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PURPOSE: To determine the safety and efficacy of PARP plus PD-L1 inhibition (olaparib + durvalumab, O+ D) in patients with
advanced solid, predominantly rare cancers harbouring homologous recombination repair (HRR) defects.
PATIENTS AND METHODS: In total, 48 patients were treated with O+ D, 16 with BRCA1/2 alterations (group 1) and 32 with other
select HRR alterations (group 2). Overall, 32 (66%) patients had rare or less common cancers. The primary objective of this single-
arm Phase II trial was a progression-free survival rate at 6 months (PFS6). Post hoc exploratory analyses were conducted on archival
tumour tissue and serial bloods.
RESULTS: The PFS6 rate was 35% and 38% with durable objective tumour responses (OTR) in 3(19%) and 3(9%) in groups 1 and 2,
respectively. Rare cancers achieving an OTR included cholangiocarcinoma, perivascular epithelioid cell (PEComa), neuroendocrine,
gallbladder and endometrial cancer. O+ D was safe, with five serious adverse events related to the study drug(s) in 3 (6%) patients.
A higher proportion of CD38 high B cells in the blood and higher CD40 expression in tumour was prognostic of survival.
CONCLUSIONS: O+ D demonstrated no new toxicity concerns and yielded a clinically meaningful PFS6 rate and durable OTRs
across several cancers with HRR defects, including rare cancers.
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BACKGROUND
Homologous recombination repair (HRR) is comprised of inter-
woven pathways that function in the repair of DNA double-
stranded breaks and interstrand crosslinks [1]. An inability to repair
complex DNA damage and resolve DNA replication strain results in
genomic instability and promotes cancer development [1]. BRCA1
and 2 are the best-characterised HRR genes and predispose to
breast and ovarian cancer [2, 3]. Several additional genes have
been implicated in this repair pathway and many studies have
characterised the exploitation of these inherent defects for
therapeutic opportunities [4–6].
The use of poly-ADP ribose polymerase (PARP) inhibitors has

synthetically lethal activity in the presence of non-functional HRR.
Olaparib monotherapy has yielded a prolonged progression-free
survival in patients with relapsed platinum-sensitive high-grade
serous ovarian cancer, particularly in the presence of germline or
somatic BRCA1/2 alteration [7–10]. Similarly, improved outcomes

have been observed with olaparib across a range of cancer
histotypes harbouring BRCA1/2, or other HRR gene alterations
[5, 11–15]. Generally, patients with BRCA mutations derived
greater benefits from olaparib treatment compared with other
HRR gene alterations [16].
There is significant interest in the immunological consequences

of DNA damage. Preclinical data suggest that DNA damage
detected by the cyclic GMP-AMP synthase/stimulator of interferon
genes (cGAS/STING) pathway triggers a proinflammatory cascade
of cytokines [17]. Preclinically, PARP inhibition elicits a potent anti-
tumour immune response through activation of the STING
pathway in both BRCA1-deficient tumour cells and dendritic cells,
possibly indicating an association between innate and systemic
immunity [18, 19]. An incremental enhancement of BRCA1 and
CD8+ T-cell-dependent anti-tumour effects has been observed
with the addition of anti-programmed death (PD)-1 or PD-ligand1
(PD-L1) agents to PARP inhibition [18]. Taken together, there is a
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strong scientific rationale to prime these HRR-deficient tumours
with PARP inhibition, expediting DNA damage, associated cell
death and antigen release, in order to enhance response to
immunotherapy [20, 21]. Several small clinical studies have
examined the combination of PARP and programmed death
(PD)-ligand1/PD-1 inhibition [22, 23]. A Phase I study of olaparib
and durvalumab included two patients with advanced metastatic
triple-negative breast cancer (TNBC) and 10 with high-grade
serous ovarian cancer (HGSOC) [22]; 50% of each tumour type
harbouring potentially pathogenic defects in the HRR pathway.
One of the two patients achieving an objective tumour response
(OTR) had BRCA1 methylation, while the best response for the
remaining patients with HRR-altered tumours was stable disease
for at least four months. Grade 3 or higher adverse events (AE)
included lymphopenia and anaemia and the only immune-related
AE was grade 2 hypothyroidism [22]. The Phase 2 MEDIOLA study
included genomically unselected baskets of gastric cancer, small
cell lung cancer and germline BRCA carriers with metastatic breast
cancer (NCT02734004). MEDIOLA reported a clinical benefit rate of
29% at 12 weeks, with no new safety concerns across the baskets
[23]. Here we conducted a Phase II study to evaluate the safety
and efficacy of olaparib and durvalumab (O+ D) in patients with
advanced solid and predominantly rare cancers, harbouring either
somatic or germline BRCA1/2, or other HRR gene alterations.

