX1

FTL

PGD
ETAA1

YOD1

IVNS1ABP

ATL2ERCC3
N4BP2L1

SNAPC3

ACSS1
C21orF7 CP

WFDC2

ST14

PPIC

CTSD

MMD

FUCA1

TXNRD1

WT

MTOROrgan metastasis m1

Kruskal–Wallis, p = 0.016

Kruskal–Wallis, p = 0.0019

0.07

0.27

0.79
0.79

0.79

0.79

0.13

0.19
0.16

0.05

LDH elevated
ECOG 1

Karnofsky >80
Age high

Lymph node metastasis N1
Organ metastasis M1

WBC low
WBC normal

WBC elevated
Smoking status non-smoker

Smoking status current smoker
Smoking status ex-smoker

HB low
HB normal

HB elevated
Calcium low

Calcium normal
Calcium elevated

PLT low
PLT normal

PLT elevated
Tumour size T1
Tumour size T2
Tumour size T3
Tumour size T4

Stage I
Stage II
Stage III
Stage IV

Grade G1
Grade G2
Grade G3
Grade G4LOG10(FC)

0

–2

–4
0.001
0.01
0.05

p value

LOG10(FC)

0

1

0.001
0.01
0.05

p value

Texture Blood Cancer Normal Stroma Other

P
ro
p
o
rt
io
n

 (
%

)

B
lo
od

 p
ro
po

rt
io
n 
(%

)
B
lo
od

 p
ro
po

rt
io
n 
(%

)

60

80

100

75

50

25

0

4

CHROMOSOME
HALLMARK
PID

EMT
AVB3 Integrin pathway
Syndecan 1 pathway
Integrin1 pathway
Myogenesis
UV response DN
chr1q32
Hypoxia
Coagulation
chr11q13
chr19p13
Allograft rejection
Integrin3 pathway
IL4 2pathway
Apical junction
Apoptosis
Angiogenesis
chr11p15
chr21q22
Xenobiotic metabolism
Adipogenesis
chr12q24
Oxidative phosphorylation
Fatty acid metabolism
chr1p31
Bile acid metabolism

  

2

–2
–4

0

G1 G2 G3 G4

Grade
Scale

GSEA

40

20

0

S
tr
om

a 
pr
op

or
tio

n 
(%

)

Kruskal–Wallis, p = 0.14
100

75

50

25

0

G1 G2 G3 G4 High MUT WT

PBRM1

Low

PLOIDYGrade

S
tr
om

a 
pr
op

or
tio

n 
(%

)

60

40

20

0

S
tr
om

a 
pr
op

or
tio

n 
(%

)

60

40

20

0

S
tr
om

a 
pr
op

or
tio

n 
(%

)

Lo
g1

0 
p 
va

lu
e

Lo
g1

0 
p 
va

lu
e

LO
G
10

 fo
ld
-c
ha

ng
e 
in

 g
en

e 
ex

pr
es

si
on

B
lo
od

 p
ro
po

rt
io
n 
(%

)

C
an
ce
r 
p
ro
p
o
rt
io
n

 (
%

)

O. Brummer et al.

687

British Journal of Cancer (2023) 129:683 – 695



and active lipid metabolism decreased only in conjunction with
enriched stroma in N+ samples (Fig. 2o). Similar findings were
observed also at the gene-level (Fig. 2p and Supplementary
Fig. S7B). While some genes were associated with stroma
formation in both sample categories, transforming growth factor,
beta-induced (TGFBI) and cytokeratin 19 (KRT19) were enriched in
N+ samples whereas actin gamma 2, smooth muscle (ACTG2) in N
− samples. These findings suggest that the extracellular matrix
(ECM) in the intratumoural and peritumoural tissue could differ by
their adhesion, migration and cell signalling abilities (Fig. 2q).

