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BACKGROUND: Tissue-resident memory T (Trm) cells are associated with cytotoxicity not only in viral infection and autoimmune
disease pathologies but also in many cancers. Tumour-infiltrating CD103+ Trm cells predominantly comprise CD8 T cells that
express cytotoxic activation and immune checkpoint molecules called exhausted markers. This study aimed to investigate the role
of Trm in colorectal cancer (CRC) and characterise the cancer-specific Trm.
METHODS: Immunochemical staining with anti-CD8 and anti-CD103 antibodies for resected CRC tissues was used to identify the
tumour-infiltrating Trm cells. The Kaplan–Meier estimator was used to evaluate the prognostic significance. Cells immune to CRC
were targeted for single-cell RNA-seq analysis to characterise cancer-specific Trm cells in CRC.
RESULTS: The number of CD103+/CD8+ tumour-infiltrating lymphocytes (TILs) was a favourable prognostic and predictive factor of
the overall survival and recurrence-free survival in patients with CRC. Single-cell RNA-seq analysis of 17,257 CRC-infiltrating immune
cells revealed a more increased zinc finger protein 683 (ZNF683) expression in cancer Trm cells than in noncancer Trm cells and in
high-infiltrating Trm cells than low-infiltrating Trm in cancer, with an upregulated T-cell receptor (TCR)- and interferon-γ (IFN-γ)
signalling-related gene expression in ZNF683+ Trm cells.
CONCLUSIONS: The number of CD103+/CD8+ TILs is a prognostic predictive factor in CRC. In addition, we identified the ZNF683
expression as one of the candidate markers of cancer-specific Trm cells. IFN-γ and TCR signalling and ZNF683 expression are
involved in Trm cell activation in tumours and are promising targets for cancer immunity regulation.
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BACKGROUND
The immune system primarily functions by discriminating
between “self” and “non-self” [1] cells, such as infected or
cancerous cells. Immunity has been well-known to suppress
cancer growth since Ehrlich et al. first predicted in 1909 that the
immune system represses cancer growth [2]. Among immune
cells, CD8+ T cells play an essential role in cancer immunity.
Infiltrating CD8+ T cells represent a favourable prognostic marker
in many solid tumours [3].
Recently, CD103+ CD8+ T cells were found to play an important

role in cancer immunity, particularly in cancers of epithelial origin
[3]. Among tumours with similar T-cell infiltration degrees, those
with the greatest CD103+ CD8+ T-cell proportion have the best
prognosis [4]. CD103+ CD8+ T cells, known as tissue-resident
memory T (Trm) cells, are a unique subset of memory T cells [5].
Traditionally, memory T cells are categorised as central memory T
(Tcm) cells or effector memory T (Tem) cells, according to the
homing receptor expression [6]. Trm cells remain in peripheral

tissues for a long time [7]. Binding of CD103 to E-cadherin, which
is expressed on epithelial cells, allows Trm cells to be maintained
in the local tissue microenvironment and is believed to be strongly
involved in local immunity [8]. Trm cells have further been
associated with cytotoxicity in the pathologies of viral infections
and autoimmune diseases. Since the earliest discovery of Trm cells
in the peripheral tissues of mice infected with a virus or bacterium,
such as vesicular stomatitis virus or Listeria monocytogenes [9], Trm
cells have also been reported to contribute to the pathology of
autoimmune and inflammatory diseases, such as multiple sclerosis
[10], type 1 diabetes mellitus [11], and inflammatory bowel disease
[12]. Trm cells were also localised in solid tumours and played a
role in inhibiting cancer progression and metastasis.
Trm cells may be involved in cancer immunity from the time of

cancer cell development by residing in epithelial parts of
peripheral tissues [13]. They are associated with favourable
outcomes in patients with oropharyngeal squamous cell carci-
noma, head and neck squamous cell carcinoma, breast cancer,
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non-small-cell lung cancer, bladder cancer, and melanoma
[12, 14–26]. Trm cells can release effector molecules and cytokines,
such as interleukin-2, interferon-gamma (IFN-γ), tumour necrosis
factor-α, and granzyme B. Sustained high expression of these
factors may enable Trm cells to rapidly and strongly respond
against cancer cells [24–31].
Trm cell infiltration is a prognostic factor in many carcinomas,

possibly because they play an important role in tumour immunity.
However, not all Trm cells respond to cancer cells; therefore,
distinguishing between bystander Trm cells, which recognise a
wide range of epitopes unrelated to cancer, and cancer-specific
cells is important [32]. Thus identifying and characterising cancer-
specific Trm cells is vital to understand their role in cancer
immunity.
This study investigated the association between Trm cell

infiltration and good prognosis in patients with CRC and further
characterised cancer-specific Trm cells in CRC at the single-cell
level. We focused on zinc finger protein 683 (ZNF683) as a cancer-
specific Trm cell marker and analysed its expression from single-
cell RNA-seq analysis of 17,257 colorectal cancer (CRC)-infiltrating
immune cells. Furthermore, we validated the CRC-infiltrating
immune cells of 59,364 cells in 39 cases from public data and
confirmed the same results as our data. Our findings provide new
insights into the use of Trm cells as a predictive factor of CRC
prognosis, ZNF683 as a candidate marker for cancer-specific Trm,
and the characteristics of ZNF683+ Trm.