PATIENTS AND METHODS
Study design and participants
This was a Phase II, open-label trial conducted at a single Australian centre
(ACTRN12617001000392) within the framework of the Cancer Molecular
Screening and Therapeutics (MoST) program [24]. Patients ≥18 years of age
with treatment-refractory, locally advanced or metastatic cancers were
screened using comprehensive genomic profiling of an archival tumour
specimen. The panel-based assay employed for screening evolved over
time and included in-house assays, Illumina TruSight Tumour 170, Illumina
TSO500 and Foundation Medicine (FMI). Screening results were reviewed
by a molecular tumour board (MTB) to match actionable genomic findings
to relevant clinical trials of targeted therapies. Genomic eligibility for the
trial was determined by the MTB and included pathogenic BRCA1 or BRCA2
alterations (excluding breast, ovarian and prostate cancers) or alterations in
a range of prespecified HRR genes including ATM, PALB2, RAD51C, RAD51D,
CHEK1, CHEK2, ATR, CDK12, BAP1, BARD1, BRIP1 and FANC, group 2 (n= 32).
The exclusion of breast, ovarian and prostate cancers was based on
competing studies running concurrently in these histotypes and was also
in line with our trial’s prioritisation of rare cancers.
Patients were required to have an Eastern Cooperative Oncology Group

performance status (ECOG PS) 0–2; evaluable disease by Response
Evaluation Criteria in Solid Tumours (RECIST v1.1) [25] and adequate
hepatic, renal and bone marrow function. All patients needed to have
failed (or be intolerant of) standard therapies for their tumour type, and
not previously have received treatment with a PD-1, PD-L1, or a PARP
inhibitor.

Ethics approval and consent
The study was performed in accordance with the Declaration of Helsinki,
with central or institutional ethics and local research governance approval.
The MoST program has been approved by the St Vincent’s Hospital Sydney
Human Research Ethics Committee (reference, HREC/16/SVH/23), as has
this clinical trial. All participants provided written informed consent to
partake in this study. An independent data and safety monitoring
committee provided independent assessments of patient safety and trial
progress.

Study procedures
Eligible patients were enrolled into two groups based on the presence of
BRCA1 or BRCA2 alterations (n= 16, group 1) and other HRR gene
alterations (n= 32, group 2), detailed in Table 1. All patients received
olaparib, which was administered per oral at 300mg twice daily on a
continuous basis and commenced 28 days prior to the first dose of
durvalumab. Patients also received a fixed dose of 1500mg durvalumab as
an intravenous infusion every 28 days for up to 13 cycles (starting day 1,

cycle 2 of olaparib). Durvalumab ceased after a maximum of 13 cycles.
Olaparib was continued until disease progression, unmanageable toxicity,
or a decision by the patient or clinician to cease. Up to three dose
reductions of olaparib and dose interruptions of both drugs were
permitted for a maximum of 28 days on each occasion. Treatment
toxicities were evaluated using the National Cancer Institute Common
Terminology Criteria, version 4.03 [26]. Response assessment was
performed every 8 weeks.

Endpoints
The primary endpoint was the clinical activity of O+ D, as measured by
progression-free survival at 6 months (PFS6). PFS6 is the Kaplan–Meier
estimate of the proportion of patients who remain alive and progression-
free at 6 months from the date of registration. Secondary endpoints
included objective tumour response, overall survival (OS), ratio of time to
progression (TTP) on trial (TTP2), to TTP on the last line of therapy (TTP1)
prior to trial entry, health-related quality of life measured by the EORTC
QLQ-C30 [27], and Brief Pain Inventory (BPI) assessment [28]. Response
status was to be determined using RECIST version 1.1 or RANO guidelines
at each assessment time point. Patients with an OTR (complete or partial
response) will need confirmation of this response based on the results of
the next scan. In a pan-cancer setting, using patients as their own control
informs the rate of change in disease trajectory for that individual, with a
TTP2:TTP1 ratio of 1.3 suggesting clinical activity [29, 30].

Exploratory biological analyses
Where available, prior germline testing results were retrieved for all
patients. When HRR alterations identified at screening met bioinformatic
thresholds for potentially germline, germline testing was performed.
Determination of a post hoc HRR defect score was planned but could not
be undertaken due to tissue and sequencing assay limitations. Similarly,
microsatellite instability status was also not evaluable.
Tumour mutational burden (TMB) has variable predictive capacity for

immunotherapy benefit across a range of tumour types [31]. TMB was
predominantly estimated according to the whitepaper methods outlined
by Illumina [32], but with the removal of driver mutations (COSMIC count
>1) in accordance with Lieber et al. [33] to reduce the ascertainment bias
of sequencing known cancer genes. Due to the small panel size of the
TST170 (0.56 Mb), we retained synonymous mutations in the TMB
calculations, despite no expected contribution to neo-antigen production,
but to increase the sample size of somatic mutations per patient and
reduce noise in the calculation. There was also post hoc harmonisation
across sequencing panels employed, where possible [34–36]. (Appendix 1A)
and a TMB ≥ 10 mut/Mb used to define the high TMB group. The presence
of co-occurring mutations, number of prior lines of treatment and platinum
exposure was also evaluated with respect to clinical outcomes.
Tumour cell (PD-L1) expression was evaluated by immunohistochemistry

