Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rethinking our approach to cancer metabolism to deliver patient benefit

Abstract

Altered cellular metabolism is a major mechanism by which tumours support nutrient consumption associated with increased cellular proliferation. Selective dependency on specific metabolic pathways provides a therapeutic vulnerability that can be targeted in cancer therapy. Anti-metabolites have been used clinically since the 1940s and several agents targeting nucleotide metabolism are now well established as standard of care treatment in a range of indications. However, despite great progress in our understanding of the metabolic requirements of cancer and non-cancer cells within the tumour microenvironment, there has been limited clinical success for novel agents targeting pathways outside of nucleotide metabolism. We believe that there is significant therapeutic potential in targeting metabolic processes within cancer that is yet to be fully realised. However, current approaches to identify novel targets, test novel therapies and select patient populations most likely to benefit are sub-optimal. We highlight recent advances in technologies and understanding that will support the identification and validation of novel targets, re-evaluation of existing targets and design of optimal clinical positioning strategies to deliver patient benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key steps to clinical success in cancer metabolism.

Similar content being viewed by others

Data availability

Non-applicable.

References

  1. Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. Metabolic requirements for cancer cell proliferation. Cancer Metab. 2016;4:16.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021;21:162–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  4. Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238:787–93.

    Article  CAS  PubMed  Google Scholar 

  5. Visentin M, Zhao R, Goldman ID. The antifolates. Hematol Oncol Clin North Am. 2012;26:629–48.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-Fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447.

    Article  CAS  PubMed  Google Scholar 

  7. Madaan K, Kaushik D, Verma T. Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther. 2012;12:19–29.

    Article  CAS  PubMed  Google Scholar 

  8. Gesto DS, Cerqueira NM, Fernandes PA, Ramos MJ. Gemcitabine: a critical nucleoside for cancer therapy. Curr Med Chem. 2012;19:1076–87.

    Article  CAS  PubMed  Google Scholar 

  9. Harris AL. Development of cancer metabolism as a therapeutic target: new pathways, patient studies, stratification and combination therapy. Br J Cancer. 2020;122:1–3.

    Article  PubMed  Google Scholar 

  10. Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol. 2017;24:1161–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seth Nanda C, Venkateswaran SV, Patani N, Yuneva M. Defining a metabolic landscape of tumours: genome meets metabolism. Br J Cancer. 2020;122:136–49.

    Article  CAS  PubMed  Google Scholar 

  12. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999;24:68–72.

    Article  CAS  PubMed  Google Scholar 

  13. Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Targeting tumour metabolism. Nat Rev Drug Discov. 2010;9:503-4.

  15. Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med. 2023;29:115–26.

    Article  CAS  PubMed  Google Scholar 

  16. Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019;20:1083–97.

    Article  CAS  PubMed  Google Scholar 

  17. Boysen G, Jamshidi-Parsian A, Davis MA, Siegel ER, Simecka CM, Kore RA, et al. Glutaminase inhibitor CB-839 increases radiation sensitivity of lung tumor cells and human lung tumor xenografts in mice. Int J Radiat Biol. 2019;95:436–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamada S, Matsumoto R, Tanaka Y, Taguchi K, Yamamoto M, Masamune A. Nrf2 activation sensitizes K-ras mutant pancreatic cancer cells to glutaminase inhibition. Int J Mol Sci. 2021;22:1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao L, Xu Z, Huang Z, Tang Y, Yang D, Huang J, et al. CPI-613 rewires lipid metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling. J Exp Clin Cancer Res. 2020;39:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yue EW, Sparks R, Polam P, Modi D, Douty B, Wayland B, et al. INCB24360 (Epacadostat), a highly potent and selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med Chem Lett. 2017;8:486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alexander Vandell JE, Hoffman Steve, Del Priore Giuseppe, Fernandez-Zapico Martin. In vitro and in vivo anticancer effects of D/L-alpha-metyrosine (SM-88), a novel metabolism-based therapy [abstract]. Proc Annu Meet Am Assoc Cancer Res. 2020;80:Abstract nr 5998.

    Google Scholar 

  22. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24:1036–46.

    Article  CAS  PubMed  Google Scholar 

  23. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.

    Article  PubMed  Google Scholar 

  24. Dulbecco R, Freeman G. Plaque production by the polyoma virus. Virology. 1959;8:396–7.

    Article  CAS  PubMed  Google Scholar 

  25. Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. JAMA. 1967;199:519–24.

