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BACKGROUND: Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic
cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic
changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify
ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional
sampling to encompass the intra- and inter-tumoral heterogeneity.
METHODS: We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39–77 ICC tumour samples and
eleven normal samples. Further, we analysed their cell proliferation and viability.
RESULTS: We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral
evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of ‘Val Leu Ile degradation
pathway’. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine,
and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in
all cases with genomic diversity and might play important roles in tumour progression and overall survival.
CONCLUSIONS: We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic
interventions.
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BACKGROUND
Intrahepatic cholangiocarcinoma (ICC), the second most fre-
quent type of malignancy originating from the liver, accounts for
~15% of primary liver cancers [1]. Over the past few decades, the
incidence of ICC has been steadily increasing [2].
Surgical resection remains the primary treatment of choice,
but most patients with ICC are refractory to treatment and

have a dismal outcome; the 5-year overall survival rates after
resection vary at 30‒35% [3]. The commonly used treatment
modalities, such as chemotherapy or radiotherapy, exhibit
purely palliative effects on ICC, enabling only a limited
improvement in survival. Therefore, the pathogenesis and
onco-metabolic changes of ICC need to be understood to
develop new treatment strategies.
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Intra- and inter-tumoral heterogeneity are increasingly attracting
attention in cancer research. During the development and
progression of cancer, intra-tumoral heterogeneity (ITH) complicates
the diagnosis and treatment of cancer. Inter-tumoral heterogeneity
results in the range of tumour genotypes found in different patients.
Various tumours with genomic diversity induce substantial down-
stream molecular heterogeneity that leads to different oncogenic
metabolic pathways. In recent years, genomic analysis has provided
insights into the genetic landscape of ICC [4]. The driver alterations
identified in these studies may represent novel candidates for driver
gene-guided therapy. There are numerous treatment strategies for
personalised therapy; thus far, only a few have been able to
demonstrate improvement in survival compared to conventional
treatment with standard chemotherapy [5]. Fibroblast growth factor
receptor 2 inhibitors were the first to transform the clinical
management of ICC, displaying the required efficacy in fusion-
positive cases; however, those cases account for only 10–20% of the
total [6], similar to cases with mutations in isocitrate dehydrogenase
(IDH) [7]. Previously reported classifications of driver genes, including
IDH, KRAS and TP53 were based on single sampling [8]. However,
these studies did not elucidate the importance of the vast inter-
tumoral heterogeneity in individual cases of ICC.
Cancer cells utilise altered metabolic pathways to facilitate the

uptake and incorporation of abundant nutrients efficiently into core
cellular molecules, such as nucleotides, amino acids, and lipids, for
uninterrupted proliferation, and for survival in specific metabolic
environments. This seems to be a universal characteristic of highly
malignant tumours [9], independent of their carcinogenetic origin
[10]. Metabolic reprogramming constitutes a part of the altered
metabolic changes observed for decades [11]. However, whether
this reprogramming is a general aspect of proliferation or an
unintended consequence of aberrant signalling remains poorly
understood; whether reprogramming is functionally involved in
oncogenesis remains to be determined. For example, autophagy
plays a critical role in glutamine metabolism, which is required for
tumour survival in pancreatic ductal adenocarcinoma [12]. Coacti-
vator SRC-2-dependent metabolic reprogramming mediates pros-
tate cancer cell survival and metastasis and is considered a
potential therapeutic target [13]. Thus, it is important to identify
novel oncogenic factors that reprogramme metabolic pathways
that influence ICC progression or malignancy.
Herein, we sampled ten multiregional ICC cases and used a

multi-omics approach, including genomics, transcriptomics, pro-
teomics, and metabolomics, to understand intra- and inter-
tumoral heterogeneity. We aimed to determine whether the
evolutionary process is neutral and analyse the onco-metabolic
changes in the potential regulatory networks that underlie
metabolic reprogramming in ICC, which may help elucidate new
targetable pathways beyond both heterogeneities.

