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Sequential targeting of PARP with carboplatin inhibits primary
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BACKGROUND: Patients with triple-negative breast cancer (TNBC) develop early recurrence. While PARP inhibitors (PARPi) have
demonstrated potential in BRCA1/2-mutant (BRCAMUT) TNBC, durable responses will likely be achieved if PARPi are used in
combination. It is plausible that sequential administration of a potent PARPi like talazoparib in combination with carboplatin can
enhance primary tumour and metastasis inhibition in BRCAMUT and BRCA1/2 wild-type (BRCAWT) TNBCs, and decrease toxicity.
METHODS: We evaluated the impact of the concurrent combination of talazoparib and carboplatin on cell survival in 13 TNBC cell
lines. We compared the concurrent and sequential combination upon fork replication, migration and invasion. We also used three
orthotopic xenograft models to evaluate primary tumour growth, distant metastasis, and toxicity.
RESULTS: Concurrent talazoparib and carboplatin was synergistic in 92.3% of TNBC cell lines, independent of BRCA1/2-mutation
status. The sequential combination decreased fork speed in normal cells, but not in TNBC cells. The talazoparib-first sequential
combination resulted in a strong reduction in migration (70.4%, P < 0.0001), invasion (56.9%, P < 0.0001), lung micrometastasis
(56.4%, P < 0.0001), and less toxicity in a BRCAWT model.
CONCLUSION: The sequential combination of talazoparib and carboplatin is an effective approach to inhibit micrometastatic
disease, providing rationale for the use of this combination in early TNBC patients.
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BACKGROUND
Triple-negative breast cancer (TNBC) is the most aggressive
subtype of breast cancer with the poorest outcomes. Representing
15–20% of all breast cancers, TNBCs lack oestrogen/progesterone
receptor (ER/PR) and human epidermal growth factor receptor 2
(HER2) overexpression. Most patients receive four or five types of
chemotherapy yet still suffer from rapid disease progression with
significant toxicity. An orally available family of targeted
therapeutic agents, Poly (ADP-Ribose) Polymerase inhibitors
(PARPi), was approved by the FDA for metastatic and early TNBC
patients with germline mutations in BRCA1/2 (gBRCAMUT). How-
ever, patients with gBRCAMUT constitute about 11–20% of all
TNBCs [1–4].
The efficacy of PARPi monotherapy in gBRCAMUT patients was

demonstrated in the metastatic, neoadjuvant (pre-surgery), and
adjuvant (post-surgery) settings [5–8]. In particular, talazoparib
and olaparib demonstrated an improvement in progression-free
survival (PFS) and less toxicity in comparison to standard
chemotherapy in the metastatic setting [5, 6]. Talazoparib was
also associated with a pathologic complete response (pCR) in 53%

of gBRCAMUT patients in the neoadjuvant context [7]. Importantly,
in the adjuvant setting, in comparison to placebo, olaparib
improved 3-year distant disease-free survival (87.5% versus 80.4%)
[8], suggesting that olaparib can inhibit the development of
micrometastatic disease.
PARPi target PARP1/2 enzymes and have two main mechanisms

of action: synthetic lethality and PARP-DNA trapping [9, 10].
Synthetic lethality occurs in the context of BRCA1/2 mutations,
whereby PARPi prevent the release of PARP1 from DNA, leading to
an accumulation of double-stranded DNA breaks, resulting in
complex chromatid rearrangements and cell death [11, 12].
Trapped PARP-DNA complexes form DNA lesions that are not
bypassed by replication forks and induce cytotoxicity [10, 13, 14].
While various PARPi demonstrate similar catalytic activity, they
differ in their capacity for PARP-DNA trapping, with the most
potent PARPi being talazoparib, then niraparib, followed by
olaparib, and finally veliparib [15].
Despite PARP1 being widely known for its activities in DNA

repair, PARP1 has also been implicated in several other cancer cell
functions [16]. PARP1 regulates chemokine signalling, facilitating
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tumour dissemination at several key steps of metastasis, including
angiogenesis, adherence of tumour cells to endothelium, cell
migration, and cancer cell extravasation at the metastatic site [17].
PARP1 has also been shown to promote lung metastasis using a
mechanism independent of DNA repair [18]. Furthermore,
alterations in DNA repair genes in distant metastasis have also
been detected in melanoma and colon cancer [19], all pointing
towards a plausible role of PARPi in inhibiting the development of
distant metastasis through DNA repair-dependent and indepen-
dent mechanisms.
While PARPi have mainly been used in gBRCAMUT breast cancer

patients, recent clinical trials have observed the efficacy of PARPi
beyond patients with gBRCAMUT [2, 20, 21]. We and others have
demonstrated preclinical efficacy of PARPi in TNBCs that are both
BRCAMUT and BRCA1/2 wild type (BRCAWT) [22–24]. Efficacy in
BRCAWT tumours is likely due to BRCAness, a phenotype similar to
BRCAMUT, with a defect in homologous recombination repair, but
actually lack the mutation in BRCA1/2 [25]. However, one of the
clinical challenges is that patients treated with PARPi mono-
therapy often develop therapeutic resistance.
Hence, to improve overall survival, it is likely that PARPi will