METHODS
Study design and patients
This study evaluated 126 patients with CRC who underwent surgical
resection from 2012 to 2013 for immunohistochemistry staining and
overall survival (OS) and recurrence-free survival (RFS) rate. Freshly
resected CRC tissues and adjacent normal tissues were obtained
immediately after surgical resection in 2020. Freshly resected CRC tissues
and adjacent normal tissues were obtained immediately after surgical
resection from two patients with large CRC for single-cell RNA-seq analysis.
Two patients have muscularis propria invasive CRC without lymph node or
distant metastasis, and subserosal invasive CRC with liver metastasis.
This study was approved by the Research Ethics Committee of Osaka

University (approval no. 19020). Written informed consent was obtained
from all patients.

Flow cytometry
Normal colon tissues were obtained from the intact surrounding tissues.
Cells were immediately isolated after collection. The intestinal mucosa was
washed with phosphate-buffered saline (PBS), cut into small pieces, and
incubated in Roswell Park Memorial Institute (RPMI) 1640 containing 10%
foetal bovine serum (FBS), 2 mg/mL of collagenase D (Roche, Basel,
Switzerland) and 15 μg/mL of DNase I (Roche) for 60min in a shaking water
bath at 37 °C to isolate normal colonic mucosa cells. The digested tissues
were passed through a 40-μm cell strainer. Next, the isolated cells were
washed with RPMI 1640, incubated in ACK buffer (3 mL, incubating for
3 min to lyse red blood cells), and washed again with RPMI 1640. Normal
colonic mucosa cells were collected in PBS containing 2% FBS. Isolated
cells were stained with surface antibodies for 30min at 4 °C, followed by
7AAD staining (BD Biosciences, Franklin Lakes, NJ). Flow cytometric
analysis and cell sorting were performed using FACSAria II (BD
Biosciences). Data were analysed using FlowJo software (Tree Star, San
Carlos, CA).

Immunohistochemical staining
Immunohistochemistry staining was performed on formalin-fixed, paraffin-
embedded tissue sections (4.0 mm). Antigen retrieval was performed using
10mmol/L of citrate buffer (pH 6) after deparaffinization, and intrinsic
peroxidase activity was blocked using 3% H2O2 for 20min, followed by
nonspecific interaction blocking with Background Sniper (Biocare Medical,
Pacheco, CA) for 10min. Anti-CD103 (ab129202, rabbit, diluted 1:2000) and
anti-CD8 (ab75129, mouse, diluted 1:50) antibodies were used to stain
tissue sections using the Vectastain ABC kit (Vector Laboratories,
Burlingame, CA). The number of CD103+ T cells and CD8+ T cells was

counted in the tumour-invasive margins using ImageJ software version
1.8.0 (NIH, Bethesda, MD, USA; http://imagej.nih.gov/ij).

Single-cell RNA-seq analyses
The same method as flow cytometry was used to obtain cells by isolation
and staining with CD45 antibody (#480029 MojoSort™ Human CD45
Nanobeads) to isolate CD45+ cells using only MACS. The BD Rhapsody
Single-Cell Analysis System (BD Biosciences) was used to target CD45+

cells for single-cell RNA-seq analysis. Briefly, the single-cell suspension was
loaded into a BD Rhapsody cartridge with >200,000 microwells, and single-
cell capture was achieved by random distribution and gravity precipitation.
Then, the bead library was loaded into the microwell cartridge to
saturation so that each bead was paired with a cell in a microwell. The cells
were lysed in a microwell cartridge to hybridise mRNA molecules onto bar-
coded capture oligos on the beads. Then, these beads were retrieved from
the microwell cartridge into a single tube for subsequent complementary
DNA (cDNA) synthesis, exonuclease I digestion, and multiplex–polymerase
chain reaction (PCR)-based library construction. The Illumina library was
converted to a library for DNBSEQ using the MGIEasy Universal Library
Conversion Kit (App-A). Sequencing was performed on the DNBSEQ-
G400RS (MGI) in the 100-base paired-end mode. The BD Rhapsody Analysis
Pipeline was used to process sequencing data (fastq files), and output
result files were analysed and visualised using BD Data View software
v.1.2.2 (BD Biosciences). CD45+ cells were clustered by t-SNE analysis, and
comparisons were made between clusters.
The GSE108989, GSE146711, and GSE164522 single-cell RNA-seq data

were downloaded in Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/).
The R package Seurat version 3.1.5 was used to analyse GSE108989,