METHODS
Ethics statement
The study design was approved by the institutional review boards and
ethics committees of the following hospitals (Kyushu University Institu-
tional Review Board: Protocol Number P-594-00; Osaka University Hospital
Institutional Review Board: Protocol Number P-586; Oita Prefectural
Hospital Institutional Review Board: Protocol Number P-26-19; Oitaken
Koseiren Tsurumi Hospital Institutional Review Board: Protocol Number P-
26-3-1; and Fukuoka City Hospital Institutional Review Board: Protocol
Number P-15-E04). The study was conducted according to the principles of
the Declaration of Helsinki. We obtained written informed consent from
the 12 patients. No animal experiments were performed in this study. We
performed whole-exome sequencing (WES), whole-transcriptome sequen-
cing, proteome analysis and metabolome analysis on ten, eleven, ten, and
ten of the ICC samples, respectively (Table 1).
Inclusion and exclusion criteria did not include special conditions, except

unintended reasons for sampling, remaining sample volume, study design
issues, etc.Ta
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iMPAQT assay
We obtained 39 tumour samples and ten normal samples of ICC from ten
cases for proteome analysis (Supplementary Table S1). Herein, we employed
the in vitro proteome-assisted multiple reaction monitoring for protein
absolute quantification (iMPAQT) [14] assay to perform global analysis for
absolute quantification of protein expression simultaneously. The analysis
was performed as described previously [14]. Briefly, frozen tissue was
crushed using a bead shocker, lysed in 100 μL lysis buffer (containing 2%
sodium dodecyl sulphate, 7 M urea, 100mM Tris-HCl (pH 8.8); per 10mg of
tissue powder), and diluted with an equal amount of water. The protein
concentrations in the samples were determined using the Bicinchoninic Acid
assay (Bio-Rad Laboratories, Hercules, CA, USA). To block the cysteine/
cysteine residues, we treated portions of the samples (200 μg of protein)
with 5.0mM Tris (2-carboxyethyl) phosphine hydrochloride (Thermo Fisher
Scientific, Waltham, MA, USA) for 30min at 37 °C and then performed
alkylation with 10mM 2-iodoacetoamide (Sigma-Aldrich, St. Louis, MO, USA)
for 30min at 20 °C. Next, these samples were subjected to acetone
precipitation. The resulting pellet was resuspended in 100 μL digestion
buffer (0.5M triethylammonium bicarbonate). Each sample was digested
with lysyl-endopeptidase (2 μg, Wako) for 3 h at 37 °C. Then, the samples
were further digested with trypsin (4 μg, Thermo Fisher Scientific) for 14 h at
37 °C. The resulting cell digests were freeze-dried and labelled with the
mTRAQ Δ0 (light) reagent. Each sample was spiked with synthetic peptides
(Funakoshi and GenScript) for internal standard, which was with treated
reductive alkylation and mTRAQ Δ4 (heavy) labelling. The samples were
subjected to reversed-phase liquid chromatography followed by multiple
reaction monitoring analysis. Experiments using mass spectrometry and pre-
treatment were performed by Kyusyu Pro Search LLP (Fukuoka, Japan).

Metabolome analysis
Metabolites present in cells or homogenised tumour tissue samples were
quantified using capillary electrophoresis-mass spectrometry (Agilent Tech-
nologies, Santa Clara, CA, USA) as previously described [15]. Briefly, to analyse
the cationic compounds, a fused silica capillary (50 µm i.d. × 100 cm) was
used with 1M formic acid as the electrolyte. Methanol/water (50% v/v)
containing 0.1 µM hexakis (2,2-difluoroethoxy) phosphazene was delivered as
the sheath liquid at 10 µL/min. Electrospray ionisation–time-of-flight mass
spectrometry was performed in a positive ion mode, and the capillary voltage
was set at 4 kV. Automatic recalibration of each acquired spectrum was
achieved using the masses of the reference standards, (13 C isotopic ion of a
protonated methanol dimer [2 MeOH+H]+ , m/z 66.0632) and (hexakis[{2,2-
difluoroethoxy} phosphazene +H]+ , m/z 622.0290). To identify the
metabolites, relative migration times of all peaks were calculated by
normalisation to a reference compound, 3-aminopyrrolidine. The metabolites
were identified by comparing their m/z values and relative migration times
with the metabolite standards. Quantification was performed by comparing
the peak areas with the calibration curves generated using internal
standardisation techniques using methionine sulfone. The other conditions
were identical to those previously described [15]. To analyse the anionic
metabolites, a commercially available COSMO(+ ) (chemically coated with
cationic polymer) capillary (50 µm i.d. × 105 cm) (Nacalai Tesque, Kyoto,
Japan) was used with a 50mM ammonium acetate solution (pH 8.5) as the
electrolyte. Methanol/5mM ammonium acetate (50% v/v) containing 0.1 µM
hexakis (2,2-difluoroethoxy) phosphazene was delivered as the sheath liquid
at 10 µL/min. Electrospray ionisation–time-of-flight mass spectrometry was
performed in a negative ion mode, and the capillary voltage was set at 3.5 kV.
For anion analysis, trimesate and CAS were used as the reference and internal
standards, respectively. The other conditions were identical to those
described previously [16]. Raw capillary electrophoresis–time-of-flight mass
spectrometry data were analysed using proprietary software Master Hands
(ver, 2.17.0.10). Briefly, data processing for each experiment included data
conversion, binning data into 0.02m/z slices, baseline elimination, peak
picking, integration, and elimination of redundant features to yield the
possible peaks lists. Data matrices were generated using an alignment
process based on corrected migration times, and metabolite names were
assigned to the aligned peaks by matching the m/z and corrected migration
times of our standards library. Relative peak areas were calculated based on
the sample peak area-internal standard peak area ratio, and the metabolite
concentrations were calculated based on the relative peak area between the
sample and standard mixture.

