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BACKGROUND: Despite a clear link between aging and cancer, there has been inconclusive evidence on how biological age (BA)
may be associated with cancer incidence.
METHODS: We studied 308,156 UK Biobank participants with no history of cancer at enrolment. Using 18 age-associated clinical
biomarkers, we computed three BA measures (Klemera-Doubal method [KDM], PhenoAge, homeostatic dysregulation [HD]) and
assessed their associations with incidence of any cancer and five common cancers (breast, prostate, lung, colorectal, and
melanoma) using Cox proportional-hazards models.
RESULTS: A total of 35,426 incident cancers were documented during a median follow-up of 10.9 years. Adjusting for common
cancer risk factors, 1-standard deviation (SD) increment in the age-adjusted KDM (hazard ratio= 1.04, 95% confidence
interval= 1.03–1.05), age-adjusted PhenoAge (1.09, 1.07–1.10), and HD (1.02, 1.01–1.03) was significantly associated with a higher
risk of any cancer. All BA measures were also associated with increased risks of lung and colorectal cancers, but only PhenoAge was
associated with breast cancer risk. Furthermore, we observed an inverse association between BA measures and prostate cancer,
although it was attenuated after removing glycated hemoglobin and serum glucose from the BA algorithms.
CONCLUSIONS: Advanced BA quantified by clinical biomarkers is associated with increased risks of any cancer, lung cancer, and
colorectal cancer.
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BACKGROUND
Aging is closely linked to cancer [1–3], in which some of the
proposed hallmarks of aging, such as genomic instability, cellular
senescence, and epigenetic alteration [4], also overlap with
the hallmarks of cancer [5]. Although chronological age (CA) is
the dominant risk factor for most cancers [6], it does not capture
the heterogeneity between older individuals. Biological age (BA),
on the other hand, combines information from biological markers
and may better reflect an individual’s physiology and risks of age-
related diseases and death [7].
In recent years, various BA measures have been proposed and

validated, including telomere length, deficit-accumulation frailty
indices, epigenetic clocks based on DNA methylation markers, and
algorithms that combine information on multiple clinical biomarkers
[7, 8]. Accumulating evidence from observational studies has
suggested that epigenetic clocks may predict cancer risks [9–11].
Recently, a Mendelian randomization study provided further support
on the potential causal relationship between GrimAge acceleration,
a second-generation epigenetic clock that reflects not only CA but
also mortality and smoking [12], and the risk of colorectal cancer
[13]. On the other hand, various biomarkers from blood chemistries
(e.g., total cholesterol [14], glucose [15], C-reactive protein [16]) and

other clinical data (e.g., waist circumference [17], forced expiratory
volume [FEV1] [18]) have been linked to cancer risks. However, there
has been a lack of data on whether composite measures of BA
based on these routinely collected clinical biomarkers may predict
cancer risks. As different types of BA measures may capture slightly
different aspects of the aging process [19, 20], deciphering the link
between various BA measures and cancers is important for
understanding the mechanisms underlying aging and cancer.
Therefore, the aim of this study was to investigate the relationships

between BA quantified based on clinical biomarkers and the risk of
any cancer and site-specific cancers (including breast, prostate, lung,
colorectal, and melanoma skin cancer), using data from the large
population-based UK Biobank cohort. We hypothesize that these
composite biomarker measures, as proxies for biological aging
capturing the overall aging process, would be associated with
increased risks of cancers independent of CA and other risk factors.

METHODS
Study population
During 2006–2010, the UK Biobank enrolled over 500,000 participants
aged 37–73 years from the general population [21]. At baseline,
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participants completed a touch-screen questionnaire, provided biological
samples, and had physical measurements taken in 22 assessment centers
throughout England, Wales, and Scotland. The UK Biobank study was
approved by the North West Multi-Centre Research Ethics Committee. All
participants provided written informed consent.
In this analysis, we included 331,699 UK Biobank participants who had

complete data on the 18 biomarkers used in our BA algorithms (Table 1).
We also excluded n= 177 with outlier BA values (considered as ±5 standard
deviations [SD] from mean) and n= 23,366 with any cancer diagnosis
(except non-melanoma skin cancer) before baseline, yielding an analytical
sample of n= 308,156.