using the Ventana PD-L1 (SP263) assay with cut-offs for positivity set at
≥1%. Archival tumour tissue was used to assess tumour infiltrating
lymphocytes (TILs) and gene expression signatures corresponding to T-cell
inflammation [37]. TILs were assessed using a hematoxylin and eosin-
stained slide, which permitted morphological discrimination of lympho-
cytes in the tumour and its immediate periphery, as previously described
[37–39]. The TILs level was quantified as proportion TILs, of total cells on a
slide, and dichotomised as low and high using median TILs for the cohort.
The NanoString nCounter was employed as a discovery research assay to
examine RNA transcript levels and gene expression signatures of T-cell
biology, inflammation and immune responses using a customised gene-set
of 128 genes, including 5 housekeeping genes [40] (Appendix 1B).
The neutrophil:lymphocyte ratio (NLR) was determined using a baseline

full blood count, defined as the ratio of absolute neutrophil count to
absolute lymphocyte count, with a cut-off of four selected based on
published thresholds for clinical benefit from immune checkpoint
inhibition across various cancers [41].
Peripheral blood mononuclear cells (PBMC) collected at baseline, week 4

and week 8 were stained for immune markers of interest using
multiparametric flow cytometry and screened for putative variables
associated with treatment benefit. Data were acquired using LSR II
Fortessa and FACS Diva software. Immunophenotyping data were analysed
using FlowJo 199 (BD v10.6.2). For detailed information on optimised
panels, refer to Appendix 1C; staining method and gating strategies
(Appendix 1D). Post hoc analyses of clinical outcomes based on these
biological characteristics was undertaken to assess their predictive and
prognostic capacity. For the immune markers examined by flow cytometry,
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good responders were defined as those achieving an objective tumour
response, or PFS >6 months and OS >24 months; all other patients were
classified as poor responders. Due to the non-normality of the flow
cytometry data, a Mann-Whitney test was used to assess immune cell
populations in patients according to response. Survival analysis and Cox
regression models used median values of cell populations of interest as the
threshold for patient stratification. Tests were two-sided and P values ≤
0.05 considered significant. A Benjamin–Hochberg correction was
performed to minimise false discovery rates.

Statistical considerations
This trial comprised of three modules of 16 patients each as defined by the
MoST framework protocol [24]. One module included patients with BRCA1
or BRCA2 alterations (group 1) and two modules (based on the inclusion of
32 patients) consisted of patients with other HRR gene alterations (group 2).
These groups were non-comparative. Prior to analysis (data lock for
commencement of analysis: 12 March 2021), the primary objective of the
trial was changed from a co-primary endpoint of OTR and TTP2/TTP1 to
PFS6 within each group (amendment submitted: July 12, 2019); postulated
to better reflect the clinical benefits of immunotherapy [42, 43]. A threshold
for clinical activity using the PFS6 endpoint was however not set.

RESULTS
Patient disposition and baseline characteristics
Of 162 molecularly eligible patients, 96 patients received a MoST
MTB recommendation indicating trial eligibility. Forty-eight
patients were subsequently enrolled on trial over a 15-month
period (November 2017 and February 2019) and allocated to the
two study cohorts (groups 1 and 2). Reasons for non-enrolment on
trial are outlined in Appendix 2, with the most common reason
being an excluded histotype.
Pancreatic adenocarcinomas (n= 4) and colorectal adenocarci-

nomas (n= 3) were the most common cancer types in group 1
and group 2, respectively, while 32 patients (66%) had rare or less
common cancers. Group 1 had a median age of 55 years (range
23–72 years), 50% were male and 94% had an ECOG PS of 0.
Molecularly, group 1 comprised of 12 patients with BRCA2 and 4
with BRCA1 alterations. Two patients had co-occurring HRR gene
alterations and four qualifying alterations in group 1 were
confirmed to have a germline origin. Group 2 had a median age

Table 1. Baseline characteristics and qualifying genomics by group.

Characteristic Group 1
(n= 16)

Group 2
(n= 32)

No. % No. %

Median age, years (range) 56 (23–71) 54 (20–76)

Male sex 8 50% 13 41%

ECOG status

0 15 94% 24 75%

1 1 6% 8 25%

Lines of prior systemic treatment

Median line (range) 1.5 (1–3) 2 (0–5)