Cell proliferation assay
Cells were seeded on 96-well plates in a control medium at a concentration
of 103 cells/well. Following the attachment of the cells, the control medium

was replaced with media with/without branched-chain amino acids
(BCAA). The viability of the attached cells was measured at 24, 48 and
72 h following each treatment using the sulforhodamine B (SRB, Sigma-
Aldrich) cell proliferation assay as previously described [17].

RESULTS
Multi-omics analyses of the ICC samples
Following multiregional sampling of primary ICC cases, we
performed multi-omics analyses, including genome, transcrip-
tome, proteome, and metabolome analysis. We used 10 (67 sam-
ples), 11 (88 samples), 10 (49 samples) and 10 (49 samples) ICC
cases for WES, whole-transcriptome sequencing, proteomic
analysis, and metabolomic analysis, respectively (Table 1, Supple-
mentary Table 1 and Supplementary Fig. S1).

Multi-region sequencing of ten ICC cases
To characterise ITH in ICC, we performed multi-region WES of ten
ICC cases. For each case, we sequenced three to nine multi-region
tumour samples and a paired normal liver sample as a control,
which amounted to 57 tumour samples and ten normal samples in
total. WES, with a median fold coverage of 128.39 (range:
80.25–189.91), detected a median of 63 (range: 42–781) mutations
for each sample (Fig. 1a, b and Supplementary Fig. S2A). The case
OK1, harboured a median of 763 (range: 751–781) mutations; this
was a hypermutated ICC case. Based on multi-region mutation
profiles (Fig. 1a), mutations were categorised as either ubiquitous
or heterogeneous. Herein, heterogeneous mutations were further
subcategorised into shared mutations, which existed in some of
the samples, and unique mutations, which were observed in a
single sample. Polymerase chain reaction-based deep sequencing
of randomly sampled mutations validated 100%, 100% and 94.2%
ubiquitous, shared, and unique mutations, respectively. As
expected, ICC exhibited more inter-tumoral heterogeneity than
ITH, as ICC samples tended to harbour more heterogeneous
mutations between cases than in a single case. As previously
reported, KRAS, IDH, and TP53 mutations are mutually exclusive as
such mutations may be complementary in a minority of cases,
given their opposing nature—as oncogenes or tumour suppres-
sors—depending on their temporal expression during cellular
transformation [8]. No significant differences were observed in the
spectra between ubiquitous and heterogeneous mutations across
ten ICCs (Supplementary Fig. S2B).
Next, we estimated the copy-number alterations (CNAs) from

WES data and analysed the multi-region CNA profiles. Similar to
the mutations, CNAs correlated with ITH in ICC (Supplementary
Fig. S2C). By focusing on the CNAs in chromosomal arms, we
compared the distribution of the ubiquitous and heterogeneous
CNAs between tumour stages. Overall, the numbers of hetero-
geneous CNAs in ICC were not significantly different from those
observed during tumour progression (FS1 is a representative case;
Fig. 1b and Supplementary Fig. S2D).

