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BACKGROUND: Gastric cancer is one of the most common cancers. Peritoneal carcinomatosis (PC) appears to be the most common
pattern of recurrence, and more than half of the GC patients eventually die from PC. Novel strategies for the management of
patients with PC are urgently needed. Recently, rapid progress has been made in adoptive transfer therapy by using macrophages
as the effector cells due to their capabilities of phagocytosis, antigen presentation, and high penetration. Here, we generated a
novel macrophage-based therapy and investigated anti-tumoral effects on GC and potential toxicity.
METHODS: We developed a novel Chimeric Antigen Receptor-Macrophage (CAR-M) based on genetically modifying human peritoneal
macrophages (PMs), expressing a HER2-FcεR1γ-CAR (HF-CAR). We tested HF-CARmacrophages in a variety of GCmodels in vitro and in vivo.
RESULTS: HF-CAR-PMs specifically targeted HER2-expressed GC, and harboured the FcεR1γ moieties to trigger engulfment. Intraperitoneal
administration of HF-CAR-PMs significantly facilitated the HER2-positive tumour regression in PC mouse model and prolonged the overall
survival rate. In addition, the combined use of oxaliplatin and HF-CAR-PMs exhibited significantly augment anti-tumour activity and survival
benefit.
CONCLUSIONS: HF-CAR-PMs could represent an exciting therapeutic option for patients with HER2-positive GC cancer, which should be
tested in carefully designed clinical trials.
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INTRODUCTION
Despite a global decline in morbidity and mortality over the past 5
decades, GC remains the fifth most common prevalent cancer
with more than 1 million new cases diagnosed worldwide each
year [1]. Surgical resection remains the best option for patents
with early stage of GC. However, in advanced gastric cancer (AGC),
intraperitoneal implantation and metastasis of GC is a life-
threatening problem with limited effective treatment options
and strategies [2]. Up to half of the patients with GC have
developed peritoneal carcinomatosis (PC) at the time of initial
diagnosis. Effective control is vital for the progression of GC. The
currently most indispensable treatment option for AGC is systemic
chemotherapy. However, the inability of chemotherapy to target
disseminated tumours and the severe toxic side effects on healthy
organs make it extremely difficult to benefit AGC patients with PC
[3, 4]. Furthermore, GC is characterised by a high degree of
heterogeneity that occurs at both inter- and intra-tumour levels,
making it prone to develop chemoresistance. Therefore, the
development of innovative strategies for the treatment of AGC
patients with PC is urgently needed.

Human epidermal growth factor receptor 2 (HER2, also known as
ERBB2) proteins are overexpressed in a high proportion of GC cases
and affect the maintenance of cancer stem cell subsets [5–7]. Patients
with HER2-overexpressing GC benefit from treatment with the anti-
HER2 antibodies [1]. Multiple clinical studies of the targeted agent
trastuzumab have proved that the application of surface antigen
HER2 may serve as a target for adoptive cell transfer (ACT) therapy
[8–10]. The ACT of chimeric antigen receptor (CAR) T cell has achieved
remarkable success in the treatment of haematological malignancies,
and themarketing approval of CAR-T products by the FDA symbolises
the new era in cell therapy [11, 12]. ACT with genetically modified
T cells has revealed encouraging therapeutic efficacy in haematolo-
gical tumours, but its application to solid tumours has proven
challenging. For example, physical barriers formed by the matrix
surrounding tumour cells prevent the entrance of T cells in the
tumour environment. In addition, cytokine release syndrome (CRS)
induced by multiple cytokines released from CAR-T cells also
poses challenges for practical application [13, 14]. These hurdles
have spurred the investigation of alternative immune cells as
therapeutics.
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Macrophages are highly pliable cells with multiple functions,
including tumour antigen presentation, tissue homeostasis,
clearance of cellular debris, and regulation of inflammatory
responses [15, 16]. Macrophages are the central effector and
regulator of the human innate immune system. They also play an
important role in antitumor immunity due to their phagocytosis,
cytotoxicity, pro-inflammatory factor secretion, and antigen
presentation to T cells [17, 18]. The ability to infiltrate into both
primary tumours and metastases endows macrophage a unique
opportunity for cellular therapy [19]. Furthermore, the adminis-
tration of macrophages appears to be safe, and with no reported
high-grade toxicities related to treatments [20]. Modulating
macrophages could overcome the limitations of existing CAR-T
cells in solid tumours [21]. Attempts to combat cancer using
macrophages began decades ago [22–26]. Frustratingly, early
clinical trials demonstrated unsatisfactory results of macrophage
transplantation therapy [18, 27–30]. This suggests that macro-
phages require additional modifications optimised to enhance
tumour specificity and functional internal signals to direct their
activity to eradicate cancer cells. In recent years, researchers have
begun paid great interest in developing CAR macrophages (CAR-
M) for tumour immunotherapy, offering promising possibilities for
the treatment of solid tumours.
The presence of malignant ascites (MA) is a common