    Article  CAS  PubMed  Google Scholar 

  26. Muir A, Danai LV, Gui DY, Waingarten CY, Lewis CA, Vander Heiden MG. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife. 2017;6:e27713.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cantor JR, Abu-Remaileh M, Kanarek N, Freinkman E, Gao X, Louissaint A Jr, et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell. 2017;169:258.e17–72 e17.

    Article  Google Scholar 

  28. Vande Voorde J, Ackermann T, Pfetzer N, Sumpton D, Mackay G, Kalna G, et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci Adv. 2019;5:eaau7314.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ackermann T, Tardito S. Cell culture medium formulation and its implications in cancer metabolism. Trends Cancer. 2019;5:329–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sullivan MR, Darnell AM, Reilly MF, Kunchok T, Joesch-Cohen L, Rosenberg D, et al. Methionine synthase is essential for cancer cell proliferation in physiological folate environments. Nat Metab. 2021;3:1500–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghergurovich JM, Xu X, Wang JZ, Yang L, Ryseck RP, Wang L, et al. Methionine synthase supports tumour tetrahydrofolate pools. Nat Metab. 2021;3:1512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rossiter NJ, Huggler KS, Adelmann CH, Keys HR, Soens RW, Sabatini DM, et al. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metab. 2021;33:1248.e9–63.e9.

    Article  Google Scholar 

  33. Gee S, Nelson N, Bornot A, Carter N, Cuomo ME, Dovedi SJ, et al. Developing an arrayed CRISPR-Cas9 co-culture screen for immuno-oncology target ID. SLAS Discov. 2020;25:581–90.

    Article  CAS  PubMed  Google Scholar 

  34. Leney-Greene MA, Boddapati AK, Su HC, Cantor JR, Lenardo MJ. Human plasma-like medium improves T lymphocyte activation. iScience. 2020;23:100759.

    Article  CAS  PubMed  Google Scholar 

  35. Farhat J, Pandey I, AlWahsh M. Transcending toward advanced 3D-cell culture modalities: a review about an emerging paradigm in translational oncology. Cells. 2021;10:1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han K, Pierce SE, Li A, Spees K, Anderson GR, Seoane JA, et al. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature. 2020;580:136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ringel T, Frey N, Ringnalda F, Janjuha S, Cherkaoui S, Butz S, et al. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-beta resistance. Cell Stem Cell. 2020;26:431.e8–40.e8.

    Article  Google Scholar 

  38. Coluccio ML, Perozziello G, Malara N, Parrotta E, Zhang P, Gentile F, et al. Microfluidic platforms for cell cultures and investigations. Microelectron Eng. 2019;208:14–28.

    Article  CAS  Google Scholar 

  39. Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature. 2014;508:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sullivan MR, Danai LV, Lewis CA, Chan SH, Gui DY, Kunchok T, et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife. 2019;8:e44235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Talty R, Olino K. Metabolism of innate immune cells in cancer. Cancers. 2021;13:904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 2021;11:8322–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Altea-Manzano P, Doglioni G, Liu Y, Cuadros AM, Nolan E, Fernandez-Garcia J, et al. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-kappaB signaling. Nat Cancer. 2023;4:344–64.

    Article  CAS  PubMed  Google Scholar 

  44. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16:769–77.

    Article  CAS  PubMed  Google Scholar 

  45. Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, et al. Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J. 2015;29:2315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303.

    Article  CAS  PubMed  Google Scholar 

  47. Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity. 2016;45:358–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Naser FJ, Jackstadt MM, Fowle-Grider R, Spalding JL, Cho K, Stancliffe E, et al. Isotope tracing in adult zebrafish reveals alanine cycling between melanoma and liver. Cell Metab. 2021;33:1493–504.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Day CP, Merlino G, Van, Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163:39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res. 2003;9:4227–39.

    PubMed  Google Scholar 

  52. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84:1424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gaude E, Frezza C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat Commun. 2016;7:13041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paschall AV, Liu K. An orthotopic mouse model of spontaneous breast cancer metastasis. J Vis Exp. 2016:54040.