Lymphocyte infiltration is coordinated between malignant
and surrounding tissue
Previous studies quantifying tumour lymphocyte infiltration in
ccRCC have relied on deconvolution of bulk RNA-sequencing data
[17], histochemical [32], or antibody-based detection such as flow
cytometry [33, 34]. While these approaches are precise to
approximate the lymphocyte population in a sample, they impose
demands on uniform sampling and sample processing.
Here, we built a deep learning model identifying images with

high (90.3% classification accuracy) and low (96.1%) lymphocyte
density in the test set (Fig. 1e). We hypothesised that CTM-guided
lymphocyte quantification could solve issues related to sampling
variation. The lymphocyte classification probability per tile
reflected lymphocyte density. Therefore, lymphocyte predictions
[0–1] were proportioned by texture surface area. The median
lymphocyte proportion per sample was 20.3% and varied between
2.3–82.5%. The highest lymphocyte density was unexpectedly in
the normal renal texture followed by cancer, stroma, blood, and
lastly other texture types (Fig. 3a). While texture-specific
lymphocyte proportions shared high positive correlation, intratu-
moural infiltration explained most of the total sample infiltration
variance (Fig. 3b).
To examine lymphocyte textural priority, we rescaled the

texture-specific lymphocyte densities so that their sum would
equal to 100% and observed heterogeneous distribution at the
patient level (Fig. 3c). Strikingly, the intratumoural lymphocyte
density correlated negatively with the density in the surrounding
normal renal tissue (R −0.58, p < 0.001; Fig. 3d) and stromal
texture (R −0.51, p < 0.001). Collectively, the results indicate that
lymphocyte infiltration affects all textures but unequally possibly
reflecting flow intratumoural and peritumoural areas.
To confirm the generalisability of the lymphocyte classifier and

the stability of the lymphocyte proportion per textures, we were
able to replicate all results depicted in Fig. 3a–d in the Helsinki
dataset (Supplementary Fig. S8).

Stromal lymphocytes are associated with poor survival and
high T cell receptor diversity
Lymphocyte proportions in the cancer and stroma textures
differed by the proportion of normal renal tissue (<1% vs. ≥1%;
Fig. 3e and Supplementary Fig. S9A–C). To equalise sampling
differences, we normalised lymphocyte density with CTM-derived
texture-specific weights (see Methods) successfully reducing

differences in the total lymphocyte infiltration by clinical centre
(Supplementary Fig. S9D, E). However, samples originating from
Fox Chase contained higher lymphocyte density than expected
(Supplementary Fig. S9E). When examined visually, these samples
were characterised with a high hematoxylin:eosin ratio and
lymphocyte scoring even visually was ambiguous (Supplementary
Fig. S9F, G). As a conclusion, these samples were excluded from
lymphocyte analyses.
To fully normalise staining differences, we categorised samples

into “High” and “Low” infiltration based on their lymphocyte
density compared to the clinical centre median density. When
examining clinical significance, we observed that lymphocyte
infiltration in cancer textures was associated with high histolo-
gical grade (Fig. 3f). Stromal lymphocyte infiltration was related
with poor overall survival, and organ metastasis (Fig. 3f and
Supplementary Fig. S10). Instead, high blood-specific lymphocyte
density and low normal renal-specific lymphocyte density were
associated with more local tumour but not survival (Fig. 3f and
Supplementary Fig. S10). Patient gender, age, smoking status, or
laboratory values were not related to lymphocyte infiltration
(Fig. 3f).
We then studied genomic and immunological profiles. In line

with our expectations, infiltration in malignant renal tissue was
associated with the transcriptomic CD8+ T cell signature (Fig. 3g).
B and T cell receptor diversity was associated with increased
lymphocyte infiltration almost irrespective of textural context
(Fig. 3g). Of note, cell proliferation correlated negatively with all
except stromal and blood lymphocyte infiltration (Fig. 3g).

Aneuploidy, chromosome 1p and 5q loci, and the EMT
programme identified as regulators of tumour-infiltrating
lymphocytes
Next, we examined genomic alterations associated with lymphocyte
infiltration. Aneuploidy but not mutation burden was the most
reliable predictor of high intratumoural and total lymphocyte
density (Fig. 3h and Supplementary Fig. S11A). When studying
individual genes, SETD2mut was associated with higher infiltration in
stromal texture (Supplementary Fig. S11B). The PBRM1 genotype
has been associated with both nonimmunogenic [31] and immune
hot phenotype and anti-PD1 therapy response [30]. In our study,
PBRM1 alterations was associated only with lymphocyte infiltration
in normal renal tissue (Supplementary Fig. S11C–E). By analysing the
supplementary data provided in [30], no association was evident
between the tumour core CD8+ density and PBRM1 status
validating our finding and indicating that its immunologic
significance remains unclear (Supplementary Fig. S11F).
Given our previously described asynchronous lymphocyte

enrichment in either malignant or normal renal tissue,
we interrogated which pathways were most commonly altered
in these two compartments. The top three pathways enriched
with intratumoural infiltration were well-established T cell activa-
tion signatures endowing confidence to our analysis (Fig. 3i). At
the gene-level, the cytolytic granzyme A (GZMA) and K
(GZMK) enzyme, CD8A and the chemokine CXCL10 illustrious of T