complication of AGC with PC and usually indicates a poor
prognosis [31, 32]. Draining of ascitic fluid is a normal means to
relieve discomfort in patients presenting with severe abdominal
tightness or shortness of breath [33]. The presence of multiple
myeloid cells and lymphocytes within the ascites fluids of patients
with peritoneal cancer metastasis make it an important source of
ACT cells [34]. Peritoneal macrophages (PMs) comprise a key
population of peritoneal resident immune cells, which play crucial
roles in recognition and phagocytosis of microbial pathogens,
antigen presentation, induction and resolution of inflammation as
well as recruitment and activation of other immune cells [35].
Furthermore, PMs isolated from the peritoneal cavity can be
utilised in various in vitro assays, including phagocytosis, cytokine
production, chemokine production and toxicological studies [36].
Therefore, PMs might be an ideal candidate for the ACT.
Based on our previous work, CAR-modified macrophages

showed anti-tumour efficacy by remodelling tumour extracellular
matrix and promote T-cell infiltration into the tumour [37]. In this
study, we generate genetically modified primary human PMs to
target GC cells utilising an anti-HER2 single-chain variable
fragment (scFv) derived from HER2-specific monoclonal antibody
trastuzumab (Herceptin®) as the antigen-binding domain in CAR
structure. The intracellular signal was designed according to the
activation mechanism of macrophages to endow PMs with
optimised tumour cell phagocytic ability and tumour microenvir-
onment remoulding capacity. The therapeutic efficacy of HER2-
GFP-CAR-PMs (HG-CAR-PMs) and HER2-FcεR1γ-CAR-PMs (HF-CAR-
PMs) against GC cells were evaluated by constructing the in vitro
three-dimensional (3D) GC cell spheres model and the in vivo
mouse model of PC. Furthermore, the therapeutic strategy of
oxaliplatin combined with HF-CAR-PMs was further evaluated.

MATERIALS AND METHODS
Malignant ascites sample collection and study arrangement
Malignant ascites (MA) was collected from three patients (Patient #1, #2
and #3) with highly advanced gastric cancer and underwent palliative
paracentesis. Indwelling catheters were used to drain and gain the
patient’s ascites. Primary peritoneal macrophages collected from these
three patients were all used for construction of CAR macrophages. CAR
macrophages derived from Patient #1 was dominantly applied for in vitro
investigation, while CAR macrophages derived from Patient #2 and Patient
#3 were produced for analysis of in vivo efficacy as monotherapy and
combined with oxaliplatin, respectively. However, in vitro cytotoxicity of
CAR-macrophage derived from these three patients all has been evaluated.

The protocol was approved by the Ethics Committee of Nanjing Drum
Tower Hospital.

Cell culture
Human gastric cancer cell line (MKN45 and HGC-27) and human breast
cancer cell line (MDA-MB-231 and MDA-MB-453) were obtained from
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
MKN45 cells were maintained in RPMI 1640 media. HGC-27, MDA-MB-231,
and MDA-MB-453 cells were maintained in DMEM media. All culture media
was supplemented with 1% penicillin–streptomycin and 10% foetal bovine
serum (Gibco). All cells were cultured at 37 °C with 5% CO2.

Animals
Female BALB/c nude mice (6–8 weeks old) were purchased from the Model
Animal Research Center of Nanjing University, Nanjing, China and bred in
the animal facilities under specific pathogen-free conditions. The animal
studies were approved by the Laboratory Animal Welfare and Ethics
Committee of Nanjing University (IACUC-2109011).

Isolation and identification of peritoneal macrophages
The isolation of peritoneal macrophages from MA has been described
[35, 38]. Briefly, MA obtained from GC patients were centrifuged at
1200 rpm for 5 min, and then wash the samples with sterile Hank’s
balanced salt solution (HBSS). Add the resuspended cells to the
lymphocyte separation solution and centrifuge at 1200 rpm for 30min.
After centrifugation, cells at the monocyte interface were recovered and
washed with phosphate buffer solution (PBS). After washing, the obtained
cells were centrifuged, resuspended in 1640 medium supplemented with
10% foetal bovine serum, and then incubated in a petri dish at 37 °C with
5% CO2 for 1 h. The petri dish was washed twice to remove suspended
cells by HBSS. Firmly attached cells were regarded as peritoneal
macrophages for subsequent experimental studies. The MA procedure
was carried out in accordance with the guidelines verified and approved
by the Ethics Committee of Nanjing Drum Tower Hospital. All donors
signed an informed consent for the scientific research statement.

Phagocytosis assays in vitro
Tumour cells were labelled with DiR fluorescent dye before co-culture.
Then tumour cells were harvested and resuspended in PBS to a
concentration of 1 × 106 cells/mL. Add DiR dye (5 μM) to the cell
suspension and incubate at 37 °C for 20min. After incubation, cells were
centrifuged at 1000 rpm for 5 min. Pour off the supernatant, add
prewarmed medium to resuspend the cells, and wash slowly for 1–2
times. Then, 1 × 105 control human PMs or CAR-PMs were co-cultured with
1 × 105 DiR-labelled HER2 negative tumour cells or 1 × 105 DiR-labelled
HER2+ overexpression tumour cells for 6 h. After co-culture, cells were
collected, stained with Anti-CD11b-FITC (Anti-CD68-FITC), and analysed by
fluorescence-activated cell sorting (FACS). The percentage of cells labelled
with DiR in the CD11b+ (CD68+) population was characterised as the
percentage of phagocytosis.