Biological age measures
We quantified BA based on three composite measures of blood chemistry
and other clinical data: Klemera-Doubal method (KDM) [22], PhenoAge
[23], and homeostatic dysregulation (HD) [24]. Details on the calculations
and interpretations of the three measures have been summarized
previously [25, 26]. Briefly, KDM is calculated from a series of regressions
of biomarkers on CA and can be interpreted as the age at which the
average physiology in the US National Health and Nutrition Examination
Surveys (NHANES) III (i.e., the training sample) matches the physiology of
the person. PhenoAge is calculated based on a mortality prediction score
of biomarkers and CA and can be interpreted as the age at which the

average mortality risk in NHANES III matches the predicted mortality risk.
Different from KDM and PhenoAge, HD does not include CA in the
calculation, but it is calculated based on the Mahalanobis distance [27] for
a set of biomarkers relative to a reference sample and can be interpreted
as the deviation of the person’s physiology from a healthy sample of
NHANES III participants aged 20–30. All three measures have previously
been validated for their abilities to predict diseases, disability, and
mortality [25, 26].
In general, any age-related biomarkers can be used for constructing the

BA algorithms. To facilitate comparison, we selected the same set of
biomarkers in our KDM, PhenoAge, and HD algorithms, which were
computed using the R package BioAge [25] in three steps:

1. Training in NHANES III. We first identified 19 potential biomarkers
covering a range of organ systems (e.g., cardiometabolic,
inflammatory, kidney, lung functions) that are routinely collected
in clinical practice and were available in NHANES III and UK
Biobank (Supplementary Fig. 1). Only those with ≤20% missing
data and correlated with CA ( |r | > 0.1, in accordance with prior
work [19, 28]) in NHANES III were considered. Pulse was excluded
due to its high correlation with systolic blood pressure (r= 0.84).
Therefore, our new KDM, PhenoAge, and HD algorithms included
18 biomarkers (Table 1): FEV1, systolic blood pressure, blood urea

Table 1. Biomarkers included in the biological age algorithms.

Biomarkers available in NHANES
III and UK Biobanka

Correlation with CA
in NHANES III

Included in new algorithms
of KDM, PhenoAge, and
HDb

Included in Levine
original KDMc

Included in Levine
original PhenoAgec

FEV1 (L) −0.62 Yes Yes —

Pulse rate (beats/min) 0.61 — — —

SBP (mm Hg) 0.59 Yes Yes —

Blood urea nitrogen (mg/dL) 0.46 Yes Yes —

HbA1c (%) 0.32 Yes Yes —

Total cholesterol (mg/dL) 0.32 Yes Yes —

Creatinine (μmol/L) 0.30 Yes Yes Yes

Serum glucose (mmol/L) 0.26 Yes — Yes

Waist circumference (cm) 0.26 Yes — —

Red cell distribution width (%) 0.23 Yes — Yes

Albumin (g/dL) −0.22 Yes Yes Yes

Alkaline phosphatase (U/L) 0.21 Yes Yes Yes

Triglyceride (mg/dL) 0.18 Yes — —

Mean cell volume (fL) 0.17 Yes — Yes

Uric acid (mg/dL) 0.16 Yes — —

Lymphocyte (%) −0.14 Yes — Yes

RBC count (million cells/μL) −0.14 Yes — —

C-reactive protein (mg/dL) 0.11 Yes Yes Yes

DBP (mm Hg) 0.11 Yes — —

Monocyte (%) 0.06 — — —

Total bilirubin (mg/dL) −0.03 — — —

BMI (kg/m2) 0.02 — — —

WBC count (1000 cells/μL) −0.02 — — Yes

HDL (mg/dL) 0.00 — — —

BMI body mass index, CA chronological age, DBP diastolic blood pressure, FEV1 forced expiratory volume in 1 second, HbA1c glycated hemoglobin, HD
homeostatic dysregulation, HDL high-density lipoproteins, KDM Klemera-Doubal method, NHANES National Health and Nutrition Examination Survey, RBC red
blood cell, SBP systolic blood pressure, WBC white blood cell.
aOnly biomarkers that were available in UK Biobank and had ≤20% missing data in NHANES III (i.e., training set) were considered.
bWe included 18 biomarkers which were correlated with chronological age (|r| > 0.1) in the new algorithms of KDM, PhenoAge, and HD. Pulse was not included
because it had high correlation with systolic blood pressure (r= 0.84) (i.e., the models did not converge when including it). All algorithms were parametrized in
NHANES III using the R package BioAge [25]. As a sensitivity analysis, we also created modified versions of the KDM, PhenoAge, and HD after excluding HbA1c
and serum glucose from the algorithms (see Supplementary Table 6).
cFor comparison of the new algorithms, we used the original list of biomarkers included in Levine 2013 (except cytomegalovirus optical density which was not
available in UK Biobank) [28] and Levine et al. [23] to calculate the “Levine original KDM” and “Levine original PhenoAge”, respectively.
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nitrogen, glycated hemoglobin (HbA1c), total cholesterol, creati-
nine, serum glucose, waist circumference, red cell distribution
width, albumin, alkaline phosphatase, triglyceride, mean cell
volume, uric acid, lymphocyte percent, red blood cell count,
C-reactive protein, and diastolic blood pressure. Following
previous work [25], we selected non-pregnant participants who
aged 30–75 years and had complete biomarker data as the
reference population for KDM (n= 7694). The reference popula-
tion for PhenoAge included those aged 20–84 years and with
complete biomarker data (n= 12,998). The reference population
for HD included participants aged 20–30 years who were not
obese and whose biomarker values were within the age- and sex-
specific normal range (n= 258). Only one measurement occasion
was available per person in the training set.