Fig. 2 Tissue texture analysis. a Tissue texture profiles in individual patients (n= 447). b Schematic of the clear-cell renal cell carcinoma
microenvironment. The left side illustrates three common subregions: the intratumoural cancer tissue, the stroma-rich margin and the outer
normal renal tissue. The right side illustrates two examples of sampling conventions: without (green, “N−”) or with (light blue, “N+”) normal
renal tissue. c Patient numbers by normal tissue proportion. d Cancer textures by N+ or N− samples. e Association between clinical variables
(binary variables) and textures (continuous variables). f Blood texture by organ metastasis, g peripheral blood platelet and hmTORmutation in
N+ samples. i Genes differentially expressed in tumours with higher (right) or lower (left) than median blood proportion. j Association
between transcriptome-based signatures (binary variables) and textures (continuous variables). k Stroma by tumour Fuhrman grade in N−
and l N+ samples. m Stroma proportion by ploidy status in N+ samples. n Stroma proportion by PBRM1 mutation status in N+ samples.
o Heatmap of the normalised enrichment score of the significant gene pathways associated (adjusted p < 0.05) with N+ and N− samples.
Grey-coloured boxes indicate the pathways associated with only N+ or N− samples (adjusted p < 0.05). p Genes differentially expressed in
tumours with higher (right) to lower (left) than median stroma proportion. Only N+ samples are included. q Preferential association with
higher stroma tissue proportion in N+ or N− samples.
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and NK-cells and the testis antigen SPAG5 were associated
with infiltration to cancer tissue (Fig. 3j). Lipid metabolism,
hypoxia and chromosome locus 5q13 genes were
downregulated in samples with high intratumoural infiltration.

On the contrary, the hallmark EMT and protein
metabolism pathways were enriched in lymphocyte-rich
normal renal tissue (Fig. 3i). In summary, immune, mesenchymal,
and metabolic factors influence lymphocyte infiltration.
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The textural composition of the tumour margin predicts
prognosis and reflects the tumoural genomic and
transcriptomic alterations
Based on our previous findings that the tumour core and its
surrounding peritumoural tissue form two immunologically
distinct regions [13]. Therefore, we were intrigued to investigate
the textural content of the peritumoural margin and its exterior
non-margin region (Fig. 4a). The peritumoural texture was
dominated by stroma (Fig. 4b). Blood and stroma textures were
more frequent in the tumour margin and normal renal tissue less
common in the tumour margin than in its exterior non-margin
(Fig. 4c).
The margin composition was heterogenous at the patient level

(Fig. 4d). We assigned each patient with a textural enrichment
score by comparing texture proportions between the tumour
margin to the non-margin tissue. Patients with a high margin:non-
margin normal renal tissue ratio had significantly worse survival
(Fig. 4e). The clinical profile of these patients included less
differentiated tumour and advanced stage (Fig. 4f). These tumours
were enriched for memory B cells and depleted of Th17 helper T
cells (Fig. 4g). In addition, these were characterised with more
frequent mutations in PBRM1, SETD2 and mTOR genes and
activation of the KRAS pathway and inflammatory signalling
(Fig. 4h and Supplementary Fig. S12A, B).
In the opposite, patients with elevated blood texture in the

tumour margin were characterised with superior survival (Supple-
mentary Fig. S12C). These were commonly male patients with
local tumours and mutations in VHL and wild-type FAT1 and STAG2
(Fig. 4f, h). Based on transcriptomic data, these tumours were
associated with activation of the antigen processing pathways and
fewer neoantigens (Fig. 4g and Supplementary Fig. S12D, E).
High peritumoural margin:non-margin stroma was associated

with T cell clonal diversity and mutations in PBRM1, SETD2 and
mTOR, but no distinct prognostic or transcriptomic signature
(Fig. 4f–h and Supplementary Fig. S12F–H).