Cytotoxicity assays in vitro
Tumour cells with luciferase and macrophages were used as target cells (T)
and effector cells (E), respectively. The ratio of Effect/Target (E/T) was
continuously decreased from 10:1 to 1:10. Bioluminescence was measured
using Infinite M200 Pro (Tecan). The percentage of specific lysis was
calculated based on the fluorophore enzyme signal relative to the
individual tumour using the following equation.

%Specific Lysis ¼ Sample signal� Tumour alone signal½ �=
Background signal� Tumour alone signal½ � � 100:

Macrophage targeted killing assay in three-dimensional
tumour cell spheroid model
MKN45 cells (1000 cells in 200 μL of complete medium) were added to a
96-well clear round bottom ultra-low attachment microplate (Corning,
USA). Three-dimensional (3D) tumour cell spheroids were constructed and
cultured, and the experiment could be performed when the cell spheroid
diameter has proliferated to about 200–300 μm. The experiment was
divided into two groups, the HG-CAR-PM group, and the HF-CAR-PM
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group. The human peritoneal cells were transfected 1 day before the
experiment, and the cells of each group were collected, centrifuged, and
washed, then added complete culture medium and resuspended to
5 × 104 cells/mL. Aspirate 100 μL of culture medium from each spheroids
culture, add PMs from different groups at an effective target ratio of 5:1 to
each culture, and incubate for 16 h, and then add tumour cells in each well.
The spheres were carefully aspirated into 1.5 mL EP tubes and washed
twice with saline to remove free PMs. The washed tumour cell spheroids
were placed in a confocal small petri dish and fluorescence confocal
microscopy was performed to observe the penetrating infiltration of PMs
in the tumour cell spheres. The images were processed using Image J
software 1.37.

Gene expression analysis
TRIzol reagent (Invitrogen, USA) was used to extract total RNA from
macrophages or tumour samples. Total RNA was reverse transcribed into
cDNA using the 5 × All-In-One RT Master Mix kit (abm Cat#G486 Code
Q111–02). Real-time PCR was performed with a CFX96 real-time PCR
detection system (Bio-Rad) using a Q-PCR kit (Vazyme Biotech). Expression
levels were calculated by the 2-ΔΔct method compared to the expression of
GAPDH. Primers purchased from Genescript (Nanjing, China) are shown in
Supplementary Table S1. Macrophages were cultured for 48 h with the
normal complete medium was regarded as M0 phenotype; with added LPS
(100 ng/mL)/IFN-γ (20 ng/mL) regarded as M1 phenotype; and with added
IL-4/IL-13 (10 ng/mL each) regard as M2 phenotype. Phenotypes of
polarised macrophages were characterised by quantitative PCR (Q-PCR)
and FACS.

Western blotting
Cells were collected and washed twice with PBS, and proteins were
extracted by whole-cell lysis with a kit purchased from Beyotime (Haimen,
Jiangsu, China) containing protease and phosphatase inhibitors. Cell debris
was removed by centrifugation at 4 °C and protein concentration was
determined by Pierce BCA assay. The protein content was electrophoresed
on 10% SDS-PAGE gels followed by immunoblotting on polyvinylidene
fluoride membrane (American Biosciences). Antibodies used in this study
are shown in Supplementary Table S2.

Flow cytometry analysis
The antibodies are listed in Supplementary Table S1. Flow cytometry was
performed and analysed on the ACEA NovoCyte.

Cytokine release assays
Enzyme-linked immune absorbance assay (ELISA) kits for IL-6, CCL4, TNF-α
and IL-1β were purchased from eBioscience (San Diego, CA, USA), and all
ELISAs were performed according to the manufacturer’s protocol.

Mouse peritoneal carcinomatosis model
All animals were purchased from the Model Animal Research Center of
Nanjing University (Nanjing, China). The animal studies were approved by
the Laboratory Animal Welfare and Ethics Committee of Nanjing University
(IACUC-2109011) and carried out at Nanjing University. All animal
experiments conformed to the guidelines of the Animal Care and Use
Committee of Nanjing University. All efforts to minimise suffering were
made. Peritoneal carcinomatosis (PC) was modelled in 6–8-week-old male
BALB/c nude mice via injection intraperitoneally with 1 × 106 MKN45 cells.
The formation of peritoneal metastasis tumour nodules was assessed by In
vivo imaging system.

In vivo antitumor efficacy
In the MKN45 peritoneal metastasis tumour treatment study, tumour-
bearing mice were randomly divided into five groups (n= 6) and injected
intraperitoneally with 0.2 mL PBS, 1 × 107 HG-CAR-PMs, 1 × 106 HF-CAR-
PMs, 1 × 107 HF-CAR-PMs, or 1 × 108 HF-CAR-PMs. Mice were imaged every
7 days using in vivo imaging system. Three weeks after the initiation of
treatment, peripheral blood serum was collected for assessment of kidney
and liver function. Mice were sacrificed, tumours and organs were excised.
To estimate tumour burden, large tumour nodules (tumour bigger than
3mm in diameter) were weighted and small tumour nodules (tumour
smaller than 3 mm in diameter) were counted as described before [39].
One mouse was randomly selected from each group and major organs
were collected for histological analysis. Organs were fixed in 10% neutral

buffered formalin, embedded in paraffin, sliced, and stained with
haematoxylin–eosin (H&E).