need to be administered in combination. Carboplatin, an
alkylating agent, is one such promising chemotherapeutic agent.
While one trial did not demonstrate the added benefit of low-dose
veliparib to carboplatin and chemotherapy [26], higher-dose
veliparib in combination with carboplatin and paclitaxel resulted
in a more durable response in BRCAMUT metastatic patients [27].
Little is known about the role of the combination of a potent
PARPi plus carboplatin in preventing the development of
metastatic breast cancer in BRCAWT patients.
While toxicity was a concern with the concomitant and

continuous administration of talazoparib and carboplatin [28], it is
plausible that a sequenced and intermittent dosing regimen may
decrease toxicity. Pre-treatment with carboplatin was previously
shown to be a plausible approach to increase cellular uptake of
olaparib and increase olaparib clearance, which may improve
efficacy and decrease toxicity [29]. Furthermore, lower endogenous
replication stress in normal cells, in comparison to cancer cells,
helped to explain the increased toxicity observed with concomitant
PARPi combination with a targeted therapeutic agent [30].
In this study, our goals were to determine the impact of different

dosing strategies of the combination of a potent PARPi, talazoparib
and carboplatin, on tumour efficacy, toxicity, and development of
metastasis. We accomplished this by using a panel of TNBC cell
lines, characterising cell proliferation, the sustained DNA damage
response and apoptosis. We further evaluated the replication fork
speed and DNA damage response in both TNBC and normal cells.
Moreover, we utilised three orthotopic xenograft models, including
BRCAMUT and BRCAWT tumours, to evaluate the influence of
different sequencing strategies on primary tumour growth, mice
weight, haematologic toxicity, and distant metastasis. We addi-
tionally evaluated the impact of the sequencing strategies on cell
migration, invasion, differential expression of chemokines, and
gene expression in metastatic lung tissue.

MATERIALS AND METHODS
A detailed list of all reagents and resources, including cell lines with
sources, are provided in Supplementary Methods Table S1.

Cell lines
All cell lines were validated by DNA fingerprinting using short-term repeat
(STR) analysis done by Genome Quebec (microsatellite geneprint 10)
(Montreal, Canada), last performed March 2021, and were mycoplasma
free, tested using Mycoalert mycoplasma detection kit (LT07, Lonza).
Ten-day chemosensitivity assay and immunofluorescence staining,

analysis and visualisation were performed as previously described [22]
and explained in Supplementary Methods.

High-content imaging
High-content imaging was done using Operetta (PerkinElmer) with a ×20
objective and filter sets for Alexa 488, Alexa 647, and DAPI. We scanned 47
images per well and performed image analysis with Harmony High-
Content Imaging and Analysis Software (version 4.1, PerkinElmer Inc.).

Combination index values
Cells were treated with six concentrations with twofold dilutions of either
carboplatin, talazoparib alone or concomitant combination using the 10-
day chemosensitivity assay. Cells were fixed, stained with DAPI, imaged
using Operetta (PerkinElmer), and enumerated using Harmony High-
Content Imaging and Analysis Software (version 4.1, PerkinElmer Inc.).
Combination Index (CI) and Dose Reduction Index (DRI) values were
calculated at Fa= 0.50, using the Chou-Talalay method with Compusyn
software (ComboSyn Incorporated, Paramus, NJ, USA). CI values between
0.9 and 1.10 are considered nearly additive; 0.85–0.7 demonstrate
moderate synergism, and 0.3–0.7 indicate synergism [31].
See Supplementary Methods for details regarding drug treatment strategies.

Flow cytometry
Cells were fixed/permeabilized in ice-cold 70% ethanol overnight. Samples
were washed, blocked with PBS, Triton 0.2%, BSA 1% solution for 15min at
room temperature. Cells were then incubated with gamma H2AX-
AlexaFluor 647 (1:100; #613408, BioLegend), phospho-Histone H3- Alexa-
Fluor 488 (Ser-10) (1:100; #3465, Cell Signaling), cleaved-caspase 3-Pacific
Blue™ (1:100; #8788, Cell Signaling), and 20 µg/mL propidium iodide (PI)
(#P3566, Invitrogen) with 200 µg/mL RNase A (#10109142001, Roche®), for
1 h at room temperature. Samples were analysed with FACS BD
LSRFortessa™ cell analyzer (BD Biosciences). At least 10,000 events were
assessed per measurement. Staining was analysed with FlowJo™ (BD
Biosciences). Values were obtained from triplicate assays performed in
triplicate wells. Gating strategy is presented in Supplementary Methods.