Prior lines <2 8 50% 9 28%

Cancer type

Bone and soft tissue sarcomas 4 25% 8 25%

Alveolar soft part sarcoma 1 3%

Chondrosarcoma 2 6%

Ewing’s sarcoma 1 3%

Leiomyosarcoma 2 13% 2 6%

Liposarcoma 2 6%

Osteosarcoma 1 6% 1 3%

PEComa 1 6%

Carcinomas 12 75% 24 75%

Anal, SCC 1 3%

Breast, IDC 2 6%

Cervix adenocarcinoma 1 6%

Cholangiocarcinoma,
gallbladder adenocarcinoma

2 13%

Colorectal adenocarcinoma 1 6% 3 9%

CUP 1 3%

Endometrial adenocarcinoma 2 6%

Ethmoid sinus adenocarcinoma 1 6%

Gastric adenocarcinoma 1 6% 1 3%

Glioma 1 6% 2 6%

Medulloblastoma 1 3%

Meningioma, anaplastic 1 3%

Neuroendocrine carcinoma 1 3%

Ovarian adenocarcinoma 1 3%

Ovarian, sex cord-stromal
tumour

1 3%

Pancreas adenocarcinoma 4 25% 2 6%

Small intestine adenocarcinoma 1 6% 1 3%

Thyroid carcinoma, papillary 1 3%

Uveal melanoma 2 6%

Qualifying genomic biomarker

BRCA1 4^ 25%

BRCA2 12 75%

ATM 10# 31%

ATR 1 3%

BAP1 2 6%

BARD1 1* 3%

BRIP1 2$ 6%

CDK12 3+* 3%

CHEK1 1 3%

CHEK2 3 9%

Table 1. continued

Characteristic Group 1
(n= 16)

Group 2
(n= 32)

No. % No. %

FANCA 2* 6%

FANCI 1 3%

NBN 1 3%

RAD51 1 3%

SLX4 2* 6%

XRCC2 1 3%

CUP carcinoma of unknown primary, HRR homologous recombination
repair, IDC infiltrating ductal carcinoma, PEComa perivascular epithelioid
cell tumour, SCC squamous cell carcinoma.
*Indicates alterations that would not pass current bioinformatic pipelines,
but were included in the original molecular tumour board report that
qualified patients for the trial, comprised of 1 BARD1, 1 CDK12, 1 FANCA, 1
ATM+ CHEK1, 1 CHEK1 and both SLX4 alterations. ^Two patients with a
qualifying BRCA1 alteration also had a co-occurring HRR gene alteration (1
in ATM and the other in FANCD2); #four patients with qualifying ATM
alterations also had co-occurring HRR gene alterations (2 in CHEK1, 1 in
NBN, 1 in CHEK1 and BARD1 and 1 in CHEK1 and RAD51); $one patient with a
qualifying BRIP1 alteration also had a RAD51C mutation; +two patients with
qualifying CDK12 alterations also had a RAD51 mutation, or a RAD51 and
FANCE mutation.
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of 54 years (range 20–76 years), 41% were male and 75% had an
ECOG PS of 0. Molecularly, group 2 was comprised of a range of
HRR alterations, with the most common being ATM (n= 9) and
RAD51 (n= 5); 8 patients had >1 HRR alteration meeting
molecular eligibility for the trial, four were confirmed to have a
germline origin (Table 1).

Primary clinical endpoint
After a median follow-up period of 34 months, the PFS6 rate was
35% (95% confidence interval (CI), 13– 58%) in group 1 and 38%
(95% CI 21–54%) in group 2. The median PFS was 3.7 (95% CI
1.8–7.8) and 3.6 months (95% CI 1.7–7.1) in group 1 and group 2,
respectively. The Kaplan–Meier analyses are shown in Fig. 1.

Secondary clinical endpoints
Three patients in each group achieved an OTR, all partial
responses in group 1 and two partial and one complete response
in group 2, equating to an OTR of 19 and 9%, respectively.
Amongst this subset of patients achieving an OTR, median PFS
was 31.5 months and duration of response, 19.6 months. One
patient in each group did not have measurable disease at
baseline. Two other patients in group 1 had non-evaluable disease
based on not undergoing any further imaging after trial
enrolment. Five patients (31%) in group 1 achieved stable disease
(SD) as best response, of whom one patient was progression-free
at 6 months. In group 2, 18 patients (56%) achieved SD and 9
(28%) remained progression-free at 6 months. Seven patients
(44%) in group 1 and 11 (34%) in group 2 had progressive disease
as their best response, 13 confirmed radiologically and the others
based on clinical progression (Table 2). To account for the
heterogeneity of cancer types and natural histories, we calculated
the TTP2/TTP1 ratio for 13 (group 1) and 28 patients (group 2),
where TTP1 on therapy prior to study enrolment was evaluable
(Appendix 3). A TTP2/TTP1 ratio of >1.3 (the pre-defined threshold
for clinical activity) was achieved in 4 (31%) patients in group 1
and 7 (25%) patients in group 2 (Fig. 2). Three patients in group 1
and five in group 2 achieved a TTP2/TTP1 > 1.3 in the absence of
an OTR. In both groups, all patients achieving an OTR, remained
progression-free at 6 months. Of interest, amongst the 17 patients
who met the primary PFS6 endpoint, 12 (70%) had an evaluable
TTP ratio, with a median TTP2/1 ratio of 2.23 (range 0.37–11.2) and
8 (67%) achieving a TTP ratio>1.3, indicating an improved disease
trajectory on study. The median OS was 11.3 months (95% CI
6.3–21.1) in group 1 and 15.1 months (95% CI 9.0–16.4) in group 2.