Statistical analysis
GraphPad Prism 9.0 software was used to conduct statistical analyses. All
statistics are for two and more independent experiments and are
expressed as mean ± standard error (mean ± SEM). When only two groups
were compared, statistical analysis of significant differences was performed
using the unpaired Student’s t test. One-way analysis of variation (ANOVA)
followed by Tukey’s multiple comparisons test was used for statistical
analysis when the data involved three or more groups for comparison. For
all figures, P < 0.05, P < 0.01, or P < 0.001 were considered statistically
significant and indicated by *, ** or ***, respectively.

RESULTS
Generation of human HER2-specific CAR macrophages
Since macrophages do not proliferate after injection in vitro or
in vivo, patients can only receive limited amounts of macrophages
for remodelling and adoptive therapy [40]. It has been previously
reported that collected ascites contain a large number of tumour-
promoting soluble factors, gastric cancer cells, and immune cells,
including large numbers of PMs [41]. Therefore, we speculated
that ascites could be used as a source of macrophages for
adoptive cell therapy. To this end, we conducted a series of
investigation. The main steps of the experimental procedure are
shown in Fig. 1a. In our initial effort to generate CAR human
macrophages, PMs were obtained from ascites samples of donor 1
(GC Patient #1) with intraperitoneal metastasis and the purity were
characterised by macrophage markers CD11b and CD68 by flow
cytometry. The results showed that the purity of PMs could reach
more than 80% after separation (Fig. 1b). To activate the
phagocytic ability of PMs, we generated a codon-optimised
HER2-FcεR1γ-CAR (HF-CAR). Briefly, the HF-CAR plasmid was
constructed with a CD8a signal peptide, an anti-HER2 single-chain
variable fragment (scFv) derived from HER2-specific monoclonal
antibody trastuzumab (Herceptin®) [37], a CD8a hinge region, as
well as a CD28 transmembrane region (Fig. 1c). In addition, the HF-
CAR contains a FcεR1γ intracellular signalling domain and the
green fluorescent protein (GFP) reporter gene was used for the
detection of CAR expression. The control vector using the same
structure as the HER2-specific CAR plasmid but without an
intracellular signalling domain named HER2-GFP-CAR (HG-CAR).
HF-CAR and the HG-CAR sequences were inserted into the
lentiviral vector backbone respectively and subsequently pack-
aged into the lentiviral particles. Transduction efficiency was
determined on day 3 with flow cytometry using anti-human HER2
protein and GFP reporter gene. Macrophages are innate immune
cells that are not easily transfected by common viral vectors [18].
To overcome the inherent resistance of PMs to lentiviral
transfection, we used Vitamin D3 and NATE™ to pretreat and
activate macrophages. Notably, the HF-CAR and the HG-CAR
transduction efficiency were over 29%, indicating the successful
establishment of CAR-macrophage (Fig. 1d). The CAR macro-
phages derived from Patient #1 were used for subsequent in vitro
analysis.
Then, we investigated whether the CAR was activated in HF-

CAR-PMs restrictedly after incubation with HER2 antigen. As
previous studies reported, PI3K signals play an important role in
the internalisation of large targets and promote phagocytosis by
macrophages [42]. Then, we evaluated the phosphorylation status
of FcεR1γ downstream kinases Syk and Lyn and the activation
status of the PI3K/AKT signalling pathway (Fig. 1f). As expected,
upon antigen (HER2 recombinant protein) stimulation, HF-CAR-
PMs showed a downstream signal activation of FcεR1γ charac-
terised by elevated phosphorylation of Syk and Lyn (Fig. 1f).
Moreover, activation-induced cell death, triggered by repeated
antigen stimulation, is a major cause of weak persistence of CAR-T
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cells and restricts its therapeutic efficacy [43–45]. However, our
experimental results showed that constant stimulation of HER2
protein does not affect the cell cycle and viability of CAR-PMs
(Supplementary Fig. S1A–D). Taken together, these data sug-
gested that HF-CAR was successfully constructed and functionally
worked within PMs, while had no effect on macrophage viability.

FcεR1γ-based CAR activated HF-CAR-PMs polarised toward an
anti-tumoral M1-like phenotype and promoted the
proliferation of T cells in vitro
The functional states of macrophages are plasticity and heterogeneity.
When recruited into tumours, macrophages shift their functional
phenotypes and polarised towards a M2-like tumour-associated
macrophages in response to various signals generated from tumour
and stromal cells, resulting in acceleration of tumour progression
[46, 47]. It is very important for CAR-based macrophages to maintain
anti-tumoral phenotype after incubation with tumour cells, in order to
keep durable anti-tumoral activity [40]. In this regard, we investigated
phenotype characterisation of HF-CAR-PMs after antigen stimulation.
As shown in Fig. 2a, stimulated HF-CAR-PMs revealed a tendency
toward polarisation by HER2 protein with increased expression of
MHC-II and unchanged CD206 expression. Co-culture of HF-CAR-PMs
with HER2-positive MKN45 cells resulted in increased expression of

CD68, CD86, CCR7 and decreased expression of CD163, inducing a
mixed M1/M2 phenotype conversion (Fig. 2c). Activated HF-CAR-PMs
can release large amounts of ROS to kill tumour cells and have the
greater phagocytic ability (Fig. 2b, d). Moreover, considering
macrophages as important antigen-presenting cells, the correspond-
ing antigen-presenting effect was studied in vitro. The capability of
antigen presentation by HF-CAR-PMs effectively increased the
proliferation of T cells (Fig. 2e). In conclusion, the activation of HF-
CAR-PMs tended to promote pro-inflammatory phenotypic transfor-
mation, with increased ROS release and significantly upregulated the
capacity of phagocytosis and antigen presentation.