  55. Zhang G, Du YN. Orthotopic pancreatic tumor mouse models of liver metastasis. Methods Mol Biol. 2019;1882:309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang L, Bu P. Generation of an orthotopic mouse model to study colorectal cancer metastasis. STAR Protoc. 2021;2:100792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gomez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech. 2017;10:1061–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaika NV, Yu F, Purohit V, Mehla K, Lazenby AJ, DiMaio D, et al. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma. PLoS ONE. 2012;7:e32996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol. 2020;22:310–20.

    Article  CAS  PubMed  Google Scholar 

  60. Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17:254–68.

    Article  CAS  PubMed  Google Scholar 

  61. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–25.

    Article  CAS  PubMed  Google Scholar 

  62. Blomme A, Van Simaeys G, Doumont G, Costanza B, Bellier J, Otaka Y, et al. Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene. 2018;37:1237–50.

    Article  CAS  PubMed  Google Scholar 

  63. Sato Y, Fu Y, Liu H, Lee MY, Shaw MH. Tumor-immune profiling of CT-26 and Colon 26 syngeneic mouse models reveals mechanism of anti-PD-1 response. BMC Cancer. 2021;21:1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O’Rourke KP, Loizou E, Livshits G, Schatoff EM, Baslan T, Manchado E, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol. 2017;35:577–82.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Allen TM, Brehm MA, Bridges S, Ferguson S, Kumar P, Mirochnitchenko O, et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat Immunol. 2019;20:770–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9:137–53.

    Article  CAS  PubMed  Google Scholar 

  67. Knight JRP, Alexandrou C, Skalka GL, Vlahov N, Pennel K, Officer L, et al. MNK inhibition sensitizes KRAS-mutant colorectal cancer to mTORC1 inhibition by reducing eIF4E phosphorylation and c-MYC expression. Cancer Discov. 2021;11:1228–47.

    Article  CAS  PubMed  Google Scholar 

  68. Henderson CJ, Kapelyukh Y, Scheer N, Rode A, McLaren AW, MacLeod AK, et al. An extensively humanized mouse model to predict pathways of drug disposition and drug/drug interactions, and to facilitate design of clinical trials. Drug Metab Dispos. 2019;47:601–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hardie DG. 100 years of the Warburg effect: a historical perspective. Endocr Relat Cancer. 2022;29:T1–T13.

    Article  CAS  PubMed  Google Scholar 

  70. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166016.

    Article  CAS  PubMed  Google Scholar 

  72. Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020;32:341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer. 2020;122:1580–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Issa GC, DiNardo CD. Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm. Blood Cancer J. 2021;11:107.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Grandhi S, Bosworth C, Maddox W, Sensiba C, Akhavanfard S, Ni Y, et al. Heteroplasmic shifts in tumor mitochondrial genomes reveal tissue-specific signals of relaxed and positive selection. Hum Mol Genet. 2017;26:2912–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smith AL, Whitehall JC, Bradshaw C, Gay D, Robertson F, Blain AP, et al. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. Nat Cancer. 2020;1:976–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gorelick AN, Kim M, Chatila WK, La K, Hakimi AA, Berger MF, et al. Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nat Metab. 2021;3:558–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet. 2018;34:101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Harrieder EM, Kretschmer F, Bocker S, Witting M. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. J Chromatogr B Anal Technol Biomed Life Sci. 2022;1188:123069.

    Article  CAS  Google Scholar 

  81. His M, Viallon V, Dossus L, Gicquiau A, Achaintre D, Scalbert A, et al. Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Med. 2019;17:178.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Huang J, Mondul AM, Weinstein SJ, Derkach A, Moore SC, Sampson JN, et al. Prospective serum metabolomic profiling of lethal prostate cancer. Int J Cancer. 2019;145:3231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vandergrift LA, Decelle EA, Kurth J, Wu S, Fuss TL, DeFeo EM, et al. Metabolomic prediction of human prostate cancer aggressiveness: magnetic resonance spectroscopy of histologically benign tissue. Sci Rep. 2018;8:4997.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Puchades-Carrasco L, Jantus-Lewintre E, Perez-Rambla C, Garcia-Garcia F, Lucas R, Calabuig S, et al. Serum metabolomic profiling facilitates the non-invasive identification of metabolic biomarkers associated with the onset and progression of non-small cell lung cancer. Oncotarget. 2016;7:12904–16.