Safety and tolerability
In terms of treatment exposure, four patients came off the study
whilst receiving olaparib alone and did not commence durvalu-
mab: two due to progressive disease and two due to adverse
events. The median relative dose intensity (the ratio of adminis-
tered doses to planned doses) was 100% (range 70–100%). The
dose of olaparib was reduced in 8 patients (17%), with six of these
patients also requiring treatment delays. These dose reductions
were mainly due to anaemia, nausea and vomiting, or elevated
creatinine. An additional 14 patients (29%) required delays in
olaparib without dose reductions and four patients required a
delay of durvalumab. At the time of study analysis, there were two
patients in each group still receiving olaparib.
The most common AEs across grades were nausea (n= 29,

60%), anaemia (n= 21, 44%) and fatigue (n= 22, 46%). Grade 3
or worse AEs were reported in 21 patients (44%), comprised
mainly of anaemia (8%), abdominal pain (6%), elevated amylase
or lipase (6% each) and pancreatitis (4%). Fifteen serious AEs
were experienced in 10 patients, with 5 (in 3 patients)
adjudicated as related to study drug(s). Acute renal impairment
was the only serious AE adjudicated as related to durvalumab
(Appendix 4).
Compared to visit 1, no change was observed in mean on-study

global health status based on the QLQ-C30, +1.3 (95% CI: −5.3 to
+7.9) across all study participants. Importantly, no change was
observed in mean global health status amongst 16 patients
progressing before 6 months, +0.7 (95% CI: −9.7 to +11.1), while
the 17 patients who remained progression-free at 6 months
experienced a modest increase in mean global health status of
+1.9 (95% CI: −7.4 to +11.2). Overall, none of these changes in
global health status met thresholds for clinically meaningful
differences [44].

Predictors of response to PARP inhibition
Eight (17%) patients had ClinVar pathogenic/ likely pathogenic
germline variants in BRCA2 (n= 4), ATM (n= 2), NBN (n= 1) and
NBN and ATM (n= 1) (Appendix 5). The presence of a germline
HRR gene alteration was not associated with significant differ-
ences in PFS (HR 1.12, 95% CI 0.51–2.47, P= 0.77) or OS (HR 1.98,
95% CI 0.87–4.51, P= 0.10). An examination of the most frequent
co-mutations revealed that TP53 did not correlate with PFS or OS,
but KRAS did, with its co-occurrence associated with a worse PFS
(HR 2.52, 95% CI 1.13–5.63; P= 0.02) and OS (HR 2.77, 95% CI
1.21–6.35; P= 0.01). There was evidence to suggest that prior

Group 1

16At risk At risk9 5 3 3

0.0

0.2

0.4

0.6

0.8

1.0

0 3 6 9 12

Time from registration—months

6mPFS%: 0.35 (95% CI: 0.13–0.58)

Median PFS: 3.65 months (95% CI: 1.77–7.75)

Group 2
ba

32 20 12 9 6

0.0

0.2

0.4

0.6

0.8

1.0

0 3 6 9 12

Time from registration—months

6mPFS%: 0.38 (95% CI: 0.21–0.54)
Median PFS: 3.56 months (95% CI: 1.74–7.06)

Fig. 1 Kaplan–Meier curves for progression-free survival (PFS) by group. a PFS in group 1 (BRCA1/2 alterations) and b PFS is group 2 (other
homologous recombination repair alterations).
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receipt of platinum chemotherapy was associated with PFS (HR
0.47, 95% CI 0.22–0.99, P= 0.04) and OS (HR 0.45, 95% CI
0.20–1.00, P= 0.04). However, the number of lines of prior therapy
did not correlate with PFS and OS (Appendix 6).

Predictors of response to immunotherapy
Fifteen (94%) in group 1 and 31 (97%) in group 2 had an evaluable
TMB; 7 and 3 patients in group 1 and 2, respectively, had a high
TMB of ≥10 mutations/megabase. In group 1 median PFS was
4.3 months for high, compared with 2.9 months for low TMB (HR
0.35, 95% CI 0.10–1.23; log-rank P= 0.09). In group 2, median PFS
was 5.4 months for patients with high TMB compared with
3.6 months for low (HR 0.87, 95% CI 0.20–3.74; P= 0.85). Overall,
median survival was 16.4 and 12.4 months for high (n= 10) versus
low TMB (n= 36), respectively (HR 0.70, 95% CI 0.30–1.60;
P= 0.39). Notably, 9 out of 10 with a high TMB had SD or better
as best OTR, and 5 had either CR, PR, non-CR/PR or a TTP2/TTP1
ratio of >1.3. By contrast, of 16 patients (33%) with progressive
disease as best OTR, 15 (94%) had a low TMB. These data are
consistent with the significant contribution of durvalumab to
clinical outcomes.