HF-CAR-PMs exhibited antigen-specific cytotoxicity against
HER2+GC cells in vitro
Next, we investigated antigen-specific cellular cytotoxicity of HF-
CAR-PMs in vitro. To this end, we first evaluated the expression of
HER2 antigen on HGC-27 and MKN45 cells. In addition, breast
cancer cell line (MDA-MB-231 and MDA-MB-453) were used as
controls (Supplementary Fig. S2A). Our results show that MKN45
cells were HER2-positive, which were selected as target cells for
further evaluation. Then, we determined the E/T ratio by
cytotoxicity experiments between HF-CAR-PMs and luciferase-
labelled HER2-positive/-negative target cells. After 24 h incubation,
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the cell viability was evaluated by measurement of the level of
luminescence, in order to indicate the cytotoxicity, as described
before [48]. The results showed that HF-CAR-PMs were of great
ability to eliminate HER2-positive MKN45 cells and exhibited in a
dose-dependent manner. In addition, the tumour-killing effects
were significantly elevated in macrophages after being modified
by HF-CAR, rather than by HG-CAR starting from an E/T ratio of
1:10 to 1:1, and the anti-tumoral efficiency was reached to peak at
E/T ratio of 1:1 (Fig. 3a). Similar in vitro cytotoxicity was observed
in peritoneal CAR macrophages derived from other two donors,
Patients #2 and #3 (Fig. 3i). Together, these data indicated that

HF-CAR-PMs showed promising anti-tumoral effects against HER2-
positive MKN45 cells in vitro.
One key function of macrophage in anti-tumour immunity is

presenting tumour antigens to T cells through phagocytosis. We
demonstrated that HF-CAR-PMs exhibited greater phagocytosis, the
ability of pro-inflammatory factor (TNF-α and IL-1β) release, and the
capability to promote apoptosis of MKN45 cells compared to HG-
CAR-PMs (Fig. 3b–e). Our study also demonstrated that the activation
of HF-CAR-PMs was dependent on the presence of HER2 antigen and
the tumoricidal activity was enhanced with higher HER2 expression
on the tumour cell surface (Supplementary Fig. S2B–L).
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Fig. 2 Phenotypic and functional characteristics of CAR-modified PMs under antigen stimulation. a Phenotypic markers were detected by
treatment with LPS (100 ng/mL), IL-4 (20 ng/mL), HER2 antigen for 48 h. MHC-II to characterise M1polarization and CD206 for M2 polarisation,
respectively. b Assessment of ROS release from various groups of macrophages using the fluorescent probe DCFH-DA. c Expression of genes
related to M1 and M2 phenotype was detected by q-PCR after LPS (100 ng/mL) treatment or co-culture with HER2+ gastric cancer cells MKN45
for 48 h. d The effect of LPS (100 ng/mL), IL-4 (20 ng/mL), and HER2 antigen treatment on phagocytosis of peritoneal macrophages after 48 h.
e Flow cytometry analysis of T-cell proliferation. HF-CAR-PMs and HG-CAR-PMs were co-cultured with MKN45 for 48 h. Then the cells were co-
cultured with CFSE-labelled T cells for 3 days after density gradient centrifugation.
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Considering previous reports, we speculated that CAR-based
macrophages exhibited good penetration ability in solid tumours.
To reveal this speculation, we established 3D tumour spheroid
model and assessed the infiltrative effect of HF-CAR-PMs, as
described before. Briefly, after the formation of the MKN45 tumour
sphere, HF-CAR-PMs were added according to the E/T ratio (1:3, 1:1
and 3:1). We observed that with the increased addition of HF-CAR-
PMs, the infiltration proportion within tumour spheres increased
(Fig. 3h). At 108 h post addition, the tumour sphere was completely
disintegrated at an E/T ratio of 3:1 (Fig. 3g). Collectively, HF-CAR-
PMs posed the ability to target HER2-positive tumour cells and
inhibited the growth of these tumour cells in vitro.