Evolution of ten ICC cases
Ten cases with ICC had a number of non-silent mutations in the
known biliary tract cancer driver genes [18], such as SMAD4
(mutated in three cases), BAP1 (two cases), NRAS (two cases), TP53
(two cases), ELF3 (one case), CDKN2A (one case), FGFR3 (one case),
GNAS (one case), IDH1 (one case), PIK3CA (one case) and RPL22
(one case) (Fig. 1b). The mutation rates of BAP1, KRAS, IDH1, TP53
and SMAD4 were consistent with those of previous reports on
typical ICC [8]. We constructed the evolutionary trees for the ten
ICCs using the Treeomics algorithm [19] to our multi-region
sequencing data (Fig. 2). All ICC trees had ‘palm tree-like’ shapes
(Neutral evolution), which were composed of long trunks and
short branches; such trees are typically observed in advanced
colorectal cancer [20]. Importantly, none of the ICC trees had
‘forked tree-like’ shapes (Darwinian evolution), which are usually
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observed in precancerous lesions of colorectal cancer and
composed of short trunks and long branches [21]. To investigate
the evolutionary history of each tumour, we mapped the known
driver genes using possible functional mutations along with the
evolutionary trees, which contained non-synonymous single-
nucleotide variants (SNVs), stop–gain SNVs, splicing SNVs or
insertions/deletions. These driver genes comprised those related
to cancer [22], especially biliary tract cancer [18]. For example, the
hypermutated OK1 case had two major branches, which had
many mutations, as observed in the trunk. The first ARID1A
mutation (P145 fs) was observed in the trunk, whereas the second
ARID1A mutation (S764fs) was observed on the left (OK1_1) and
right branches (OK1_2). We also found that both ARID1A (S764fs)
mutations on the left and right branches had variant allele
frequencies of ~0.4, whereas the first ARID1A mutation (P145fs) in
the trunk had an allele frequency of ~0.50. The functionally non-
synonymous hotspot mutations in IDH1 and IDH2 promote
cholangiocarcinogenesis by suppressing hepatocyte differentia-
tion [23]; therefore, the KT1 case had a ubiquitous IDH mutation in
the trunk but not in the branch. These observations suggest that
the two major sub-clones were subjected to different processes
leading to biallelic inactivation of ARID1A; an additional mutation
in the second allele was acquired in the left branch, whereas the
loss of heterozygosity accompanying the first mutation occurred
in the trunk. Thus, ICCs with distinct driver genes in the trunk (ex.

FS1 case with BAP1, or OK2 case with SMAD4 and TP53)—by case
—have neutral evolutionary phylogenetic trees, regardless of their
tumour stage, and clustering cancer evolutionary trees [24]
confirmed the independence of these patterns in the phyloge-
netic tree and clinicopathological factors (Supplementary Fig. S2E
and Table 1).

Significant metabolic changes in multi-sampling ICC tissues
As all ten cases had similar neutral evolutionary phylogenetic trees,
regardless of distinct driver genes in the trunk (Fig. 2), we assumed
that both heterogeneities might converge into ICC-specific onco-
metabolic pathways. We have measured 324 primary metabolic
proteins; among these, about 40 proteins containing more than
20% N/D (not detected) were excluded, therefore, we focused on
195 proteins (Supplementary Data 1). First, we analysed 39 ICC
samples and ten normal samples from ten cases (four tumour
samples and a respective normal sample per case, except with
three tumour samples in OS3 case for sampling matter) during
proteomic analysis using the iMPAQT method [14] (Fig. 3a).
Absolute fold change >2 was used as the criteria to identify
common differentially expressed genes between the four tumour
samples and a normal tissue in each case. Then, we focused on the
common metabolic proteins in each case as heterogenous proteins
were observed in the samples of each case. Analysis of differential
gene expression of matching tumour samples and normal liver
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tissue samples by iMPaLA (http://impala.molgen.mpg.de/) identified
29–66 genes annotated using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) for each case (FS1 is a representative case; Fig. 3b
and Supplementary Fig. S3A). For example, in the FS1 case, we
detected 44 common metabolic proteins, and ‘Val Leu Ile’ (BCAA
degradation pathway) was the significantly affected (changed)
metabolic pathway. Importantly, KEGG pathway analysis of these
gene sets identified BCAA degradation as the most significant
pathway in almost ten ICC cases, except the KT1 case (Supplemen-
tary Fig. S3A). Proteomic analysis revealed that 13 proteins involved
in BCAA catabolism were widely downregulated in tumours relative
to that in normal liver tissue (Fig. 3a and Supplementary Fig. S3B).
Hence, genomically diverse ICCs tended to manifest ubiquitous
changes in BCAA catabolism as depicted in the lowermost pathway
in Fig. 3 and Supplementary Fig. S3.