The lymphocyte-rich stromal margin associates with an
adaptive immune response, dampened EMT and non-smoking
habit
To conclude, we quantified the margin:non-margin lymphocyte
ratio. The highest lymphocyte density was found in the normal
renal tissue and stroma in both margin and non-margin tissues
(Fig. 5a). However, lymphocytes were more abundant in the
tumour margin across textures when compared to the non-margin
tissue indicating their enrichment to the close proximity of
tumours (Fig. 5b). While absolute lymphocyte infiltration corre-
lated regardless of the histological texture they were located in,
we noted distinct negative correlation between infiltration to
normal renal and stromal tissues (Fig. 5c–e).
Next, we correlated intratumoural and peritumoural lymphocyte

density and found strong concordance (R= 0.78, p < 0.001, Fig. 5f).
We replicated the finding in the Helsinki dataset, where instead of
a cancer texture and its margin we had annotated the
intratumoural and peritumoural regions (R= 0.60, p < 0.001,
Fig. 5f). However, in closer inspection we could discern two

linearities and, therefore, divided patients into two groups: 25%
highest and 75% lowest tumoural lymphocyte density. Patients
with high intratumoural infiltration had lower peritumoural
lymphocyte density. Collectively, the findings suggest that distinct
mechanisms could regulate immune cell activation (infiltration to
all textures), their spatial localisation to distinct areas of the
tumour border, and penetration from the border to the tumour
core.
Then, we studied interrogated the clinical and genomic profiles

of the tumour margin infiltration. Enrichment of lymphocytes to
the tumour border was associated with inferior survival (Supple-
mentary Fig. 13). The finding was related especially to infiltration
to the margin characterised with stromal and other textures which
were associated with biomarkers of poor prognosis (e.g., tumour
size, stage, metastasis, poor ECOG; Fig. 5g). We also identified wild-
type BAP1 to associate with higher margin:non-margin lympho-
cyte ratio in both normal renal tissue and in general, while
enrichment of lymphocytes to the stromal margin was associated
with higher mutation burden (Fig. 5h).
We observed pronounced interferon and adaptive immune

signalling signatures and higher M1-polarisation of macrophages
to correlate with lymphocyte enrichment to the tumour margin
(Fig. 5i–k and Supplementary Fig. 14). To further explore immune
profiles, we studied multiplex immunohistochemistry-stained
tissue samples of the Helsinki dataset, which has been constructed
of renal sections encompassing the tumour border. We compared
the T cell immunophenotypes of patients with high (n= 31) vs.
low (n= 31) margin:non-margin lymphocyte ratio. Intratumoural
T cells did not differ immunophenotypically between these groups
(Supplementary Fig. 15). Instead, margin lymphocyte enrichment
was associated with lower granzyme B expression in peritumoural
CD4+ T cells but higher CD25 expression in CD8+ T cells
suggesting possible cytotoxic T cell activation (Supplementary
Fig. 15).

DISCUSSION
The main findings of this study are (1) CTM to resolve sampling
variation and (2) the integrative network between tissue textures,
lymphocyte infiltration, clinical variables, genomic alterations, and
transcriptomic signatures.
TCGA tissue procurement has been described [14], but limitedly

evaluated [35]. Here, we indicate that some centres have
systematically included samples spanning from the tumour core
to the surrounding healthy tissue while others have restricted
sampling to the tumour core. Moreover, the hematoxylin:eosin
ratio differed substantially by clinical centres as previously
reported [35]. While sampling differences are apparent in TCGA
histological slides, these could extend to sequencing data urging
for uniform sampling, sample preprocessing, and retrospective
evaluation standards.
While we could undermine staining variance by configuring

algorithm training, we resolved sampling variation with CTM
(Fig. 4). The approach detected up to 10% samples representing
false histology or poor quality. In addition, CTM abrogated