HF-CAR-PMs exhibited anti-tumour effects against
disseminated MKN45 peritoneal tumours
We constructed a gastric cancer peritoneal carcinomatosis model,
for further assessment of targeting and infiltration effect of HF-CAR-
PMs in vivo (Supplementary Fig. S3A). MKN45 cells were injected

into the peritoneal cavity of nude mice. Two weeks later, groups
were treated by DiR-labelled PMs (control group) and HF-CAR-PMs.
The region of aggregated HF-CAR-PMs cells and tumour cells
overlapped after 48 h of injection, both of which were clustered in
the upper and lower abdomen. In contrast, no significant overlap
occurred between PMs and tumour cells (Supplementary Fig. S3B).
Mice internal organs were explanted for further investigation of
macrophages distribution (Supplementary Fig. S3C). DiR-labelled
HF-CAR-PMsmainly accumulated in tumour sites compared to other
organs, while PMs clustered in the liver, kidney and stomach.
Accumulation of PMs was also observed at the tumour site, possibly
due to hypoxic recruitment. We next sought to evaluate the
persistence of HF-CAR-PMs in mice. The maximum fluorescence
signal was detected on day 2 (48 h post-injection) for DiR-labelled
HF-CAR-PMs, while the intensity of the signal gradually diminished
over time (Supplementary Fig. S3D). In conclusion, these results
suggested that HF-CAR-PMs had the potential to penetrate the
tumour and did not persist in the peritoneal cavity for a long time.
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Peritoneal carcinomatosis was modelled for further evaluation
the antitumor effect of HF-CAR-PMs in vivo (Fig. 4a). To this end,
we generated HF-CAR-PMs from Patient #2. Seven days after
tumour injection, groups were treated with PBS (vehicle), HG-CAR-
PMs cells, HF-CAR-PMs cells (1 × 106, low dose), HF-CAR-PMs cells
(1 × 107, medium dose), and HF-CAR-PMs cells (1 × 108, high dose).
The results of the in vivo imaging system (IVIS) showed that HF-
CAR-PMs inhibited tumour growth (Fig. 4e). Twenty-eight days
after treatment, larger numbers of tumour nodules were found in
the vehicle and HG-CAR-PMs mice compared with HF-CAR-PMs
treatment groups (Fig. 4b). HF-CAR-PMs effectively inhibited
tumour growth and the inhibitory effect was dose-dependent
(Fig. 4c). It has been indicated that inflammatory response to the
tumour progression leads to splenomegaly. There was no
statistically significant difference in the spleen weight between
the groups of mice (Fig. 4d). As expected, Chimeric antigen
receptors promote the infiltration of PMs in peritoneal dissemina-
tion model and the in vivo infiltration effect of HF-CAR-PMs was
dose-dependent (Supplementary Fig. S3E–G). The impact of HF-
CAR-PMs treatment on the survival of mice was also concluded in
this study. HF-CAR-PMs decreased tumour burden and prolonged
the overall survival of tumour-bearing mice (Fig. 4f). Next, we
analysed the phenotypic conversion of HF-CAR-PMs in solid

tumours. High expression of TNF-α, IL-1β, NOS2 and CD86 implied
the polarisation of HF-CAR-PMs inside HER2+ tumours toward M1
phenotype (Supplementary Fig. S4A, B). By contrast, a mixed
M1/M2 phenotype was observed in HG-CAR-PMs treatment group.
The mixed phenotype may be caused by the conversion of
macrophages to TAM in tumour microenvironment. The secretion
of pro-inflammatory factors such as TNF-α, IL-1β and IL-6
regulated the tumour microenvironment and exerted anti-
tumour effects (Supplementary Fig. S4C). The elevated MDA
suggested the great killing effect of HF-CAR-PMs through the
release of ROS (Supplementary Fig. S4D). In short, M1 polarised
HF-CAR-PMs exerted anti-tumour effects by secreting pro-
inflammatory factors and ROS to promote apoptosis of tumour
cells.

Exploratory toxicology of HF-CAR-PMs
Numerous studies suggest that CAR-T therapy carries the risk of
toxicity such as cytokine release syndrome and neurotoxicity.
Therefore, the safety of CAR-based immunotherapy has attracted
more attention. To investigate our established CAR-based macro-
phages toxicology in vivo, we conducted systematic evaluation.
Consequently, in all mice, there was no statistical difference of the
body weights among groups (Supplementary Fig. S5A).
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Accumulated HF-CAR-PMs were observed in liver with no effects on
biochemical and morphological markers of the liver damage in the
treatment group compared with vehicle (Supplementary Fig. S5B, C).
Meanwhile, no sign of organ injury was shown by organ
histopathology (Supplementary Fig. S5D). In addition, there was
no significant difference in various immune cells in the peripheral
blood of mice (Supplementary Fig. S5E). These results illustrated the
safety and feasibility of HF-CAR-PMs in GC treatments.

HF-CAR-PMs enhanced the therapeutic efficacy of oxaliplatin
on HER2+GC
Increasing clinical investigation indicated that conventional
chemotherapeutics promote anti-tumoral response by increasing
the immunogenicity of tumour cells and enhancing immune cells
infiltration into tumour microenvironment [49–51]. On this basis,
we assumed that chemotherapeutics could synergistically
enhanced HF-CAR-PMs therapeutic effects. To test this assump-
tion, we established PC model, and generated HF-CAR-PMs from
Patient #3 for further evaluation whether HF-CAR-PMs enhanced
the anti-tumoral efficacy of oxaliplatin, the first-line chemotherapy
agent in GC treatment, as single treatment or combined with HF-
CAR-PMs. Firstly, we estimated the inhibitory effects of oxaliplatin
on GC cells and PMs, in order to verify whether oxaliplatin
suppresses PMs viability. As a result, the IC50 of oxaliplatin against
MKN45 cells was 6.8745 μM, while the IC50 of oxaliplatin against
PMs was 13.624 μM (Supplementary Fig. S6A, B). In addition,
apoptosis detection assay revealed that 5 μM of oxaliplatin did not
induce apoptosis in macrophages, providing an optimal oxalipla-
tin concentration of 5 μM for cells in vitro (Supplementary
Fig. S6G). Interestingly, we observed that oxaliplatin treatment in
low dosage exhibited a trend for the conversion of macrophages
toward M1 phenotype polarisation (Supplementary Fig. S6C, E),
whereas had little effects on phagocytic ability and ROS releasing
(Supplementary Fig. S6D, F). Altogether, oxaliplatin administered
at 5 μM had a certain killing effect on MKN45 cells, and could
promote the conversion of M1 phenotype, demonstrating the
potential that oxaliplatin synergistically enhanced the anti-tumoral
efficacy of HF-CAR-PMs against HER2-positive GC.
The killing and anti-invasive activity of HF-CAR-PMs against