Altered gene expression in the BCAA degradation pathway
Proteome analysis revealed the downregulation of the BCAA
degradation pathways in tumours (Fig. 3 and Supplementary Fig.
S3). Next, we investigated the changes in the transcriptome for
intermediates of the BCAA degradation pathway to unravel the
regulatory network underling ICC progression. Approximately 40
enzymes are involved in BCAA catabolism, and with the exception of
the reversible transamination step performed using BCAT1 and
BCAT2, 36 of these transcripts were found to be downregulated in
tumours using transcriptome sequencing relative to transcripts in
the paired normal tissues (Fig. 4a). Furthermore, these proteins were
not heterogeneous, but were ubiquitous in our multi-sampling
cohort. To focus on the large gene set as well as validate its findings
and ensure robustness, we compared the changes in the expression
of transcripts involved in BCAA catabolism in our cohort with those

in an independent, well-characterised ICC cohort from the Gene
Expression Omnibus (GSE26566; Fig. 4a). As expected, the expres-
sion of genes involved in the degradation of BCAA decreased in the
tumour tissues in the GSE26566 cohort. However, BCAT1 and BCAT2
were upregulated in tumours in our cohort and GSE26566 (Fig. 4a).
Since BCAT1 and BCAT2 could not be quantified in iMPAQT

method, western blotting were performed. BCAT1 and BCAT2
were tend to be highly expressed following western blotting and
immunostaining, with the results being similar to those of the
mRNA analysis (Fig. 4b–d and Supplementary Fig. S4A, B). By
quantifying the expression of BCAT1/2 in each specimen, we
confirmed that the expression of BCAT1 and BCAT2 was
significantly increased in tumours (Fig. 4d and Supplementary
Fig. S4C). Furthermore, immunostaining showed that both BCAT1
and BCAT2 were highly expressed in cancer cells when comparing
noncancerous cholangiocytes (FS1 is a representative case; Fig. 4d
and Supplementary Fig. S4A, B). In addition, the expression of the
BCAA degradation pathway in extrahepatic cholangiocarcinoma
and gallbladder cancer was similar to the expression in ICC, and in
hepatocellular carcinoma (HCC), both BCAT1 and BCAT2 were
highly expressed in tumour samples as previously reported [25]
(Supplementary Fig. S5). We performed prognostic analyses of the
BCAT1 and BCTA2 mRNA levels in the cohorts of Shibata, TCGA,
and this study and found that the overall survival of the groups
with high BCAT1 and BCAT2 expression (only in Shibata cohort)
was significantly poorer than that of the groups with low BCAT1
and BCAT2 expression (Supplementary Fig. S6).

Regulation of BCAA degradation pathway
The expression of genes involved in the degradation of BCAA
decreased but BCAT1 and BCAT2 were upregulated in the tumour
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tissues. First, we analysed CNA in the gene expression of enzymes
involved in the BCAA degradation pathway and found that some
of BCAA catabolic enzymes showed partial somatic CNA loss in our
cohort (Supplementary Fig. S7). In addition, we analysed the
expression profiles of MYC downstream target genes (hereafter
referred to as the MYC module activity) using the extraction of
expression module algorithm. Our extraction of expression
module analysis of MYC module activity could not explain this
mechanism (Supplementary Fig. S8). Whereas no correlation was
observed between the expression of BCAT1 and Musashi-2 (MSI2),
BCAT2 expression was significantly positively correlated with that
of MSI2 (Supplementary Fig. S9).