2. Testing the new BA algorithms in comparison to the published
algorithms for their ability to predict mortality in an independent
cohort of NHANES IV participants (n= 3849), who were recruited
during 1999–2014 and followed up to 2015. Similar to the original
version of KDM [28] and PhenoAge [23] (constructed using an
alternative list of biomarkers as shown in Table 1), our new BA
algorithms were statistically significantly associated with mortality
during a median follow-up time of 7.4 years (interquartile range
4.1–11.5) (Supplementary Table 1). Besides, the new KDM and
PhenoAge were strongly correlated with CA (r > 0.9), and all BA
measures were moderately correlated with each other in NHANES
IV (Supplementary Figs. 2 and 3).

3. Projecting the newly trained algorithms onto UK Biobank.
Correlations among the 18 biomarkers are shown in Supplemen-
tary Table 2, and the distributions of the BA measures in UK
Biobank are presented in Supplementary Fig. 4.

To calculate the deviation between BA and CA, we regressed out CA (as
3 degrees-of-freedom natural spline) from KDM and PhenoAge in each
cohort and considered them as “age residuals” (also known as “age
acceleration”) [29]. Residuals were not calculated for HD as it was not an
age measure by definition and it already quantifies deviation from a
reference population [25, 26], but it was log-transformed due to the
skewed distribution. Higher values of KDM residual, PhenoAge residual,
and HD represent advanced BA. The KDM residual, PhenoAge residual, and
HD were then standardized with mean= 0 and SD= 1 to allow
comparison of effect sizes in subsequent analyses.

Cancer ascertainment
We studied five common cancers in Europe, including breast (for women),
prostate (for men), and for both sexes, lung, colorectal, and melanoma skin
cancer [30]. Incident cancers were ascertained from the cancer registries in
England, Wales, and Scotland, where complete follow-up was available
through February 29, 2020. We defined cancer diagnoses using the
International Classification of Diseases, 10th revision (ICD-10) codes: any
cancer (C00-97, excluding non-melanoma skin cancer C44), breast (C50),
prostate (C61), lung (including trachea, C33-34), colorectal (C18-20), and
melanoma (C43).

Statistical analyses
Participants were followed from the date of baseline assessment to the
date of cancer diagnosis, death, or end of follow-up, whichever occurred
first. Hazard ratios (HRs) for cancer risks per 1-SD increase in each BA
measure were estimated using multivariable Cox proportional-hazards
models, where attained age was used as the underlying timescale. The
models were first adjusted for birth year and sex, and were further
adjusted for baseline assessment center, ethnic background, body mass
index (BMI), smoking, alcohol, physical activity, education, and Townsend
deprivation index [31] in analyses of all cancer sites. Additionally, we
adjusted for cancer-specific covariates such as family history of cancers,
women-specific factors (menopausal status, hormone replacement therapy
use, oral contraceptive use, parity), cancer screening, diet, and sun
exposure variables, as relevant for each cancer site based on the literature.
Covariates used in each model are listed in the footnote of the
corresponding tables, and their definitions and descriptive statistics are
provided in Supplementary Table 3. Missing data on covariates were coded
as indicator variables in the models. To assess the associations of individual
clinical biomarkers—in comparison to composite BA measures—with
cancer risks, we also calculated the HRs per 1-SD increase in each clinical
biomarker from the fully-adjusted models.