    Article  PubMed  PubMed Central  Google Scholar 

  85. He X, Gu J, Zou D, Yang H, Zhang Y, Ding Y, et al. NMR-based metabolomics analysis predicts response to neoadjuvant chemotherapy for triple-negative breast cancer. Front Mol Biosci. 2021;8:708052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiao Y, Ma D, Yang YS, Yang F, Ding JH, Gong Y, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022;32:477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Johnston K, Pachnis P, Tasdogan A, Faubert B, Zacharias LG, Vu HS, et al. Isotope tracing reveals glycolysis and oxidative metabolism in childhood tumors of multiple histologies. Med. 2021;2:395–410.

    Article  CAS  PubMed  Google Scholar 

  88. Woitek R, Gallagher FA. The use of hyperpolarised (13)C-MRI in clinical body imaging to probe cancer metabolism. Br J Cancer. 2021;124:1187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Araujo R, Bispo D, Helguero LA, Gil AM. Metabolomic studies of breast cancer in murine models: a review. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165713.

    Article  CAS  PubMed  Google Scholar 

  90. Pinu FR, Goldansaz SA, Jaine J. Translational metabolomics: current challenges and future opportunities. Metabolites 2019;9:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113:2309–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Claude E, Jones EA, Pringle SD. DESI mass spectrometry imaging (MSI). Methods Mol Biol. 2017;1618:65–75.

    Article  CAS  PubMed  Google Scholar 

  93. Najumudeen AK, Ceteci F, Fey SK, Hamm G, Steven RT, Hall H, et al. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nat Genet. 2021;53:16–26.

    Article  CAS  PubMed  Google Scholar 

  94. St John ER, Balog J, McKenzie JS, Rossi M, Covington A, Muirhead L, et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 2017;19:59.

    Article  Google Scholar 

  95. Tzafetas M, Mitra A, Paraskevaidi M, Bodai Z, Kalliala I, Bowden S, et al. The intelligent knife (iKnife) and its intraoperative diagnostic advantage for the treatment of cervical disease. Proc Natl Acad Sci USA. 2020;117:7338–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alexander J, Gildea L, Balog J, Speller A, McKenzie J, Muirhead L, et al. A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the iKnife. Surg Endosc. 2017;31:1361–70.

    Article  PubMed  Google Scholar 

  97. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94.

    Article  CAS  PubMed  Google Scholar 

  98. Wei D, Xu M, Wang Z, Tong J. The development of single-cell metabolism and its role in studying cancer emergent properties. Front Oncol. 2021;11:814085.

    Article  CAS  PubMed  Google Scholar 

  99. Rappez L, Stadler M, Triana S, Gathungu RM, Ovchinnikova K, Phapale P, et al. SpaceM reveals metabolic states of single cells. Nat Methods. 2021;18:799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK. Raman techniques: fundamentals and frontiers. Nanoscale Res Lett. 2019;14:231.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Auner GW, Koya SK, Huang C, Broadbent B, Trexler M, Auner Z, et al. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018;37:691–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu J, Yu T, Zois CE, Cheng JX, Tang Y, Harris AL, et al. Unveiling cancer metabolism through spontaneous and coherent Raman spectroscopy and stable isotope probing. Cancers. 2021;13:1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lemberg KM, Gori SS, Tsukamoto T, Rais R, Slusher BS. Clinical development of metabolic inhibitors for oncology. J Clin Investig. 2022;132:e148550.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 2017;23:1362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zheng D, Wei Z, Guo W. Identification of a solute carrier family-based signature for predicting overall survival in osteosarcoma. Front Genet. 2022;13:849789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Konteatis Z, Travins J, Gross S, Marjon K, Barnett A, Mandley E, et al. Discovery of AG-270, a first-in-class oral MAT2A inhibitor for the treatment of tumors with homozygous MTAP deletion. J Med Chem. 2021;64:4430–49.

    Article  CAS  PubMed  Google Scholar 

  107. Lauinger L, Kaiser P. Sensing and signaling of methionine metabolism. Metabolites. 2021;11:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalev P, Hyer ML, Gross S, Konteatis Z, Chen CC, Fletcher M, et al. MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell. 2021;39:209.e11–24 e11.

    Article  Google Scholar 

  109. Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015;14:543–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Okano N, Naruge D, Kawai K, Kobayashi T, Nagashima F, Endou H, et al. First-in-human phase I study of JPH203, an L-type amino acid transporter 1 inhibitor, in patients with advanced solid tumors. Invest N Drugs. 2020;38:1495–506.