Fig. 3 Texture-specific lymphocyte analysis. a Lymphocyte proportion by textures. b Correlation matrix of the texture and texture-specific
lymphocyte proportion. c Relative lymphocyte proportion (density normalised to 100%) by textures in individual patients (n= 447). The
lymphocyte density (proportion/area) has been median-averaged by texture type and then their sum rescaled to 100%. d Correlation of
relative lymphocyte proportion in malignant and normal renal tissue. e Lymphocyte proportion in cancer tissue by samples with or without
normal tissue. f Association between clinical variables (binary variables) and texture-aware lymphocyte proportions (continuous variables).
g Association between transcriptome-based signatures (binary variables) and texture-specific lymphocyte proportions (continuous variables).
h Ploidy status (FALSE = aneuploidy, TRUE = normal) by lymphocyte infiltration in cancer tissue. i Heatmap of the normalised enrichment
score of the significant gene pathways associated (adjusted p < 0.05) with lymphocyte infiltration to cancer or normal textures. Grey-coloured
boxes indicate the pathways associated with only samples with or without normal tissue (adjusted p < 0.05). j Genes associated with
lymphocyte infiltration to the cancer (red) or normal (blue) or both (green) texture. The coordinate of each dot represents the ratio of the gene
expression value when comparing in (cancer or normal) texture-specific lymphocyte-rich vs. lymphocyte-low samples.

O. Brummer et al.

690

British Journal of Cancer (2023) 129:683 – 695



Tumour

Tumour margin Tumour non-margin

120
50

40

30

20

10

0
50

40

30

20

10

0

80

40

P
ro

p
o

rt
io

n
 (
%
)

S
u

rv
iv

al
 r

at
e 
(%
)

M
ar

g
in

:n
o

n
m

ar
g

in
 t

ex
tu

re
 r

at
io

 if
 w

ild
-t

yp
e 

g
en

e

H
ig

h
er

 t
ex

tu
re

 %
 in

 t
u

m
o

r 
m

ar
g

in
 if

 w
ild
-t

yp
e 

g
en

e

Margin:nonmargin texture ratio if mutated gene

P
ro

p
o

rt
io

n
 (
%
)

P
ro

p
o

rt
io

n
 (
%
)

0

100

75

50

25

0

Gender male
LDH elevated

Leukocyte fraction

Stromal fraction

Intratumour heterogeneity

Proliferation

IFN-gamma response

TGF-beta response

Neoantigens

Indels

BCR richness

TCR richness

Th1 cells

Th2 cells

Th17 cells

B cells memory

Eosinophils

Neutrophils

NK cells activated

T cells CD4 memory activated

T cells CD4 naive

T cells CD8

T cells gamma delta

T cells regulatory tregs

Dendritic cells

Macrophages

Plasma cells

Macrophages M1

Macrophages M2

Monocytes

ECOG 1
Karnofsky >80

Age high
Lymph node metastasis N1

Organ metastasis M1
WBC low

HB low
HB normal

HB elevated
Calcium low

PLT low
PLT normal

PLT elevated
Tumor size T1
Tumor size T2
Tumor size T3
Tumor size T4

Stage I
Stage II
Stage III
Stage IV

Grade G1
Grade G2
Grade G3
Grade G4

LOG10(FC)

p value2

0.05
0.01

0.001

p value

0.05

0.01

0.001

Blo
od

Norm
al

Oth
er

Stro
m

a Blo
od

Norm
al

Oth
er

Stro
m

a

1

0

LOG10(FC)
1.0

0.5

0.0

Calcium normal
Calcium elevated

WBC normal
WBC elevated

Smoking status non-smoker
Smoking status current smoker

Smoking status ex-smoker

1.00

Margin/NonMargin FC Low Intermediate High

0.75

0.25

0.00

3

2

1

0
0 1

MUTATIONS_TOTAL
BAP1 FAT1

FAT1

PBRM1NFE2L2

VHL

VHL

SETD2

STAG2

MTOR

Texture

Proportion (%)

P value p<0.05 p<0.10
Blood

10 30 50

Normal Other Stroma

2 3

0

h

e f g

d

a b c

6 12 18 24 30 36 42 48 54 60
Time (months)

Number at risk

Higher texture % in tumor margin if genomic alteration

75 39 37 32 26 25 19 16 13 6 0

05121523253035404675

75 49 41 36 30 25 19 13 8 2 0

0.50

Blood Normal Stroma Other

Blood Normal Stroma OtherTexture

Region

Blood Normal

Other Stroma

ns

Margin Non-margin

Texture

Kruskal–Wallis, p < 2.2e-16

p=0.10

p < 0.0001

0.51

Normal
tissue

Fig. 4 Texture profile in the tumour margin. a Schematic of the peritumoural tissue. b Tissue texture proportions in the tumour margin, and
c comparison to the non-margin tissue. d Relative texture proportion in the tumour margin in individual patients (n= 447). e Kaplan–Meier
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lymphocyte infiltration differences in distinct clinical centres. The
approach could be beneficial as a standardisation step in diverse
applications of computational histopathology such as dataset
quality control and harmonisation.