Accumulation of valine, leucine and isoleucine
To explore the possibility of reprogramming BCAA metabolism, we
performed capillary electrophoresis–time-of-flight mass
spectrometry-based metabolome profiling of 3–4 tumour samples
and one corresponding normal tissue per case (obtained from ten
cases with ICC) (Supplementary Data 2). Contrary to most normal
cells, many transformed cells derived a substantial amount of their
energy from aerobic glycolysis, by converting most of the incoming
glucose to lactate rather than metabolising it in the mitochondria
through oxidative phosphorylation [26]. First, this metabolic analysis
confirmed that the lactates had accumulated in all tumour samples,
but not in normal samples (Paired t test, Fig. 4e). Furthermore, there
was a remarkable accumulation of only 2-hydroxyglutarate in IDH-
mutant tumours, similar to the KT1 case (Fig. 4e). A previous study
demonstrated that IDH1 mutations result in the production of the
onco-metabolite 2-hydroxyglutarate, and indicated that the excess
2-hydroxyglutarate contributes to the formation and malignant
progression of ICC [27], gliomas [28], and chronic myelogenous
leukaemia [29]. These results ensure the system’s reliability in mass
accuracy. Among the changes in tumour samples, we observed a
significant increase in BCAA (valine, leucine, and isoleucine) (Paired t
test, Fig. 4e). In addition, BCAA degradation produces succinyl-CoA
in the cells by generating propionyl-CoA from valine and isoleucine
[30], subsequently providing substrates for the tricarboxylic acid
cycle. However, significant depletion of the tricarboxylic acid cycle
intermediate metabolites, including succinate, fumarate, and malate,
was observed in the tumour samples (Paired t test, Supplementary
Fig. S10). In addition, we measured blood BCAA levels in four healthy
individuals and four ICC patients (FS2, KS4, OS2, OS3). We found that
blood BCAA levels in ICC patients were not differed compared to
healthy individuals (Supplementary Fig. S11).

BCAA-stimulated cell growth and invasion via mTOR
signalling in ICC
To examine whether BCAAs stimulate cell growth and invasion via
mammalian target of rapamycin (mTOR) signalling in ICC, we
examined the expression of the key catalytic enzymes of BCAAs,
namely BCAT1 and BCAT2, in human ICC cell lines (SSP-25, RBE, and
HCCC-9810) in comparison with their expression in normal human
dermal fibroblast cells. We found that the expression of BCAT1 and
BCAT2 increased in the ICC cells compared to primary normal dermal
fibroblast (NHDF) cells (Fig. 5a). Further, to test whether BCAAs
upregulate mTOR signalling in ICC cells, we performed western blot
analysis. Phosphorylation of mTOR as well as that of the proteins
downstream of mTOR in the mTOR pathway, including S6K, S6, and
4EBP-1, increased in the presence of BCAAs in SSP-25 and HCCC-
9810 cells (Fig. 5b), concomitant with the observed increase in cell
growth (Fig. 5c and Supplementary Fig. S12A), and invasion (Fig. 5d).
To test whether BCAT1/2 influence mTOR signalling in the

presence of BCAAs in ICC cells, we knocked down either BCAT1 or
BCAT2 in these cells. Knockdown of BCAT1 and BCAT2 led to a
downregulation of mTOR signalling (Fig. 5e and Supplementary
Fig. S12B) and a decrease in cell growth (Fig. 5f and Supplemen-
tary Fig. S12C), suggesting a role of BCAT1 and BCAT2 in the
BCAA-mediated stimulation of mTOR signalling in ICC cells.

Activated mTOR pathway in ICC
Previous studies have revealed that chronic myeloid leukaemia
and hepatocellular carcinoma display enhanced production of
BCAAs, which promote mTOR activation [29]. Other reports have
demonstrated that the activation of mTORC1 potently enhances
cell growth and tumorigenesis in numerous human cancers and
animal tumour models [31]. To evaluate the activation of the
mTOR pathway, immunohistochemical analyses of p-mTOR and
that of the mTORC1 downstream effector, p-S6k, were performed.
We found that p-mTOR and p-S6k were highly expressed in
tumour samples (FS2 is a representative case; Fig. 6a and
Supplementary Fig. S13A, B). Given that the samples used for
western blot analysis were obtained from bulk tissues, we often
failed to detect a significant upregulation of p-mTOR and p-S6K
expression. For IHC analysis, we quantified the expression of
p-mTOR and p-S6K using individual specimen, and accordingly
confirmed increases in the levels of p-mTOR and p-S6K expression
in tumours (Fig. 6b and Supplementary Fig. S13C). These results
were consistent with those of previous reports. Moreover, gene set
enrichment analysis demonstrated that BCAT1, not BCAT2
expression in ICC was positively associated with the gene set
HALLMARK_PI3K_AKT_MTOR_SIGNALING (NES: 1.52, P value:
0.0027) (Supplementary Fig. S14).