DNA fibre assay
Cells were sequentially labelled with 25 µM of 5-Chloro-2′-deoxyuridine
(CldU) (#C6891, Sigma-Aldrich) and then 250 µM of 5-Iodo-2’-deoxyuridine
(IdU) (#I7125, Sigma-Aldrich) for 30min each [32]. Cells were resuspended
in ice-cold PBS at 5 × 105 cells/mL. Four drops of 2.5 µL of cell suspension
was pipetted in staggered rows onto a microscope slide (Cat
#4951PLUS602811, Fisherbrand™). In all, 6 µL of spreading buffer
(200mM Tris-HCl, 50 mM EDTA, 0.5% SDS, pH 7.4) was added to cell
suspension drops. DNA was allowed to run down the slide, slowly tilting
slides at 15–45°. DNA was air-dried and fixed in methanol/acetic acid (3:1)
for 10min. DNA was denatured in 2.5 M HCl for 45min. Slides were
incubated in blocking solution (PBS, 2% BSA, 0.1% Tween) for 1 h, followed
by rat anti-BrdU [clone BU1/75 (ICR1)] (1:100, #ab6326, Abcam) and Mouse
anti-BrdU [clone B44] antibodies (1:20, #347580, BD Biosciences), overnight
at 4 °C. Slides were incubated with anti-Rat AlexaFluor 568 (1:500, #A11077,
Invitrogen) and anti-Mouse AlexaFluor 488 (1:500, #A21202, Invitrogen)
antibodies, for 1 h at room temperature. Slides were mounted in ProLong™
Gold antifade Mountant (#P36930, Invitrogen) and analysed using a Zeiss
Axio Observer Z1 microscope with ×63 oil objective. Replication fork speed
was calculated using the CldU+ IdU track length/60min * 2.59 kb/µm.

Orthotopic xenografts
All animal experiments were approved by the Institutional Animal Protection
Committee (CIPA) of the Centre de Recherche de Centre hospitalier de
l’Université de Montréal (CRCHUM) under protocol C17017SHs. Either 5
million MDAMB231 or 2 million MX1/HCC1806 cells were resuspended in
50% Matrigel Matrix Phenol Red Free (#CB40234C, Fisher Scientific), 25% PBS
and 25% collagen type 1 (#08-115, Millipore Sigma) solution [33]. Using 7-
week-old NOD-SCID gamma (NSG) female mice (#005557, Jackson Labora-
tory), 0.2 mL cell suspension was surgically implanted. Once tumours reached
an average volume of 150mm3, mice were randomised into treatment
groups based on tumour volume volumes and weight. Our sample size was
based on the experiments previously described [34]. Except for the control
group for MDAMB231, which had 14 mice, each treatment group consisted
of 8–10 mice. See Supplementary Methods for further details.

Cell migration and invasion assays
In all, 3 × 104 or 5 × 104 cells were suspended in serum-free media in 8-μm
transwell inserts (#83.3932.800, Sarstedt), for 24-h migration or 48-h
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invasion assays, respectively. For the invasion assay, the upper chamber
was pre-coated with 1/9 dilution of Matrigel (Cultrex Reduced Growth
Factor Basement Membrane Extract, #3433-005-01, R&D Systems). After
incubation, inserts were washed with PBS. Migrated or invaded cells on the
underside of the membrane were fixed with 4% paraformaldehyde and
stained with hematoxylin (Hematoxylin QS Counterstain, #H-3404, Vector
Laboratories). Migrated or invaded cells were counted from six represen-
tative fields from the inverted EVOS XL core microscope (Thermo Fisher
Scientific).

Chemokine array and ELISAs
In total, 200 μg of protein was extracted from cell lysates from
MDAMB231 cells to detect the expression of 31 chemokines using the
human chemokine array kit (#ARY017, R&D Systems). Images of
membranes were acquired with ChemiDoc (BioRad) and dots were
quantified using QuickSpots (Western vision) software. At the same time
point, supernatants of MDAMB231 and HCC1395 cells were collected to
detect MCP-1 levels with the human CCL2/MCP-1 Immunoassay (#SCP00,
R&D Systems).
See Supplementary Methods for details regarding RNA-seq analysis.

Statistical analysis
Normality of each dataset was first verified before performing
Kruskal–Wallis ANOVA or one-way ordinal ANOVA with multiple-
comparison post test. Two-way ANOVAs with post-tests were performed
for grouped conditions. Data are represented as mean+ /− SEM, except
for fork speed, in which median values with interquartile ranges are
presented. Data were analysed and plotted using GraphPad Prism software
8. P < 0.05 is considered statistically significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

RESULTS
Talazoparib and carboplatin synergise in most TNBC cell lines
We determined the IC50 values of talazoparib and carboplatin as
single agents in a panel of 13 TNBC cell lines (Fig. 1, Supplementary
Table 1 and Supplementary Fig. 1). Talazoparib demonstrated a
larger dynamic range, with IC50 values ranging from 0.0003 to
0.44 μM, in comparison to carboplatin, with IC50 values ranging
from 0.09 to 4.0 μM (Fig. 1a, b). Using the median IC50 values, we set
a threshold of 0.0036 μM for talazoparib and 1.25 μM for
carboplatin to define sensitivity and resistance. Concurrent admin-
istration of talazoparib and carboplatin resulted in synergy, with
Combination Index (CI) values <1 in 92.3% (12/13) of cell lines
(Fig. 1c). Stronger synergy was observed mainly in BRCAWT cell lines
and those that were PARPi-resistant. Dose-reduction indices (DRI)

were calculated to determine the dose-fold reduction of each
therapeutic agent to achieve synergy. DRI for talazoparib ranged
from 1.5 to 3.8, while the DRI for carboplatin ranged from 2.1 to 7.1.
This is suggestive that synergy can be accomplished with important
dose reductions of both drugs, with greater reductions in
carboplatin versus talazoparib commonly observed in 61.5% (8/
13) of cell lines.