We demonstrate the generalisation of CTM in two datasets and
its usability by uncovering multifaceted connections between
texture and lymphocyte density with clinical, immunological,
genomic, and transcriptomic features. For instance, while the
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histological grade is based on ccRCC cell morphology [36, 37], it
correlated substantially with intratumoural fibrosis, which could
facilitate routine tumour grading. Fibrosis correlated with immune,
hypoxia and EMT signalling and alterations in commonly mutated
genes (Fig. 6). Half of the lymphocytes in sections were located
among cancer cells and shared moderate concordance across

textures. Aneuploidy, the IL-12 pathway, and chromosome 5q13
inactivity were discovered as novel biomarkers of intratumoural
infiltration in ccRCC.
We have previously shown that intratumoural T cells are

immunophenotypically more experienced based on higher
expression of cytolytic, immune checkpoint and senescence

Fig. 5 Lymphocyte infiltration in the tumour margin. a Lymphocyte proportion in the tumour margin by textures, and b comparison to the
non-margin tissue. c Correlation matrix of the texture and texture-specific lymphocyte proportion in the tumour margin. d Relative
lymphocyte proportion (density normalised to 100%) by textures in the tumour margin of individual patients. The lymphocyte density
(proportion/area) has been median-averaged by texture type and then their sum rescaled to 100%. e Correlation of relative lymphocyte
proportion in stromal margin and normal renal margin. f Correlation between the lymphocyte density in the cancer texture and tumour
margin (TCGA dataset) and in the intratumoural and peritumoural regions (Helsinki dataset). Patients are divided by highest 25% (red) and
lowest 75% (blue) cancer texture-specific lymphocyte density. g Association between clinical variables (binary variables) and the margin:non-
margin ratio of lymphocyte proportion (continuous variables). h Enrichment of genomic alterations by margin:non-margin ratio of
lymphocyte proportions in tissue textures. Only associations with p < 0.10 are visualised. i Normalised enrichment score (NES) of the gene
pathways significantly associated with the ratio of margin:non-margin stroma proportion. j Comparison of the genes differentially-expressed
in tumours with higher (right) or lower (left) margin lymphocyte density compared to non-margin lymphocyte density. k Association between
transcriptome-based signatures (binary variables) and the margin:non-margin ratio of lymphocyte proportion (continuous variables).
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markers and closer intercellular proximity compared to the
peritumoural and normal renal regions [13]. Possibly due to
restricted penetration, lymphocyte enrichment to the stromal
margin was associated with advanced tumour stage (Fig. 6). In
addition, we discovered that while normal renal tissue is
commonly found in the tumour margin, it is implicated with poor
survival emphasising the role of a buffer between malignant and
normal renal tissue.
The comprehensive annotation data and algorithms are

available to expand the textural and lymphocyte analyses to
other datasets. In summary, this study highlights how computa-
tional analysis of routine H&E staining can help to detect sampling
fallacies and poor-quality samples easily to discover novel
associations between histopathology and molecular correlates.

DATA AVAILABILITY
The annotated texture and lymphocyte image data and algorithm parameters have
been deposited to Zenodo https://zenodo.org/record/7898308#.ZGXM3-xBxAc. The
TissUUmaps [38] visualisation platform is available at http://hruh-20.it.helsinki.fi/
rcc_texture_lymphocytes/.

CODE AVAILABILITY
The code to run the CNN classifiers are available at https://github.com/vahvero/
RCC_textures_and_lymphocytes_publication_image_analysis. The code and pro-
cessed data to reproduce data analyses and figures are available at https://
github.com/obruck/RCC_textures_and_lymphocytes_publication_data_analysis.
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