We performed subgroup analyses to test whether the associations
may differ by age at baseline (<60 vs. ≥60 years), sex (women vs. men),
and ethnicity (white vs. non-white). For breast cancer and lung cancer,
we additionally stratified the analyses by menopausal status (premeno-
pausal vs. postmenopausal) and smoking (never-smokers vs. ever-
smokers), respectively. The proportional-hazards assumption was for-
mally tested using Schoenfeld residuals. When the proportional-hazards
assumption did not hold in the exposure of interest (P < 0.05), we fitted a
time-varying model by including interaction terms between the BA
measure and age (split into 5-year intervals) to calculate HRs over
different periods of follow-up. Besides, to examine potential non-linear
relationships between BA measures and cancer risks, we compared
model fit of a restricted cubic spline model with a linear model using
likelihood ratio tests and plotted the models with evidence of non-
linearity (P < 0.05).
Several sensitivity analyses were performed. First, we assessed the

association between the original KDM [28] and PhenoAge [23]
algorithms (Table 1) and cancer risks to analyze if the biomarker
composition would affect the results. Second, as we found an
unexpected protective effect of BA measures for prostate cancer and
that HbA1c and serum glucose may be associated with reduced prostate
cancer risk [32, 33], we repeated the analysis using modified versions of
KDM, PhenoAge, and HD computed from 16 biomarkers (i.e., removing
HbA1c and serum glucose) to further examine whether the observed
inverse relationship may be influenced by these two biomarkers. Third,
instead of using indicator variables for missing values, we performed a
complete-case analysis using available data (i.e., excluding individuals
with missing data on any covariates). Finally, as individuals with a
cancer diagnosis during the first 2 years of follow-up might have
undiagnosed or subclinical disease at baseline, we performed a
sensitivity analysis by excluding the first 2 years of follow-up to
minimize reverse causation.
All analyses were performed in R 4.1.3 and Stata 16. To account for

multiple testing (3 BA measures × 5 cancers), we applied the Bonferroni
correction and considered a two-sided P < 0.0033 (i.e., 0.05/15) as
statistically significant.

RESULTS
Sample characteristics
Of the 308,156 UK Biobank participants, the mean age at baseline
was 56.2 years (SD 8.1) and 163,022 (52.9%) were women (Table 2).
During a median follow-up of 10.9 years (interquartile range
10.1–11.6), a total of 16,933 (10.4%) and 18,493 (12.7%) incident
cancers were reported in women and men, respectively.
Correlations between the BA measures and CA in UK Biobank are

shown in Fig. 1. As expected, CA was strongly correlated with KDM (i.e.,
an algorithm representing predicted CA; r= 0.85) and PhenoAge (i.e.,
representing predicted age-associated mortality; r= 0.84), while a
weaker correlation was found between CA and HD (i.e., representing
deviation of physiology from a healthy reference; r= 0.25). The residual
(i.e., removing the effect of CA) of KDMwas moderately correlated with
the PhenoAge residual (r= 0.64) and HD (r= 0.60), but there was only
weak correlation between the PhenoAge residual and HD (r= 0.29).
Compared to men, women had a higher mean KDM residual (0.03 vs.
−0.12) and HD (6.81 vs. 6.54 log units), but a lower mean PhenoAge
residual (−0.65 vs. 0.67) (Table 2).

Biological age and cancer incidence
After adjusting for sociodemographic and lifestyle factors, all BA
measures were associated with an elevated risk of any cancer
(KDM residual: HR per 1-SD increase=1.04, 95% confidence
interval [CI]= 1.03–1.05; PhenoAge residual: 1.09, 1.07–1.10; HD:
1.02, 1.01–1.03) (Table 3 and Supplementary Fig. 5). Similarly, the
BA measures were associated with increased risks of lung cancer
and colorectal cancer in the full models adjusted for cancer-
specific risk factors. Among the three measures, PhenoAge
residual had the strongest effect estimate for lung cancer
(HR= 1.35, 95% CI= 1.30–1.40), and HD had the strongest effect
estimate for colorectal cancer (HR= 1.10, 95% CI= 1.07–1.15).
Only PhenoAge residual (HR= 1.05, 95% CI= 1.02–1.08), but not
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KDM residual or HD, was associated with a higher risk of breast
cancer. We also observed significant protective effects of KDM
and PhenoAge residuals for prostate cancer, although the
associations were slightly attenuated after adjusting for prostate
cancer-specific factors. None of the BA measures were statisti-
cally significantly associated with melanoma after adjustment for
sociodemographic and lifestyle factors (Table 3). Many of the 18
clinical biomarkers incorporated within BA measures were also
associated with cancer risks individually (Supplementary Table 4
and Supplementary Fig. 5). For instance, higher FEV1 was
associated with decreased risks of any cancer and lung cancer
but increased risk of prostate cancer, and higher systolic blood
pressure was associated with elevated risk of breast cancer.
Associations between BA measures and cancer risks were