Lower concentrations of talazoparib and carboplatin required
for DNA damage and cell death in PARPi-resistant TNBC cell
lines
We determined the impact of 9 increasing concentrations (1 refers
to the lowest, and 9 refers to the highest concentration) of
talazoparib (T1-9), carboplatin (C1-9), or the concomitant combi-
nation of talazoparib and carboplatin (TC1-9) upon 53BP1
response and apoptosis using a 10-day chemosensitivity assay in
14 TNBC cell lines (Fig. 2). DNA damage was quantified using a
53BP1 product score (Fig. 2a), calculated from the product of
mean number of nuclear 53BP1 foci (Fig. 2c and Supplementary
Fig. 2A) and percentage of cells positive for 53BP1. We identified a
dose-dependent response of the 53BP1 product score to
talazoparib. The combination of talazoparib and carboplatin had
the greatest impact in the PARPi-resistant cell lines, where lower
concentrations of each of the drug induced a DNA damage
response that otherwise required higher drug concentrations as
monotherapy. We also evaluated apoptosis by calculating percent
cells positive for cleaved-PARP (cl-PARP+ ) (Fig. 2b, d and
Supplementary Fig. 2B). While cell death required higher
concentrations for talazoparib (mainly T8, 9) or carboplatin alone
(mainly C7, 8, 9), combination therapy induced apoptosis at lower
concentrations, starting at TC5, and was strongly present in 10/14
cell lines.

Sequential combination comparable to concurrent
combination in TNBC cells but decreases replication fork
speed in normal cells
We first evaluated the impact of three different combination
strategies including concurrent administration of talazoparib and
carboplatin (conc.T+ C) and two sequential approaches: carbo-
platin first followed by talazoparib (seq.C→T), and talazoparib run-
in approach followed by carboplatin (seq.T→C) upon cell survival
using the 10-day chemosensitivity assay (Fig. 3a). We selected
three BRCAWT cells, including two PARPi-resistant cell lines,
HCC1143 and MDAMB231, a PARPi-sensitive yet carboplatin-
resistant cell line, HCC1806; and one PARPi-sensitive cell line that
is both BRCA1-deleted and BRCA2-mutated, MX1. In all four cell
lines, cell survival was comparable between the concomitant and
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sequential combination approaches, with either talazoparib or
olaparib as the PARPi backbone (Fig. 3b–e and Supplementary
Fig. 7A, B).
To better understand the impact of the combination

approaches on in vitro toxicity, we compared fork replication

speed and DNA damage response between TNBC and normal
cells. We used two TNBC cell lines, HCC1806 and MDAMB231, and
two human normal cell lines including MCF10A (breast epithelial
cell line) and BM-MSC (bone marrow-derived mesenchymal stem
cells) (Fig. 3f–q). We determined that the mean endogenous
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replication fork speed was 0.56 kb/min for the TNBC cells in
comparison to 0.8 kb/min for the normal cells.
Treatment with talazoparib for 72 h increased fork speed in all

four cell lines, which is similar to what was previously reported
when talazoparib was administered for 2 or 24 h [35, 36]. In
comparison to control, the concomitant combination increased
fork speed by 86.0% (P < 0.0001), 48.9% (P < 0.0001), 59.2%
(P < 0.0001), and 59.9% (P < 0.0001) in MDAMB231, HCC1806,
MCF10A and BM-MSC cells, respectively (Fig. 3h, i, n, o and
Supplementary Figs. 3–6). The sequential approaches resulted in
comparable or increased fork speeds in comparison to the
concomitant approach in HCC1806 and MDAMB231. Similarly,
there were no statistically significant differences in γ-H2AX+ cells
between concurrent or sequential combination approaches in
HCC1806, MDAMB231 (Fig. 3j, k), or MX1 (Supplementary Fig. 7D).
However, in normal cells, sequential treatments decreased

fork speed in comparison to concomitant treatments. Seq.T→C
demonstrated a 10.3% (P= 0.0004) and 14.8% (P= 0.0005)
reduction in median fork speed in comparison to the concomitant
combination, in MCF10A and BM-MSC cells, respectively.
Conc.T+ C resulted in the highest proportion of γ-H2AX+ cells in
MCF10A (70.4%, P < 0.0001) and BM-MSC (51.4%, P < 0.0001) in
comparison to control (Fig. 3p, q). In BM-MSC, seq.T→C reduced γ-
H2AX+ cells by 44.9% (P= 0.001), in comparison to conc.T+ C.
We also evaluated apoptosis in MCF10A and BM-MSC cells
(Supplementary Fig. 7F, G). Of all the combination approaches,
in comparison to control, conc. T+ C resulted in the highest
proportion of cl-Caspase 3 cells, with 43.8% (P < 0.0001), and
31.7% (P < 0.0001) for MCF10A and BM-MSC, respectively.
We and others previously demonstrated that PARPi resulted in