PD-L1 expression was available for 13 patients (81%) in group 1
and 29 patients (91%) in group 2. Median tumour PD-L1
expression was 1 and 0% for groups 1 and 2, respectively, with
44 and 41% meeting the PD-L1 expression cut-off of ≥1%. PD-L1
expression by group, or across study participants did not correlate
with PFS (HR 1.11, 95% CI 0.58–2.14, P= 0.7) or OS (HR 1.67, 95%
CI 0.83–3.35, P= 0.15), Appendix 6. TILs were evaluable for 11 and
26 patients in groups 1 and 2, respectively. By dichotomising the
cohort at a median TILs of 1, 25% in group 1 and 16% in group 2
qualified as having high TILs. High TILs did not correlate with PFS
or OS in each group, or the overall study population (Appendix 6).
Exploratory analysis using an NLR threshold of 4 demonstrated

that patients across both groups with an NLR ≥ 4 demonstrated a
shorter OS (median 10.1 months) compared with NLR < 4 (median
15.3 months), HR for death 1.64 (95% CI 0.85–3.18; P value 0.14).
The association of NLR with OS appeared to differ by group
(interaction P= 0.05): HR for OS in group 1 was 0.54 (95% CI:
0.14–2.06; P= 0.37) and in group 2, 2.84 (95% CI: 1.22–6.63,
P= 0.016) indicating a more pronounced effect of NLR on survival
outcomes amongst patients with other HRR alterations (Appen-
dix 6). There were no differences in median PFS observed. Figure 3

Table 2. Best response and time to progression (TTP) ratios.

Best response Group 1 (n= 16) Group 2 (n= 32)

Complete response 0 (0%) 1 (6%)

D029 endometrial carcinoma CHEK2

Partial response 3 (19%) 2 (6%)

D018 gallbladder, adenocarcinoma BRCA2 D007 breast, IDC ATM

D040 cholangiocarcinoma BRCA2 D030 NEC ATM

D047 PEComa BRCA2

Stable disease 5 (31%) 18 (56%)

Non-CR/non-PD 1 (6%) 0 (0%)*

D026 cervix, adenocarcinoma BRCA2

Progressive disease 7 (43%) 11 (34%)

Response maintained > 6 m 5 (31%) 12 (38%)

4 patients achieving PR, non-CR- non-
PD +

3 patients achieving an objective response
+

D041 glioma BRCA2 D001 chondrosarcoma FANCA

D008 pancreas adenocarcinoma BRIP, RAD51

D013 ovarian sex cord-stromal tumour CHEK2

D017 chondrosarcoma ATR

D021 small intestine adenocarcinoma CDK12, RAD51

D027 colorectal adenocarcinoma RAD51

D032 breast, IDC ATM

D034 papillary thyroid ATM, NBN

D037 liposarcoma CDK12

TTP2/TTP1 > 1.3 4 (31%) 7 (25%)

D026 Cervix, adenocarcinoma BRCA2 D004 uveal melanoma BAP1

D041 Glioma BRCA2 D007 breast, IDC ATM

D045 Pancreas, adenocarcinoma BRCA2 D008 pancreas, adenocarcinoma BRIP, RAD51C

D047 PeCOMA, uterus BRCA2 D015 colorectal, adenocarcinoma FANCI

D021 small intestine, adenocarcinoma CDK12, RAD51

D030 NEC ATM

D034 papillary thyroid NBN, ATM

IDC infiltrating ductal carcinoma, NEC neuroendocrine carcinoma, PEComa perivascular epithelioid cell tumour.
Underlined study ID indicates patients who achieved both an objective response and TTP2/TTP1 > 1.3. *D029 had non-measurable disease at baseline but
achieved a CR based on subsequent scans.
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provides a detailed overview of the qualifying and co-occurring
mutational profile of included cancer types alongside clinical
outcomes and biomarkers of interest.
We next used flow cytometry to assess a broad range of

circulating immune biomarkers in peripheral blood at baseline,
weeks 4 and 8, binned into good responders (OTR or PFS >6
months and OS ≥2 years), and poor responders. Figure 4a shows a
t-SNE plot comparing good responders and poor responders
across multiple hemopoietic lineages (further detailed in Appen-
dix 7A). CD38 high B cells were associated with good response to
O+ D (Fig. 4b) and with longer OS and PFS (Fig. 4c, d and
Appendix 7B). To differentiate prognostic and predictive effects,
we assessed the survival of cancer populations expressing
defining markers of B cells, CD38 and CD19 using publicly
available data (GEPIA2). In multiple TCGA cohorts, including
ovarian cancer, sarcomas and melanoma, CD38+ CD19+ corre-
lated with better OS, suggesting a prognostic effect. Also, cell
populations known to correlate with immunotherapy response
(Appendix 7B), including T cells and PD-1+ B cells were seen at
higher levels in baseline samples amongst good responders
[45, 46]. OS and PFS also correlated with fewer circulating γδT cells
and double-positive T cells, both likely immunosuppressive
[47, 48].
We next sought evidence for an immune priming effect for

olaparib that could explain response to combination treatment
with O+ D. Priming with olaparib decreased the proportion of all
proliferating (Ki67+) T cells (P= 0.0049), CD4+ T cells (P= 0.0015),
and B cells (P= 0.0026) from baseline to week 4. Olaparib did not
alter the proportion of CD38+ B cells from baseline to week 4