mostly consistent across subgroups split by age and sex; however,

the associations of KDM and PhenoAge residuals with colorectal
cancer appeared to be sexually dimorphic and were only
significant among men (Supplementary Table 5). When stratifying
by ethnicity, results in non-white participants were generally
statistically non-significant, possibly due to the limited sample
size. Moreover, the associations between BA measures and lung
cancer were only significant among ever-smokers but not never-
smokers (P for interaction < 0.001), and the association between
PhenoAge and breast cancer was stronger in postmenopausal vs.
premenopausal women (P for interaction= 0.002) (Supplementary
Table 5).
We calculated age-varying HRs when the proportional-hazards

assumption was not met. As shown in Fig. 2, the associations of
PhenoAge residual with any cancer and breast cancer
appeared to be stronger around 60–80 years, while the

Table 2. Baseline characteristics of UK Biobank participants.

Characteristic Total (n= 308,156) Women (n= 163,022) Men (n= 145,134) Pa

Chronological age at baseline (year), mean ± SD 56.21 ± 8.11 56.09 ± 8.01 56.35 ± 8.21 <0.001

BA measuresb, mean ± SD

KDM (year) 53.94 ± 9.42 53.90 ± 9.53 53.99 ± 9.29 0.006

KDM residual −0.04 ± 5.01 0.03 ± 5.03 −0.12 ± 4.98 <0.001

PhenoAge (year) 47.46 ± 10.00 46.70 ± 9.52 48.31 ± 10.46 <0.001

PhenoAge residual −0.03 ± 5.35 −0.65 ± 5.17 0.67 ± 5.46 <0.001

HD (log units) 6.69 ± 1.00 6.81 ± 0.99 6.54 ± 1.00 <0.001

Biomarkers included in BA algorithms, mean ± SD

FEV1 (L) 2.84 ± 0.80 2.41 ± 0.55 3.32 ± 0.77 <0.001

SBP (mm Hg) 139.55 ± 19.50 136.88 ± 20.12 142.56 ± 18.33 <0.001

Blood urea nitrogen (mg/dL) 15.08 ± 3.76 14.58 ± 3.62 15.64 ± 3.84 <0.001

HbA1c (%) 5.44 ± 0.60 5.41 ± 0.53 5.47 ± 0.66 <0.001

Total cholesterol (mg/dL) 220.48 ± 43.87 227.17 ± 43.23 212.97 ± 43.36 <0.001

Creatinine (umol/L) 72.29 ± 15.23 64.18 ± 11.00 81.40 ± 14.13 <0.001

Serum glucose (mmol/L) 5.11 ± 1.19 5.05 ± 1.02 5.17 ± 1.36 <0.001

Waist circumference (cm) 90.23 ± 13.34 84.42 ± 12.38 96.76 ± 11.19 <0.001

Red cell distribution width (%) 13.46 ± 0.94 13.51 ± 1.03 13.42 ± 0.82 <0.001

Albumin (g/dL) 45.30 ± 2.59 45.01 ± 2.57 45.62 ± 2.58 <0.001

Alkaline phosphatase (U/L) 82.88 ± 24.80 84.07 ± 25.90 81.54 ± 23.44 <0.001

Triglyceride (mg/dL) 153.81 ± 89.83 135.51 ± 74.31 174.37 ± 100.65 <0.001

Mean cell volume (fL) 82.77 ± 5.28 82.89 ± 5.28 82.63 ± 5.27 <0.001

Uric acid (mg/dL) 5.19 ± 1.34 4.52 ± 1.09 5.95 ± 1.19 <0.001

Lymphocyte (%) 29.03 ± 7.34 29.89 ± 7.26 28.06 ± 7.31 <0.001

RBC count (million cells/uL) 4.53 ± 0.41 4.33 ± 0.33 4.76 ± 0.37 <0.001

C-reactive protein (mg/dL) 0.25 ± 0.40 0.26 ± 0.41 0.23 ± 0.40 <0.001

DBP (mm Hg) 82.24 ± 10.64 80.61 ± 10.51 84.07 ± 10.49 <0.001

Died during follow-up, n (%) 14,542 (4.7) 5495 (3.4) 9047 (6.2) <0.001

Any incident cancerc, n (%) 35,426 (11.5) 16,933 (10.4) 18,493 (12.7) <0.001

Incident breast cancer in women, n (%) — 5794 (3.6) — —

Incident prostate cancer in men, n (%) — — 7196 (5.0) —

Incident lung cancer, n (%) 2363 (0.8) 1109 (0.7) 1254 (0.9) <0.001

Incident colorectal cancer, n (%) 3596 (1.2) 1552 (1.0) 2044 (1.4) <0.001

Incident melanoma, n (%) 1833 (0.6) 881 (0.5) 952 (0.7) <0.001

BA biological age, DBP diastolic blood pressure, FEV1 forced expiratory volume in 1 second, HbA1c glycated hemoglobin, HD homeostatic dysregulation, KDM
Klemera-Doubal method, RBC red blood cell, SBP systolic blood pressure, SD standard deviation.
aP values for comparison between women and men, obtained from t tests or χ2 tests.
bAll algorithms were parametrized in NHANES III and projected in UK Biobank. The KDM residual and PhenoAge residual were computed by regressing out
chronological age (as a natural spline term with 3 degrees of freedom) from the KDM and PhenoAge, respectively.
cAny type of cancer, except non-melanoma skin cancer.
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associations of PhenoAge and KDM residuals with colorectal
cancer tended to be weaker with advancing age. There was
some evidence of non-linear associations between the residuals
of KDM and PhenoAge and the risk of any cancer, lung cancer,
and colorectal cancer (P < 0.05), with a sharp increase in the risk
of any cancer among individuals with a BA value above the