Activity of BCAA degradation pathway correlates with case
survival in ICC
To investigate the association of BCAA degradation pathway activity
with prognosis in ICC cases, we analysed the matched transcriptome
data and cohort survival information from 103 ICC tumours
generated for previous studies [18], including 137 ICCs, 74
extrahepatic cholangiocarcinomas, and 28 gallbladder cancers
(Shibata cohort). In the analysis, we selected 44 genes related to
‘BCAA degradation’ in the KEGG pathway database, and the activity
of the BCAA degradation pathway was calculated for each case
(Supplementary Table S2). Cases were then classified as ‘low BCAA
degradation pathway activity’ for scores <50th percentile of the
score and ‘high BCAA degradation pathway activity’ for scores >50th
percentile of the score. When groups with high and low BCAA
degradation pathway activity were compared, groups with low
BCAA degradation pathway activity had lower overall survival rates
(Fig. 6c). Furthermore, BCAA degradation signature in Shibata cohort
was inversely correlated with MALAT1 (Supplementary Fig. S15).

DISCUSSION
We performed multi-region sampling through the systematic
integration of the genome, transcriptome, proteome and meta-
bolome of the resected tumours by sequencing different blocks
from surgical specimens in ten ICC cases. By focusing on cancer
metabolism, we identified the ICC-specific onco-metabolic path-
way, BCAA catabolism, with vast genomic diversity among cases.
We revealed that this metabolic pathway was almost ubiquitously
altered in all ten cases and might play important roles in tumour
progression and overall survival.
First, in WES analysis, ten ICCs had almost the same proportion

of driver mutations as those observed in previous studies [8, 18],
and the mutations were mutually exclusive, as expected. Notably,
we found that ICCs have a slight degree of ITH in the driver genes
compared to inter-tumour heterogeneity (Fig. 1a). Recent studies
adopting multiregional WES have unveiled the complex ITH and
evolutionary pattern in several types of cancers [32]. To identify
processes involved in ICC progression, we observed the genomic
history and evaluated the evolutionary pattern of the tumours. We
demonstrated that ITH of ICCs with distinct driver genes per case
exhibited neutral evolution, regardless of their tumour stage.
Clustering cancer evolutionary trees [24] confirmed the indepen-
dence of patterns on the phylogenetic tree and clinicopatholo-
gical factors (Supplementary Fig. S2E and Table 1).

A. Kitagawa et al.

2213

British Journal of Cancer (2023) 128:2206 – 2217



Although we demonstrated the intra- and inter-tumour hetero-
geneity in multiple genome dimensions, tumour development and
progression in ICC have not been understood in detail. The
correlations of these dimensions were not analysed because well-
developed workflows are necessary for such extensive analyses
ranging from the genome to the metabolome. Then, we performed
multi-sampling of four samples per case to analyse the proteomic and
metabolic profiles, considering that ICCs may have heterogenous
metabolic proteins. KEGG pathway analysis of the results of our
proteomic analysis revealed that the BCAA degradation pathway is the
most significantly altered pathway, except in the KT1 case. The IDH-
mutant type, observed in the KT1 case, was the only IDHmutant in ICC
which seemed relatively rare in ICC, which did not alter the BCAA
degradation pathway, and which produced specific metabolites that
contributed to tumorigenesis [33]. We found that ~40 enzymes