(Appendix 8). Comparing the BRCA1/2 cohort to the other HRR
cohort, we observed differential IL-2 induction following priming
of T cells ex vivo. Single-agent olaparib increased IL-2 production
(a key cytokine in anti-tumour immunity) in T cells, which also
trended with good responders (Appendix 9A). At week 8 following
O+ D we observed fewer cells expressing CD244 (a marker of
immune exhaustion), while HLA-DR+ B cells were increased
compared to baseline and was significantly associated with good
responders (Appendix 9B). Experiencing a grade 3 or 4 immune-
related AE (n= 6) was not associated with more favourable clinical
outcomes (results not shown). Archival tumour tissue for RNA
profile analysis was available for 39 patients and conducted using
the NanoString nCounter. There was no clear association between
the presence of an IFNγ signature, as previously shown by Ayers
et al. and clinical outcomes in our study cohort [40]. The single-
gene analysis found that higher CD40 expression in tumours
(above median) was associated with longer OS (16.47 versus
9.17 months, P= 0.027).

DISCUSSION
In this signal-seeking trial, 14 of 48 patients (29%) achieved either
an OTR or a favourable TTP ratio. This encouraging result fulfils the
original co-primary endpoint of objective response and TTP2/1
>1.3.
O+ D demonstrates a signal of clinical activity with a PFS6 rate

of 35% (group 1) and 38% (group 2) across a range of tumour
histotypes harbouring a HRR gene alteration. This is further
supported by the durability of the objective tumour responses and
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an improvement in disease trajectory for individual patients,
captured by the TTP2/1 ratios. Three patients (19%) achieved an
OTR in group 1, along with three additional TTP2/1 evalu-
able patients (23%) who experienced a TTP2/1 ratio >1.3. In group
2, three patients (9%) achieved an OTR, and five additional
patients (18%) demonstrated an improved TTP2/1 ratio. A median
OS of 11.3 (group 1) and 15.1 (group 2) months is also favourable
in a cohort comprised of rare cancers with poor prognoses.
Combination treatment revealed no new toxicity concerns, with
adverse events consistent with earlier trials [22, 23] and only one
patient experiencing a SAE attributable to durvalumab. Explora-
tory biological analyses revealed that higher levels of baseline
CD38+ B cells correlated with good clinical outcomes.
To our knowledge, this study is the first to demonstrate durable

objective tumour responses to PARP plus PD-L1 inhibition in a
gallbladder adenocarcinoma, cholangiocarcinoma, neuroendo-
crine carcinoma, a uterine perivascular epithelioid cell tumour
(PeCOMA) and high-grade glioma, all selected on the basis of
somatic or germline HRR gene alterations. Most of the cancers
where we observed an OTR have limited therapeutic options
beyond the first-line setting. Median OS for patients with locally
advanced or metastatic cholangiocarcinoma and gallbladder
cancers treated with cisplatin-gemcitabine, or gemcitabine alone
is only 11.7 and 8.1 months, respectively [49]. The addition of
durvalumab to cisplatin-gemcitabine was recently reported in the
TOPAZ-1 study, yielding an improved median OS of 12.8 months,
(HR 0.80, 95% CI, 0.66–0.97; P= 0.021) compared with chemother-
apy alone [50]. It would be interesting to see whether the subset
of patients with HRR alterations derived a greater benefit from the

platinum regimen, as well as an incremental benefit with the
addition of durvalumab. While TOPAZ-1 may indicate a role for
immunotherapy in the treatment of advanced biliary tract cancers,
the data is limited for these other rare cancers [50–52]. A patient
with a progressive and heavily pre-treated high-grade diffuse
midline glioma achieved disease stabilisation for over 8 months,
with an unconfirmed PR by RANO criteria.
Without randomisation, it is not possible to separate out the

role of PARP inhibition and/ or PD-L1 inhibition in these durable
objective responses and/or disease stabilisation. Earlier trials
examining the safety and efficacy of PARP plus PD-L1 have mostly
been histotype-specific and/or limited in their molecular eligibility.
In the MEDIOLA basket studies, all cohorts were histotype-limited,
with the advanced breast and relapsed ovarian cancer cohorts
permitting only germline BRCA1/2 alterations and platinum-
sensitive disease [53, 54]. Even these studies of single histologies
have not been able to ascertain the incremental value of
combination treatment over PARP inhibition alone due to the
absence of a comparator arm, limiting the available evidence to
inadequate cross-study comparisons. In the advanced HER2-
negative breast cancer setting, patients with germline BRCA
mutations achieved a 60% response rate, median PFS of
7.0 months and OS of 19.3 months with PARP inhibition alone
[12]. This was quite comparable to the MEDIOLA breast cancer
cohort, who achieved an objective response rate of 63%, median
PFS of 8.2 months and OS of 21.5 months with combination
treatment [53]. The recently published JAVELIN PARP and JAVELIN
BRCA/ATM studies were also non-randomised trials, evaluating
combination treatment with immunotherapy and PARP inhibition,
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but using avelumab and talazoparib [55, 56]. The JAVELIN PARP
study had DNA damage response positive (DDR+) cohorts mainly
for histotypes that were excluded from our trial (breast, ovarian
and prostate cancers) and otherwise comprised only three non-
small cell lung cancer patients verified to be DDR+, amongst
whom there were no objective responses [55]. In the JAVELIN
BRCA/ATM study, a pan-cancer approach was taken, with patients
selected on the presence of pathogenic BRCA1/2 or ATM
alterations. The objective response rate (ORR) in the BRCA1/2
and ATM cohorts was 26.4% and 4.9%, respectively, neither of
which met the prespecified ORR of 40% for the trial [56]. Outside
of histotypes excluded from our trial, OTR was seen in two
pancreas cancers, three uterine leiomyosarcomas, one uterine
sarcoma, one uterine carcinoma and testicular cancer. There were
no OTR achieved amongst the ten cholangiocarcinoma or
gallbladder cancers treated in the trial [56]. The higher OTR in
the BRCA1/2 group of this trial compared to ours may be due to
differences in the included histotypes.
The first randomised trial of O+ D versus durvalumab alone