S/G2 arrest [22, 30], and carboplatin also induced G2/M arrest
[37, 38], and so we evaluated the impact of the combination on
cell cycle changes. Greater accumulation of cells in G2 phases was
observed with the concomitant and carboplatin-first combination
approaches in MDAMB231, HCC1806, and MX1 (Supplementary
Fig. 7H–L). Comparatively, treatment-induced cell cycle changes
were less pronounced in normal cells in comparison to TNBC cells
(Supplementary Fig. 7K, L), yet conc.T+ C resulted in the greatest
accumulation of cells in the S/G2 phases of BM-MSC, which was
less distinct in the sequential approaches.
In summary, concurrent and sequential combination

approaches resulted in similar cell proliferation, fork speeds and
DNA damage responses in TNBC cells. However, in normal cells,
sequential combination approaches resulted in decreased fork
speed, decreased DNA damage and cell death.

Concurrent and sequential combination have comparable
primary tumour growth and tumour volume inhibition in
three xenograft models
To evaluate the impact of the combination approaches in vivo, we
selected three orthotopic xenograft models comprising MX1,
HCC1806 and MDAMB231 (Fig. 4a). In the MX1 and MDAMB231
xenografts, statistically significant differences in in vivo normalised
tumour volumes were observed with different treatments from
day 8 and day 13 until necropsy, respectively, while only trends
were observed with HCC1806 (Fig. 4b–d).
At necropsy, combination approaches inhibited MX1 ex vivo

primary tumour volumes by 79.9% (P < 0.0001), 75.5%
(P= 0.0001), 71.7% (P= 0.002), by the conc.T+ C., seq.C→T, and
seq.T→C strategies, respectively, in comparison to control (Fig. 4e,
f). For the HCC1806 xenograft, tumour volumes decreased by
54.4% (P= 0.002) with conc. T+ C, 46.6% (P= 0.04) with seq.C→T,
and 62.0% with seq.T→C (P < 0.0001) in comparison to control
(Fig. 4g, h). For the MDAMB231 cohort, seq.C→T and seq.T→C
demonstrated comparable effects with 68.9% (P < 0.0001), and
66.7% (P < 0.0001) reductions in tumour volume, respectively,
which was more remarkable than the 51.4% reduction (P= 0.08)
with conc.T+ C, in comparison to control (Fig. 4i, j). There were no

statistically significant differences in ex vivo primary tumour
volumes between any of the combination groups within the three
xenograft models.

The sequential combination associated with less weight loss
but no difference in haematologic toxicity in comparison to
the concurrent combination in vivo
To evaluate toxicity, percent change in weight in comparison to
pre-treatment weight was calculated for each orthotopic xeno-
graft model (Fig. 5). The greatest decrease in weight by the
combination approaches was demonstrated by MX1 and
MDAMB231 cohorts, reaching a maximum of 5.2% decrease
within 7 days of treatment. However, all mice gained weight by
the time of necropsy, albeit 16 days (for MX1/MDAMB231) or
4 days (for HCC1806) after the termination of treatment. None-
theless, at necropsy, the combination approach that consistently
demonstrated minimal weight gain was conc.T+ C, which was
3.7% for MX1, 2.3% for HCC1806, and 0.22% for MDAMB231
(Fig. 5a–c).
For the MX1 cohort, statistically significant changes in weight

were first identified on day 4 post treatment, with smaller changes
in weight gain demonstrated by conc.T+ C and seq.T→C (Fig. 5a).
At necropsy (16 days post treatment), in comparison to control,
conc.T+ C was the only group that differed in weight (P= 0.046),
while seq.C→T demonstrated the greatest gain in weight at 10.4%.
In the HCC1806 cohort (Fig. 5b), on the day of necropsy (4 days
post treatment), weight gain was less than 3% for all combination
approaches.
In the MDAMB231 cohort, one mouse that was treated with the

conc.T+ C approach had to be sacrificed 5 days prior to the rest of
the cohort due to toxicity. The mouse was experiencing
abdominal pain, with macroscopic and histologic analysis
consistent with the diagnosis of haemorrhagic pancreatitis. On
days 13 and 16 post treatment, seq. T→C demonstrated the
greatest weight gain (4.6–6.7%) (Fig. 5c).
Haematologic toxicity was also evaluated in each xenograft