HER2-positive MKN45 cells has been demonstrated in our previous
study. In order to explore the therapeutic effect of combination
with chemotherapy drugs, we further evaluated the in vitro
antitumor effect of HF-CAR-PMs combined with oxaliplatin. In vivo
experiments were performed using 6–8 weeks old male BALB/c
nude mice via injection intraperitoneally with 1 × 106 MKN45 cells.
When tumours were palpable, HF-CAR-PMs were injected
intraperitoneally once, and oxaliplatin was injected intravenously
every 5 days. In vivo imaging was performed every 7 days, the
mice were sacrificed after 21 days, the abdominal cavity was
dissected, and tumour nodules were taken for analysis. Our results
showed that the combination of HF-CAR-PMs and oxaliplatin
significantly promoted apoptosis of tumour cells (Supplementary
Fig. S7A). The combination treatment of HF-CAR-PMs and
oxaliplatin enhanced the tumour-killing effect (Supplementary
Fig. S7B). Furthermore, oxaliplatin treatment enhanced secretion
of pro-inflammatory cytokine IL-6 and IFN-γ, synergistically
promoting HF-CAR-PMs-induced tumour cells killing (Supplemen-
tary Fig. S7C). Therefore, the increased anti-tumour activity mainly
relied on the promotion of apoptosis and improvement of
tumour-killing effect by combination therapy.
PC model was constructed to determine the anti-tumour effect of

HF-CAR-PMs combined with oxaliplatin in vivo (Fig. 5a). Seven days
after tumour injection, groups were treated with PBS (vehicle), HG-
CAR-PMs cells (1 × 107), HF-CAR-PMs (1 × 107), oxaliplatin (3mg/kg),
and combination therapy group (1 × 107 of HF-CAR-PMs in combina-
tion with 3mg/kg of oxaliplatin). Oxaliplatin treatment was
administered by a single tail vein injection every 5 days, while
macrophages were injected on day 7. Twenty-one days post-

treatment, larger numbers of tumour nodules were found in the
vehicle and HG-CAR-PMs mice compared with other treatment
groups (Fig. 5b). Tumours were significantly suppressed in the
treatment groups (HF-CAR-PMs, oxaliplatin, and combination therapy
group). The tumour growth inhibition rate in the combination
treatment group reached 80%, reflecting the synergistic effect of HF-
CAR-PMs and oxaliplatin (Fig. 5c–e). No substantial differences were
found in the spleen weight between the groups of mice (Fig. 5f). In
vivo imaging system (IVIS) showed that HF-CAR-PMs in combination
with oxaliplatin possessed the tumour-killing ability and significantly
inhibited tumour cell dissemination in the peritoneal cavity (Fig. 5g).
In addition, survival data for each group indicated that the HF-CAR-
PMs and combination therapy group was found to significantly
prolong the survival time of mice (Fig. 5h). Collectively, HF-CAR-PMs
derived from different donors showed equally significant anti-tumour
activity both in vitro and in vivo, indicating that peritoneal CAR
macrophages are of great potential as a potent anti-tumour therapy.
The safety of the HF-CAR-PMs combined with oxaliplatin

treatment was also assessed. The H&E staining images indicated
that the HF-CAR-PMs treatment did not cause damage to the liver
(Fig. 6a). The Biochemical marker of AST and Cr slightly elevated in
the peripheral blood of oxaliplatin-treated mice compared to the
vehicle group (Fig. 6b). Moreover, a slight upregulation of BUN and
ALT in the HG-CAR-PMs treatment group was also noted. The body
weight of mice showed a constant decreasing trend with increasing
administration time (Fig. 6c). In all mice, the presence of tumour
cells in organs was also quantified by the IVIS system. High
expression of fluorescence signal indicated that infiltration and
accumulation of HF-CAR-PMs occurred in the liver and the tumours
did not metastasise into other organs (Fig. 6d). The above results
initially revealed the safety of intraperitoneal injection of HF-CAR-
PMs combined with oxaliplatin in the treatment of tumours.