involved in BCAA catabolism were suppressed in tumours, with the
exception of BCAT1 and BCAT2 that were upregulated in the
transcriptome but not detected in the proteome. Satoh et al. revealed
that the proto-oncogene protein MYC regulates global metabolic
reprogramming in colorectal cancer by modulating 215 metabolic
reactions [34]; however, our extraction of expression module analysis
of MYC module activity could not explain this mechanism (Supple-
mentary Fig. S8). We noted that some of the BCAA catabolic enzymes
showed partly somatic copy-number variation loss in our cohort
(Supplementary Fig. S7), as reported previously in the case of HCC [25].
BCAA degradation may be regulated by MALAT1 because the BCAA
degradation signature in Shibata cohort was inversely correlated with
MALAT1, which is known to regulate the phosphorylation of the SR
protein, a splicing factor, to control alternative splicing (R= -0.669, P
value = 1.03 × 10−14, Supplementary Fig. S15) [35].
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Fig. 5 Branched-chain amino acids (BCAAs) increased cell growth and invasion via mTOR signalling in ICC cells. a Western blotting of
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human dermal fibroblast cells were evaluated using western blotting. b Western blotting of mTOR signalling proteins in ICC (SSP-25 and
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Metabolic pathway reprogramming has recently been reported to
be a hallmark of cancer cell growth and survival; it supports the
anabolic and energetic demands of these rapidly dividing cells
[11, 13, 36]. Although BCAT1 catalyzes transamination in both
directions and the breakdown of BCAAs is the predominant reaction
in most cell types, BCAT1 generates BCAAs via the reverse reaction in
cancer metabolic reprogramming [29]. Upregulation and functional
requirements of BCAT1 have been reported for glioblastoma [37],
colorectal tumours, and myeloid leukaemia [29]. MSI2, an oncogenic
RNA-binding protein, is associated with the BCAT1 transcript and
positively regulates its protein levels in those cancers [29]. Those
reports demonstrate that the metabolic role of BCAT1 and BCAA seem
distinct and dependent on cancer types. The expression of BCAT1 and
BCAT2 was upregulated in tumours in the three cohorts. Notably, the
expression of BCAT1 and BCAT2 was ubiquitously upregulated in
tumour samples relative to that in the respective normal tissues in our
multi-sampling cohort (Fig. 4b). No correlation was observed between
the expression of BCAT1 and MSI2; however, BCAT2 expression was
significantly positively correlated with that of MSI2 (Supplementary Fig.
S9). Further, BCAT1 was negatively correlated with several miRNAs,
which may be responsible for the high BCAT1 expression observed in
TCGA cohort (Supplementary Data 3). We observed that the mTOR
pathway was activated in tumour samples using immunohistochem-
ical analyses of p-mTOR and p-S6k; metabolome analysis showed that
the BCAAs accumulated in tumours. Recent comprehensive genetic
analyses have revealed that numerous cancers harbour mutations that
chronically activate the growth factor arm of mTORC1 [38]. The data
presented here suggest that the high expression of BCAT1 and low
expression of BCAA degradation pathways may in part be a
consequence of BCAA accumulation and may promote the mTOR
pathway in ICCs. Taken together, we hypothesise that upregulated
BCAT1 metabolic reprogramming is a critical determinant of BCAA
degradation loss, and ICC may further promote its progression by
accumulating BCAAs and utilising them to activate the mTOR
pathway.
Finally to determine whether the BCAA degradation pathway

functionally influences the phenotype, we performed prognostic
analyses of BCAT1 mRNA levels in the Shibata and our cohorts and

found that the overall survival of the high BCAT1 expression group
was poorer than that of the low-expression group. Moreover, we
analysed the signature of the BCAA degradation pathway in the
Shibata cohort. Notably, this signature negatively correlated with the
5-year survival (Fig. 6c). Thus, given a consistent rate of amino acid
import, low BCAA degradation and high BCAT1 expression are key
factors in ICC progression. Overall, it is possible for the set of clonal
mutations to shift dramatically to ubiquitous oncogenic metabolism.
The data presented here prove that the observed suppression of
BCAA catabolism is not simply related to genomic alterations. These
mechanisms involved in ICC progression remain a matter of debate.
The sample size in our study was limited (also in that, it is not
possible to investigate different etiologies). Furthermore, it will be
necessary to perform further experiments with larger cohorts to
validate the mechanism underlying the loss of BCAA catabolism.
In conclusion, our results provide novel insights that could lead

to the development of anticancer therapeutic strategies to target
cellular metabolism in cholangiocarcinoma including extrahepatic
cholangiocarcinoma and gallbladder cancer, and HCC, instead of
the well-known approaches for the respective molecular subtypes.
Loss of BCAA catabolism with upregulated BCAT1 expression in
tumours confers functional advantages, which could be exploited
by therapeutic interventions to metabolic reprogramming for more
ICC cases beyond genomic diversity. Therefore, the development of
BCAT1 and BCAT2-specific inhibitors can be an effective antitumor
strategy to improve conventional ICC therapies.

DATA AVAILABILITY
All whole-exome and -transcriptome sequencing have been deposited in the
Japanese Genotype-phenotype Archive with accession number JGAS000261.
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