model with plasma analysis at the time of necropsy. In the MX1
cohort, combination approaches decreased white blood cell
counts with mean values of 1.6 (P= 0.002), 1.5 (P= 0.0003), and
1.7 (P= 0.0098), for conc.T+ C, seq.C→T, and seq.T→C respec-
tively, in comparison to control (mean 4.9) (Fig. 5d). Similarly,
neutropenia was observed for conc.T+ C (mean 0.95, P= 0.002),
seq.C→T (mean 1.15, P= 0.01) and seq.T→C (mean 0.78,
P < 0.0001), in comparison to control (mean 4.3) (Fig. 5e). No
statistical significance was observed between the combination
approaches. A similar trend, with greater leukopenia and
neutropenia with the combination of talazoparib and carboplatin
was observed with HCC1806 and MDAMB231 (Fig. 5f–i).
No changes in haemoglobin (Hgb) levels were observed with

treatment in the MX1 cohort (Fig. 5j). While the three combination
approaches led to a mean reduction in Hgb levels of 36.2% in the
HCC1806 cohort (Fig. 5h), the mean reduction was only 9.5% in
the MDAMB231 cohort (Fig. 5l). While the moderate anaemia in
HCC1806 could partly be considered an adverse event from
talazoparib alone and partly due to a shorter recovery period post-
completion of treatment, the mild anaemia with the MDAMB231
cohort is probably not “clinically” meaningful.

Sequential combinations inhibit distant metastasis and
migration, invasion
To further evaluate the impact of the combination of talazoparib
and carboplatin on distant metastasis, we used an orthotopic
xenograft model of MDAMB231, which is known for its high
metastatic efficiency [33]. In comparison to control, both seq.C→T
resulted in a 44.7% (P= 0.003) and seq.T→C led to a 56.4%
(P < 0.0001) reduction in lung micrometastases, which was not
observed with the concomitant combination (19.6% reduction,
P= NS) (Fig. 6a, b). The seq.T→C approach also inhibited lung
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micrometastases by 40.8% in comparison to carboplatin (P= 0.01),
and 36.9% in comparison to the concomitant approach (P < 0.05).
Similar trends were also observed with liver micrometastasis
(Fig. 6c). In comparison to control, seq. C→T resulted in a 72.3%
(P= 0.03) reduction in micrometastasis, which was similar to the
76.3% (P= 0.02) reduction with the seq. T→C combination.
To further dissect the metastatic process, we evaluated the

impact of talazoparib as monotherapy and in combination on cell
migration and invasion in vitro (Fig. 6d–g). In MDAMB231 cells, as
single agents, talazoparib and carboplatin resulted in a 24.0%
(P= 0.05) and 30.8% (P= 0.01) reduction in cell migration,
respectively. Once again, the seq.T→C demonstrated the
most striking inhibition in cell migration (Fig. 6e, f), with
70.4% (P < 0.0001) reduction in comparison to control, 61.1%
reduction (P < 0.0001) in comparison to talazoparib, and 39.0%
reduction (P= 0.008) in comparison to conc.T+ C. The other
combination strategies also inhibited migration with 51.5%
(P < 0.0001) reduction for the concomitant approach, and 38.9%
(P < 0.0001) for the seq.C→T approach. The treatments as single

agents or in combination demonstrated a similar trend with
HS578T (Supplementary Fig. 8A). In comparison to control, seq.T→C
also resulted in 56.8% (P < 0.0001) reduction in cell migration.
For cell invasion, in MDAMB231 cells, the seq.T→C approach

also led to the strongest inhibition with 56.9% (P < 0.0001), 47.0%
(P < 0.0001), 47.5% (P < 0.0001), and 41.3% (P= 0.0005) reduction
in comparison to control, talazoparib, carboplatin, seq.C→T, and
conc.T+ C, respectively (Fig. 6g). The concomitant combination
resulted in a 41.2% (P= 0.001) inhibition in cell invasion in
comparison to control. In HS578T, the greatest inhibition was also
demonstrated by seq.T→C with a 26.7% (P < 0.0001), 18.9%
(P= 0.0002), and 21.3% (P < 0.0001) reduction in cell invasion in
comparison to control, talazoparib, and carboplatin, respectively
(Supplementary Fig. 8B). Conc.T+ C demonstrated a 21.0%
(P= 0.001) reduction in cell invasion, in comparison to control.
Similar results were obtained with other PARPi. Olaparib or
niraparib resulted in the greatest reduction in migration or
invasion when administered witih the sequential PARPi-first
combination approach (Supplementary Fig. 9).
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Fig. 5 Sequential therapy can decrease weight loss in vivo with comparable haematologic toxicity as a concurrent combination. The
impact of different treatment strategies was evaluated in three orthotopic xenograft models including MX1 (top row), HCC1806 (middle row)
and MDAMB231 (bottom row). Kinetics of percent change in weight is shown in (a–c). Percent change in mice weight was calculated by
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+/– SEM. ANOVA with post test for multiple comparisons was performed. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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Since PARPi have been shown to regulate cytokine signalling
[39], we hypothesised that sequential talazoparib and carboplatin
can enhance the inhibition of tumour secretion of chemokines
which can explain its reduced migration capacity. We performed a
chemokine array to profile 31 chemokines from MDAMB231 cell
lysates (Supplementary Fig. 10A). In comparison to control,
noteworthy reductions for seq. T→C were identified for CCL (C-C
Motif Ligand) 2, CXCL (C-X-C Motif Ligand) 7, CCL18, CXCL9, CXCL1
and CCL7 (Supplementary Fig. 10B).
CCL2/MCP (Monocyte chemoattractant protein)-1 drives migra-