mean (Fig. 3).
As the individual biomarkers included in the BA measures had

different effects on cancer risks (Supplementary Fig. 5), we
performed sensitivity analysis using alternative BA algorithms
incorporating other sets of biomarkers. Results were essentially
unchanged when using the original KDM and PhenoAge
algorithms (Supplementary Table 6), as well as the modified
algorithms of KDM, PhenoAge, and HD (excluding HbA1c and
serum glucose) as exposure variables (Supplementary Table 7),
although these alternative algorithms were no longer statistically
significantly associated with prostate cancer in the fully-adjusted
models. The associations were also largely similar when perform-
ing the complete-case analysis rather than using indicator
variables for missing values of covariates (Supplementary Table 8),
and when excluding diagnoses occurring in the first 2 years of
follow-up (Supplementary Table 9).

DISCUSSION
In this large cohort of UK Biobank participants, we quantified BA
based on clinical biomarkers (e.g., blood chemistries, blood
pressure, lung function) and showed that they were associated
with increased risks of any cancer, lung cancer, and colorectal
cancer, independent of CA, sex, sociodemographic and lifestyle
factors, and other cancer-specific risk factors. These associations
were largely consistent over the follow-up period and across
subgroups split by age and sex. We also found a positive
association between the age-adjusted PhenoAge and breast

cancer. Furthermore, a protective effect of an advanced BA on
prostate cancer was seen in the main analysis, although this
seemed to be primarily driven by HbA1c and serum glucose
included in the BA algorithms.
There is no gold standard for measuring BA. Different BA

measures (e.g., telomere length, epigenetic clocks, biomarker-
based BA) are weakly correlated with each other, hence, they may
explain different aspects of biological aging [19, 20]. To the best of
our knowledge, this is the first study that has used clinical
biomarker-based BA algorithms to predict cancer risks. Similar to
previous studies [14–18, 32, 33], we found that individual clinical
biomarkers had different effects on various cancer types.
Importantly, when combining information from multiple biomar-
kers as the proxies for biological aging (i.e., reflecting the overall
physiological status of a person), these composite measures of BA
had modest, but significant associations with any cancer, lung
cancer, and colorectal cancer. Our results are also consistent with
the existing literature, which has shown an association between
higher epigenetic ages and an increased risk of any cancer [9–11],
lung cancer [11, 34, 35], and colorectal cancer [13, 34]. Taken
together, these findings may indicate that multiple aging
processes captured by BA measures (e.g., epigenetic alterations,
inflammation, metabolic changes) could play a role in cancer
development. Although our BA algorithms included FEV1, which is
a lung function biomarker strongly associated with lung cancer
[18], we also observed a strong association between the original
Levine PhenoAge algorithm (without FEV1 included) and lung
cancer, thus suggesting that the association between BA measures
and lung cancer was not entirely due to reduced lung
function. Meanwhile, the association between BA measures and
lung cancer was only significant among ever-smokers, but not
never-smokers, indicating that it could partly be confounded by
smoking status, where smoking could lead to both advanced BA
and lung cancer risk [36]. Further research is warranted to study
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the mechanisms underlying biological aging, lung cancer and
colorectal cancer.
We studied three algorithms, the KDM, PhenoAge, and HD,

which were trained using different methods and may therefore
have slightly different implications on biological aging. While

the associations of the three BA measures and most cancers
were comparable, we only observed a statistically significant
association of PhenoAge, but not KDM or HD, with breast cancer.
This is similar to prior research showing a statistically significant
association between the PhenoAge clock (i.e., a DNA

Table 3. Association between biological age measures and risk of cancer in UK Biobank.