    Article  CAS  Google Scholar 

  111. Halford S, Veal GJ, Wedge SR, Payne GS, Bacon CM, Sloan P, et al. A phase I dose-escalation study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer. Clin Cancer Res. 2023;29:1429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Superti-Furga G, Lackner D, Wiedmer T, Ingles-Prieto A, Barbosa B, Girardi E, et al. The RESOLUTE consortium: unlocking SLC transporters for drug discovery. Nat Rev Drug Discov. 2020;19:429–30.

    Article  CAS  PubMed  Google Scholar 

  113. Rebsamen M, Girardi E, Sedlyarov V, Scorzoni S, Papakostas K, Vollert M, et al. Gain-of-function genetic screens in human cells identify SLC transporters overcoming environmental nutrient restrictions. Life Sci Alliance. 2022;5:e202201404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chidley C, Darnell AM, Gaudio BL, Lien EC, Barbeau AM, Vander Heiden MG, et al. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. bioRxiv:2023.01.26.525375v1 [Preprint]. Cited [2023 Jan 26]: [39 p.]. Available from: https://doi.org/10.1101/2023.01.26.525375.

  115. Bekes M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bensimon A, Pizzagalli MD, Kartnig F, Dvorak V, Essletzbichler P, Winter GE, et al. Targeted degradation of SLC transporters reveals amenability of multi-pass transmembrane proteins to ligand-induced proteolysis. Cell Chem Biol. 2020;27:728.e9–39.e9.

    Article  Google Scholar 

  117. Platten M, Bunse L, Wick A, Bunse T, Le Cornet L, Harting I, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 2021;592:463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bunse L, Rupp AK, Poschke I, Bunse T, Lindner K, Wick A, et al. AMPLIFY-NEOVAC: a randomized, 3-arm multicenter phase I trial to assess safety, tolerability and immunogenicity of IDH1-vac combined with an immune checkpoint inhibitor targeting programmed death-ligand 1 in isocitrate dehydrogenase 1 mutant gliomas. Neurol Res Pract. 2022;4:20.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Goncalves MD, Maddocks OD. Engineered diets to improve cancer outcomes. Curr Opin Biotechnol. 2021;70:29–35.

    Article  CAS  PubMed  Google Scholar 

  120. Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544:372–6.

    Article  CAS  PubMed  Google Scholar 

  121. Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572:397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gonzalez PS, O’Prey J, Cardaci S, Barthet VJA, Sakamaki JI, Beaumatin F, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018;563:719–23.

    Article  CAS  PubMed  Google Scholar 

  123. Falcone M, Uribe AH, Papalazarou V, Newman AC, Athineos D, Stevenson K, et al. Sensitisation of cancer cells to radiotherapy by serine and glycine starvation. Br J Cancer. 2022;127:1773–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Slzlosarek WP, Creelan B, Sarkodie T, Nolan L, Taylor P, Olevsky O, et al. Phase 2-3 trial of pegargiminase plus chemotherapy versus placebo plus chemotherapy in patients with non-epithelioid pleural mesothelioma [abstract]. Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 2 (Clinical Trials and Late-Breaking Research). 2023.

  125. Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. Protective autophagy elicited by RAF->MEK->ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25:620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25:628–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Eynde BJVD, Baren NV, Baurain J-F. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma? Annu Rev Cancer Biol. 2020;4:241–56.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all members of Cancer Research Horizons and the Cancer Research UK Beatson Institute who were involved in relevant discussions or gave suggestions based on draft versions of this review. We particularly want to thank Neil Jones, Nathan Breeds and David Sumpton.

Funding

This work was funded by Cancer Research UK award A23982 to ST.

Author information

Authors and Affiliations

Authors

Contributions

ST drafted and revised the manuscript and approved the final version. CM conceived the review, drafted and revised the manuscript and approved the final version.

Corresponding author

Correspondence to Craig MacKay.

Ethics declarations

Competing interests

ST is the inventor of PlasmaxTM medium.

Ethics approval and consent to participate

Non-applicable.

Consent for publication

Non-applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tardito, S., MacKay, C. Rethinking our approach to cancer metabolism to deliver patient benefit. Br J Cancer 129, 406–415 (2023). https://doi.org/10.1038/s41416-023-02324-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02324-9

Search

Quick links