tion and invasion, and is implicated in cancer cell homing at the
metastatic site [17, 39]. PARP1 knockdown was previously shown
to significantly reduce levels of MCP-1 [39]. Interestingly,
carboplatin upregulates MCP-1 [40], and blocking MCP-1 can
improve the anti-tumour efficacy of carboplatin [41]. Therefore, it
is plausible that pre-treatment with talazoparib can downregulate
MCP-1 levels, enhancing the anti-migration potential of carbopla-
tin. Hence, we further evaluated tumour secretion of MCP-1 in
MDAMB231, and in a cell line known to express high levels of
MCP-1, HCC1395 [42] (Fig. 6h, i). In MDAMB231, seq.T→C resulted
in a 14.2% reduction in MCP-1 in comparison to control
(P= 0.001), 30.7% reduction in comparison to carboplatin
(P < 0.0001), and a 11.8% reduction in comparison to conc.T+ C
(P= 0.03). In HCC1395, seq.T→C also reduced MCP-1 levels by

31.5% in comparison to control (P < 0.0001), and by 33.9% in
comparison to carboplatin (P < 0.0001). Conc.T+ C also reduced
MCP-1 levels by 19.5% (P= 0.049), and seq.C→T reduced MCP-1
levels by 21.7% (P= 0.01). Since the greatest downregulation of
MCP-1 levels was demonstration by seq. T→C in comparison to
carboplatin, this is suggestive that the sequential combination of
talazoparib and carboplatin may be an important approach to
inhibit MCP-1 levels that may otherwise be upregulated with
carboplatin.
To better understand the underlying mechanisms for enhanced

inhibition of metastasis, we also performed gene expression
analysis of the metastatic lung tissue of the MDAMB231
xenograft to determine if there are differentially expressed
pathways in the human cancer tissue between the treatment
groups (Supplementary Figs. 11 and 12). We found that treatment
groups clustered together, including talazoparib alone with
carboplatin alone and control, while conc. T+ C and seq. C→T
also clustered together (Supplementary Fig. 11A). Principal
component analysis showed the seq. T→C was distinct from the
other combination groups. (Supplementary Fig. 11B). Pre-ranked
gene set enrichment analysis (GSEA) demonstrated Seq.T→C had
9 significant gene sets that were downregulated in comparison to
control, including pathways involved with the DNA damage
response and metabolism, which were not identified with conc.
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Fig. 6 Sequential therapy inhibits distant metastasis in vivo, migration, invasion, and MCP-1 levels. Orthotopic xenograft of MDAMB231
was used to histologically evaluate (a, b) lung micrometastasis and (c) liver micrometastasis. b Representative images of H&E-stained sections
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T+ C (Supplementary Fig. 11C–E). Furthermore, seq. T→C
demonstrated downregulated gene sets in the DNA damage
response including homologous recombination and mismatch
repair, metabolism, and angiogenesis in comparison to conc. T+ C
and seq. C→T (Supplementary Fig. 12). Furthermore, in the mouse
microenvironment, in comparison to control, seq. T→C demon-
strated a downregulation of the CCR5 pathway, in which MCP-1
was a core-enriched gene (data not shown).
Altogether, the sequential administration of talazoparib and

carboplatin resulted in a noteworthy reduction in distant
metastasis, cell migration and invasion. Our results are suggestive
that the PARPi-first combination may have a distinct mechanism
of action in comparison to other combination approaches, which
can significantly enhance the efficacy of each therapeutic agent.

DISCUSSION
Preclinical studies have commonly focused on the combination of
PARPi and platinum-based therapy using BRCAMUT models
[43, 44]. To our knowledge, we are the first to evaluate the
combination of a potent PARPi, talazoparib, with carboplatin in a
large panel of TNBC cell lines. We identified synergy with the
concurrent combination in 92.3% of TNBC cell lines comprising
both BRCAMUT and BRCAWT subtypes. Talazoparib and carboplatin
demonstrated a mean dose-reduction index of 2.8- and 3.7-fold,
respectively. Similarly, sustained DNA damage and apoptosis
responses were observed at lower drug concentrations of the
combination, particularly in the PARPi-resistant cell lines. These
results could partly explain the toxicity observed with the
concomitant combination of talazoparib and carboplatin in a
phase I trial, in which only a 0.25-fold reduction in talazoparib and
carboplatin doses were utilised [28].
Sequential talazoparib and carboplatin was associated with a