DISCUSSION
Previous studies have already indicated that tumour invasion and
metastasis are the main causes of tumour recurrence [52], which is
also a major challenge for radiotherapy [53, 54]. Metastasis to the
peritoneal cavity is common for GC patients. The metastasis of GC
triggers the formation of malignant ascites fluid and numerous
tumour islets distributing to the peritoneum. The whole peritoneal
cavity turns into a tumour-promoting microenvironment, accel-
erating GC metastasis and progression. Emerging evidence
suggests that malignant ascites in GC consist of a complex
mixture of malignantly transformed cells, immune cells, and
stromal cells. As a prominent component in malignant ascites,
macrophages exhibit distinct M2-like characteristics, favouring
tumour progression [55–57]. In this study, PMs derived from the
malignant ascites fluid of GC patients were isolated and
characterised as tumour-promoting M2-like phenotype. Given
the remarkable immunosuppressive features of M2-like peritoneal
macrophage, reciprocal M2 to M1 conversion may be an ideal
immunotherapeutic strategy [32, 58]. It has been proven that
macrophages with the antitumor state have the potential to
combat tumour cells. In addition, antitumor macrophages can also
limit tumour growth via the secretion of activating factors and
chemokines that stimulate and recruit antitumor cytotoxic T cells
[59, 60]. In addition, it is of great significance to fully understand
the characteristics of macrophages derived from malignant
ascites, and to study their utilisation value.
However, reliable sources and expansion of macrophages

applicable to clinical use still remain limited [24, 40]. In this case,
malignant ascites-derived macrophages may provide an alter-
native strategy. Furthermore, it was reported that macrophages
are intrinsically more resistant to transduction procedures than
T cells and NK cells [18, 61]. In this study, the GFP-only plasmid
was transiently transfected into PMs by using Lipo2000 liposomes,
and the transfection efficiency was only about 1%. In addition, the
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lentiviral vector containing GFP gene was purified by a lentivirus
packaging system and transfected into PMs. After 3 days of
culture, the positive rate of EGFP by flow analysis was about 2%.
To overcome the inherent resistance of PMs to lentiviral
transfection, we applied Vitamin D3 and NATE™ for the first time
to activate macrophages. After activation, it is noteworthy that the
transfection efficiency of PMs improved to 30%. Intriguingly,
activated CAR-modified PMs by simulating with HER2 over-
expressed tumour cells exhibit polarisation toward an anti-
tumoral and pro-inflammatory phenotype, meanwhile, promote
the proliferation of T cells.
Currently, peripheral intravenous infusion is the main drug

delivery strategy for adoptive cell therapy. Injected exogenous
macrophages tend to remain in the liver, which may affect
the effectiveness of the treatment [40]. Thus, intraperitoneal
administration is considered in this study to address those
problems. Our study revealed significant antitumor efficacy and
safety of intraperitoneal injection of CAR-modified PMs in HER2+

gastric cancer mouse peritoneal carcinomatosis models. Recently,
autologous macrophages have been applied in many clinical cases
for the treatment of solid tumours. These clinical data demon-
strated the feasibility and safety of injecting autologous

monocyte-derived macrophages, but failed to indicate effective
anti-tumour effects [62]. Our preclinical in vivo studies have
achieved ideal therapeutic effects in the animal experiment,
however, the actual tumour microenvironment in human is more
complex. Based on that, the therapeutic effect of CAR-modified
PMs in GC patients with peritoneal carcinomatosis needs to be
further verified. Thus, in order to verify the curative potential of
HF-CAR-PM in GC patients with PC, we are trying to apply for
Investigator-Initiated Clinical Trial (IIT) for further exploration.
The discovery of immune checkpoint inhibitors such as pro-

grammed cell death ligand-1 (PD-L1) or programmed cell death-1
(PD-1) monoclonal antibodies have improved the overall survival of
various types of cancers over the past decade. However, only a
limited number of GC patients with peritoneal metastatic can benefit
from immune checkpoint blockade therapy [63]. Intraperitoneal
chemotherapy has been proven effective in the prevention of
peritoneal recurrence in GC [64]. Accumulating evidence suggests
that chemotherapy drugs play a surprising role in immune cell
reprogramming of the TME in patients with advanced GC, expanding
the possibility of chemotherapy to cure cancer. Chemotherapy can
directly reprogramme themacrophage phenotype, modulating TAMs
towards antitumor effectors [65]. Chemotherapeutic drugs to
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reprogramme TAMs into an anti-tumour phenotype is regarded as a
very promising tumour treatment strategy. As a platinum-based
chemotherapeutic agent, oxaliplatin exhibits great anti-tumour
efficacy. Oxaliplatin has the capacity to induce immune response
with the presence of damage-associated molecular patterns (DAMPs)
without causing gastrointestinal inflammation. Sensory peripheral
neuropathy is a common adverse effect seen in cancer patients
treated with oxaliplatin. However, intraperitoneal administration of
CAR-modified PMs combined with oxaliplatin significantly prolong
the survival time of mice in this study.
In summary, our study demonstrates for the first time the

therapeutic potential of intraperitoneal injection of CAR-modified
PMs, and the experimental results suggest that this may be an
innovative strategy to ultimately improve the therapeutic efficacy of
ACT. In addition, our results warrant further evaluation of the
efficacy of a combination of CAR-modified PMs with oxaliplatin in
preclinical settings for the treatment of GC. Overall, this study
provided an enthusiastic preliminary result and set the stage for
future clinical studies on CAR-modified PMs in GC immunotherapy.
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