was published recently [57]. Amongst patients with untreated,
platinum-ineligible metastatic urothelial carcinoma (n= 154),
there was no demonstrable improvement in PFS or OS with the
addition of olaparib to immunotherapy overall. However, amongst
the subset of patients with HRR defects (n= 30), median PFS
improved to 5.6 months (95% CI, 1.9–8.1) for patients receiving
combination treatment, compared to 1.8 months (95% CI, 1.7–2.2)
when treated with durvalumab alone (HR, 0.18; 95% CI, 0.06–0.47).
While several HRR alterations were included as a stratification
factor, only ATM (8.5%) and BRCA2 (4.6%) alterations were
identified amongst participants [57]. In the subset of patients
with a HRR defect who received O+ D treatment, 35% achieved
an objective response with a median response duration of
6.7 months. While our cohort yielded a lower rate of objective
responses, patients who achieved OTR experienced a median
response duration of 19.6 months and a median PFS of
31.5 months. Although our study was underpowered to detect
any synergy between these two therapies, we speculate that the
higher OTR in group 1 suggests that PARP inhibition may
contribute to tumour shrinkage, while the durability of the
responses across both groups and possible association with TMB
status suggests an effect of immunotherapy.
All objective responses in this trial were in tumours harbouring

BRCA2, ATM or CHEK2 alterations. This is consistent with the
PROfound study results, where olaparib benefit was mainly limited
to patients with BRCA1 or 2 mutations [15]. Pre-defined immune
biomarkers including tumour PD-L1, TILs and TMB did not strongly
correlate with clinical outcomes and did not provide any insights
into the incremental value of adding a PD-L1 inhibitor to PARP
inhibition. Low baseline NLR levels was associated with a longer
OS but not PFS, favouring a prognostic rather than predictive
capability. Similarly, the poor prognostic implications of a KRAS
mutation is more a reflection of the underlying cancer types (5 of
10 being pancreas cancer) as is potentially, the better outcomes
associated with prior platinum therapy.
Exploratory biological studies compared baseline to week

4 samples after olaparib exposure alone, and then following
exposure to O+ D. The correlation of high baseline CD38+ B-cell
populations with improved clinical outcomes is novel, although
we did not observe an effect of olaparib priming on this cell
population and cannot delineate histotype-based associations
with high baseline levels. B cells can promote anti-tumour
immunity through the release of cytokines such as IL-12, IFNγ,
granzyme B and TRAIL57 [58]. The CD38+ B cells are likely
transitional B cells or plasmablasts, however further characterisa-
tion is needed to determine the exact subset and function, with a
view for therapeutic targeting. Interestingly, monoclonal anti-
bodies (such as darartumumab) targeting CD38 lead to cell

apoptosis. While they are already in clinical use for the treatment
of multiple myeloma, the presence of CD38+ B cells was
associated with good clinical outcomes with O+ D, and therefore
inhibition in solid cancers may not be desirable. Higher expression
of CD40 in the tumour also correlated with good outcomes. CD40
is an important costimulatory molecule for B cells as well as
dendritic cells, monocytes and other antigen-presenting cells [58].
CD40 agonists have been shown to trigger anti-tumour immune
effects [59, 60] and combination treatment with olaparib and/or
anti-PD-L1 antibodies may be a novel strategy in cancers with HRR
defects.
The strengths of this signal-seeking study are inclusion of less

common cancer histotypes and a rich range of correlative
biomarkers that add depth to understanding individual responses.
As rare and less common cancers account for half of all cancer
deaths, their inclusion in clinical trials is vital to improving survival
outcomes for patients with cancer as a whole. This however does
introduce heterogeneity into the study population based on
inherent differences in prognosis between cancer types. Also, the
use of archival tissue for dynamic biomarker evaluation can
challenge their interpretation.

CONCLUSION
In sum, this study demonstrates a modest signal of activity for
olaparib and durvalumab in understudied cancer populations.
Clinical benefit was greatest amongst patients with BRCA2 and
ATM mutations, including durable objective tumour responses,
with minimal toxicities attributable to combining olaparib with
durvalumab. Amalgamating data from similar biomarker-driven
trials, such as TAPUR and DRUP, will be critical to understanding
histotype-specific outcomes in rare cancer populations.
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