reduction in fork speed, DNA damage, and cell death in normal
cells with, in comparison to TNBC cells. This is similar to what was
previously reported: higher endogenous fork speeds correlated
with lower endogenous replication stress in normal cells, which
explained the reduced toxicity observed with the sequential PARPi
combination approaches [30]. In our in vivo models, while the
concomitant dosing tended to demonstrate the greatest toxicity
(least weight gain), the sequential treatment approach had a
different contextual impact. Whereas the least toxicity was
observed with the carboplatin-first approach in the BRCAMUT

model, MX1, the least weight gain and haematologic toxicity was
demonstrated by the talazoparib-first approach in the BRCAWT

model, MDAMB231. Since the same background strain was used,
one plausible explanation for the differential toxicity could be
different inflammatory responses induced by the BRCAMUT versus
BRCAWT tumours [45, 46], which may in turn be modulated in
different ways by the sequential administration of talazoparib
and carboplatin. Therefore, our results are suggestive that a
carboplatin-first approach in the BRCAMUT context and
talazoparib-first approach in the BRCAWT context may offer
patients the greatest safety profiles.
For our in vivo experiments, we based our dosing schedule of

one dose of carboplatin and nine days of talazoparib on a
xenograft model of subcutaneous tumour fragment implantation
[34]. Our results showed that using orthotopic xenograft models
with different tumour kinetics, that pausing the treatment for
4–16 days, allows for greater opportunity for the mice to regain
weight and possibly mitigate anaemia, suggesting the importance
of an intermittent dosing schedule. Indeed, clinical trials that have
tested PARPi in combination have also shown improved efficacy
and less toxicity with an intermittent dosing schedule [2]. For
example, two trials dosed olaparib and veliparib on days 1–7 of
21-day cycles [47, 48]. Interestingly, the BROCADE3 trial also used
a 2-day run in with veliparib for 7 days, and carboplatin
administered on day 3 for a 21-day cycle. The combination of

veliparib and carboplatin resulted in an improvement in PFS, with
similar toxicity as chemotherapy [27].
While we understand some of the limitations of cells lines and

their derived models [49], the strength of our study was the panel
of TNBC cell lines, the use of three orthotopic xenograft models,
including a BRCAWT model with high metastatic efficiency. We
showed comparable efficacy of the concurrent and sequential
approaches for primary tumour inhibition. However, to our
knowledge, we are the first to report that the sequential
combination approaches strongly inhibit migration, invasion,
and distant metastasis. The talazoparib-first combination demon-
strated the greatest reduction in cell migration and invasion at
70.4% and 56.9%, respectively, with an enhanced effect in
comparison to concurrent combination. In vivo, the talazoparib-
first approach resulted in a 56.4% and 76.3% inhibition in lung and
liver metastasis, respectively. Since we did not identify a
differential impact on the tumour volumes with the sequential
or concomitant combination approach, it is plausible that the
impact upon migration and metastasis is independent of
treatment effects on the primary tumour.
Furthermore, the talazoparib-first combination was associated

with decreased expression of seven chemokines. The expression
of one such chemokine, MCP-1, was downregulated the greatest
with the talazoparib-first combination. Interestingly, chemother-
apy including cisplatin has been shown to promote secretion of
MCP-1, recruit inflammatory monocytes enriched with the
receptor of MCP-1, CCR2, forming pre-metastatic niches, thus
promoting distant metastasis in breast and lung cancer [50, 51].
Such chemotherapy-induced responses need to be countered
immediately, prior to the development of distant metastasis. Since
MCP-1 blockade can enhance carboplatin efficacy [41], it is
plausible that pre-treatment with talazoparib decreases MCP-1
levels to enhance carboplatin sensitivity. However, since the
magnitude of reduction of MCP-1 is less than the magnitude of
migration reduction with different treatment combination
approaches, it is likely that multiple factors may be contributing
to inhibition of migration. Furthermore, stromal MCP-1 from the
microenvironment was shown to more effective in reducing
tumour burden than blockade of MCP-1 induced by the proper
tumour itself [41]. While we did identify a downregulation of the
MCP-1 pathway in the microenvironment, the therapeutic impact
on the microenvironment needs to be further explored.
Finally, we evaluated the pathways that were differentially

expressed by the different treatment groups using metastatic lung
tissue. We found that DNA damage response pathways were
distinctly downregulated with seq.T→C in comparison to control
and other combination groups. We and others have previously
shown that the downregulation of these pathways allow for
enhanced sensitivity to PARPi [22, 52], suggesting that the
sequential approach is enhancing PARPi sensitivity, particularly
in this BRCAWT model.
Taken together, we have provided a comprehensive preclinical

analysis of the combination of talazoparib and carboplatin in
TNBC. We have demonstrated that the combination is synergistic
in most TNBC cell lines. While the sequence of administration does
not impact tumour proliferation or tumour growth, sequential
administration of talazoparib and carboplatin can decrease
toxicity and significantly inhibit migration, invasion, and distant
metastasis. Therefore, our results lead the way to future clinical
trials with the evaluation of the sequential combination of
talazoparib and carboplatin in early breast cancer, potentially
providing an effective approach to eradicate micrometastatic
disease in TNBC patients.
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