Cancer site KDM residual PhenoAge residual HD (log)

HR per 1 SD increase
(95% CI)

P HR per 1 SD increase
(95% CI)

P HR per 1 SD increase
(95% CI)

P

Any cancer

Age- and sex-adjusted
modela

1.06 (1.05, 1.07)* <0.001 1.10 (1.09, 1.11)* <0.001 1.04 (1.03, 1.05)* <0.001

Multivariable modelb 1.04 (1.03, 1.05)* <0.001 1.09 (1.07, 1.10)* <0.001 1.02 (1.01, 1.03)* 0.002

Breast cancer in women

Age-adjusted modela 1.02 (1.00, 1.05) 0.09 1.05 (1.03, 1.08)* <0.001 1.02 (0.99, 1.05) 0.26

Multivariable modelb 1.01 (0.98, 1.04) 0.69 1.06 (1.03, 1.09)* <0.001 1.00 (0.97, 1.03) 0.99

Breast cancer-specific
modelc

1.01 (0.98, 1.04) 0.51 1.05 (1.02, 1.08)* <0.001 1.00 (0.97, 1.03) 0.86

Prostate cancer in men

Age-adjusted modela 0.92 (0.90, 0.94)* <0.001 0.94 (0.91, 0.96)* <0.001 0.93 (0.91, 0.96)* <0.001

Multivariable modelb 0.94 (0.92, 0.97)* <0.001 0.95 (0.93, 0.97)* <0.001 0.96 (0.93, 0.98)* <0.001

Prostate cancer-specific
modeld

0.96 (0.93, 0.98)* 0.002 0.96 (0.94, 0.99)* 0.003 0.97 (0.95, 1.00) 0.044

Lung cancer

Age- and sex-adjusted
modela

1.44 (1.39, 1.50)* <0.001 1.58 (1.53, 1.63)* <0.001 1.22 (1.17, 1.27)* <0.001

Multivariable modelb 1.29 (1.24, 1.35)* <0.001 1.35 (1.30, 1.40)* <0.001 1.12 (1.08, 1.18)* <0.001

Lung cancer-specific
modele

1.29 (1.24, 1.35)* <0.001 1.35 (1.30, 1.40)* <0.001 1.13 (1.08, 1.18)* <0.001

Colorectal cancer

Age- and sex-adjusted
modela

1.10 (1.07, 1.14)* <0.001 1.09 (1.06, 1.13)* <0.001 1.13 (1.09, 1.17)* <0.001

Multivariable modelb 1.09 (1.05, 1.13)* <0.001 1.09 (1.05, 1.12)* <0.001 1.11 (1.07, 1.15)* <0.001

Colorectal cancer-specific
modelf

1.09 (1.05, 1.12)* <0.001 1.08 (1.05, 1.12)* <0.001 1.10 (1.07, 1.15)* <0.001

Melanoma

Age- and sex-adjusted
modela

0.91 (0.86, 0.95)* <0.001 0.94 (0.89, 0.98) 0.008 0.93 (0.89, 0.98) 0.006

Multivariable modelb 0.95 (0.90, 1.00) 0.040 1.01 (0.96, 1.06) 0.85 0.95 (0.91, 1.01) 0.08

Melanoma-specific modelg 0.95 (0.90, 1.00) 0.062 1.01 (0.96, 1.07) 0.62 0.95 (0.91, 1.01) 0.09

CI confidence interval, HD homeostatic dysregulation, HR hazard ratio, KDM Klemera-Doubal method, SD standard deviation.
aAge- and sex-adjusted model: adjusted for age (time scale), birth year (1930–1939, 1940–1949, 1950–1959, ≥1960), and sex (except for breast cancer and
prostate cancer).
bMultivariable model: age- and sex-adjusted model + baseline assessment center (England, Wales, Scotland), ethnic background (White, Asian, Black, others),
body mass index (underweight, normal weight, overweight, obese), smoking status (never, previous, current), physical activity level (low, moderate, high),
alcohol consumption (less than 3 times a month, 1–4 times a week, daily or almost daily), education level (high, intermediate, low), deprivation index quintiles
(1st, 2nd, 3rd, 4th, 5th).
cBreast cancer-specific model: multivariable model + family history of breast cancer (no, yes), ever had breast cancer screening (no, yes), menopause
(premenopausal, postmenopausal), hormone replacement therapy use (never, ever), oral contraceptive use (never, ever), parity (0, 1–2, ≥3).
dProstate cancer-specific model: multivariable model + family history of prostate cancer (no, yes), ever had prostate-specific antigen test (no, yes), self-
reported diabetes (no, yes).
eLung cancer-specific model: multivariable model + family history of lung cancer (no, yes).
fColorectal cancer-specific model: multivariable model + family history of colorectal cancer (no, yes), ever had colorectal cancer screening (no, yes), fresh
vegetable and fruit intake (<5 portions a day, ≥5 portions a day), red meat intake (less than twice a week, twice a week or more), processed meat intake (less
than twice a week, twice a week or more).
gMelanoma cancer-specific model: multivariable model + time spent outdoors during summer (1–2 h/day, 3–5 h/day, >5 h/day), use of sun/UV protection
(never/rarely, sometimes, most of the time, always, do not go out in sunshine), sunburn during childhood (no, yes), solarium/sunlamp use (no, yes), ease of skin
tanning (very tanned, moderately tanned, mildly or occasionally tanned, never tan but only burn), skin color (black/brown, light/dark olive, fair, very fair), hair
color (black/dark brown/other, light brown, blonde/red).
*Significant after Bonferroni correction at P < 0.05/15 (i.e., 5 cancers × 3 biological age measures).

J.K.L. Mak et al.

99

British Journal of Cancer (2023) 129:94 – 103



methylation-based algorithm trained to predict the
PhenoAge used in our study) and increased risk of breast cancer
[37], but a weaker association when using Horvath and Hannum
clocks (i.e., algorithms to predict CA) [37, 38]. As we incorporated
the same set of biomarkers into our three BA measures, the
inconsistent result is probably explained by the fact that
PhenoAge captures not merely CA, but also the mortality risk
predicted by the biomarkers, whereas KDM simply reflects CA
and HD reflects physiological deviations from a healthy
reference.
The inverse association between BA and prostate cancer found

in our primary analysis is somewhat in line with previous studies
which showed indications of a protective effect of the GrimAge
clock for prostate cancer [13, 34]. Interestingly, in our study, this
association was slightly attenuated after adjusting for prostate
cancer-specific factors such as diabetes and having prostate-
specific antigen (PSA) test, and was further attenuated to non-
statistically significance after removing HbA1c and serum glucose
from the BA algorithms. Diabetes [39], as well as HbA1c [32] and
serum glucose levels [33], have been linked to a lower incidence of
prostate cancer, partly because of the lower level of insulin-like
growth factor-1 levels in diabetic patients, and partly because of
the potential detection bias due to the lower PSA level in diabetic

men [32, 39]. We therefore speculate that the apparent protective
effect of higher BA for prostate cancer could be confounded by
diabetes and altered glucose metabolism, which are also closely
related to aging [40]. Finally, no significant association was found
between BA measures and melanoma. As melanoma is a cancer
that is relatively common in young adults [30], it may be less
driven by systemic aging and more by other factors such as skin
sun exposure.
The primary strength of this study is the large sample size and

the relatively long follow-up of ~10 years, which have allowed us
to assess several cancers. Using the BioAge R package [25], we
were able to assess the impact of multiple BA algorithms and
compositions on cancer risks. Nevertheless, one limitation is the
lack of data on tumor stage and grade. We therefore could not
account for the severity of cancers. As we only have information
on the clinical biomarkers at baseline, we were also unable to
analyze if changes in BA over time may influence cancer risks.
Moreover, the UK Biobank sample was mostly white participants
(>94%), which may limit the generalizability of our results to other
populations. Finally, as in other observational studies, although
we have carefully adjusted for several cancer risk factors, the
possibility of residual and unmeasured confounding cannot be
ruled out.
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In conclusion, our findings suggest that advanced biological
aging may lead to increased risks of any cancer, lung cancer,
and colorectal cancer, independent of age, sex, and common cancer
risk factors. However, for other cancers such as breast cancer and
prostate cancer, the associations may be influenced by the
algorithm and composition of the BA being used. This work
provides the basis for our further understanding on the biology
underlying aging and cancer, and suggests that slowing down
biological aging may be beneficial to mitigate cancer risks.
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