GSE146771, and GSE164522 gene sets. The cited gene expression matrixes
from GSE108989 were read into R version 4.0.1 and converted to Seurat
objects. The subsequent analysis only included tumour-infiltrating T cells.
Principal component analysis was performed based on highly variable
genes after scaling the data concerning unique molecular identifier counts
to reduce dimensionality. Principle components were selected for down-
stream clustering based on the heatmap, jackstraw plot, and elbow plot of
principal components to further reduce dimensionality using the t-SNE
algorithm. We corrected batch effects as follows when simultaneously
analysing tissue from two patients.
We used Seurat for single-cell RNA-seq integration. Seurat includes a set

of methods to match shared cell populations across datasets. These
methods first identify cross-dataset pairs of cells that are in a matched
biological state (“anchors”), can be used both to correct for technical
differences between datasets (batch effect correction), and to compare
single-cell RNA-seq analysis between experimental conditions. We normal-
ise and identify variable features for each dataset independently, and
select features that are variable across datasets for integration. We then
identify anchors using the FindIntegrationAnchors function, which takes a
list of Seurat objects as input and use these anchors to integrate the two
datasets together with IntegrateData.

Statistical analysis
The Wilcoxon and Fisher’s exact probability tests were used to determine
statistically significant differences between groups. The Kaplan–Meier
method and the log-rank test were used to calculate OS and RFS rates. All
statistical analyses were performed using R programming language version
4.0.2 and JMPpro 14.0.0 (SAS Institute, Cary, NC, USA). P values of <0.05
were considered statistically significant.

RESULTS
CD103, a Trm cell marker, is associated with cytotoxic T-cell
activation and is a prognostic predictive factor in CRC
Trm cell subsets from resected CRC tissue were identified via flow
cytometry to identify a tumour-specific Trm cell marker and to
determine whether Trm cell infiltration could be a prognostic
factor in CRC. CD8+ T cells expressing the Trm cell marker CD103
were almost always positive for CD69, which is also a recognised
Trm cell marker (Supplementary Fig. 1). Thus, Trm cells were
defined as CD8+ and CD103+ T cells. RNA sequencing (RNA-seq)
data of 569 CRC cases with prognostic data (420 colon
adenocarcinoma [COAD] and 149 rectal adenocarcinoma [READ]

M. Kitakaze et al.

1829

British Journal of Cancer (2023) 128:1828 – 1837

http://imagej.nih.gov/ij
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


250

a b

c

d e

f

150

100

0.4

(×103)

(×104)

(×104)

(×104)

(×103) (×103) (×103)

(×104) (×104)

(×104) (×104)
500

20

10

5

2

20

15

10

5

0

CD8A

GZMA

PDCD1

Overall survival

Overall survival Recurrence-free survival

CTLA4 HAVCR2 LAG3

GZMB PRF1 IFNG

ITGAE CD69

200

200

20

15

10

5

0

1.0

0.8

0.6

0.4

0.2

0

0 500 1000 20001500

days

0 500 1000 1500

Days

0 500 1000 1500

Days

CD8A high and ITGAE high

CD8 or CD103 high n = 89

CD8 and CD103 low n = 37
CD8 or CD103 high n = 79
CD8 and CD103 low n = 35

CD8A low and ITGAE high
CD8A high and ITGAE low

CD8A low and ITGAE low

100
50

100 100
200

6

5

4

3

2

1

0

50

5
2
1

0.5

20
10

10

50

500
200 200

1000
500

100
50

10
5

1

100
50

5

2

20
10

100
50
20
10
5
2
1

0.5
0.2

5

1
0.5

0.1

20
10

5
2
1

0.5
0.2

100
50
20
10
5
2
1

0.5

H–H H–L L–LL–H

H–H H–L L–LL–H

H–H H–L L–LL–H H–H H–L L–LL–H H–H H–L L–LL–H H–H H–L L–LL–H

H–H H–L L–LL–H H–H H–L L–LL–H H–H H–L L–LL–H

H–H H–L L–LL–H H–H H–L L–LL–H

0.5 0.6 0.7

0 10 20 30 40 50 60 70 80

GO: 0046649: Iymphocyte activation
GO: 0050865: regulation of cell activation
GO: 0002250: adaptive immune response

GO: 0002697: regulation of immune effcor process

GO: 0050778: positive regulation of immune response

GO: 0042113: B-cell activation

GO: 0001819: positive regulation of cytokine production

GO: 0043368: positive T-cell selection
GO: 0070227: lymphocyte apoptotic process
GO: 0050900: leukocyte migration
GO: 0006954: inflammatory response
GO: 0002683: negative regulation of immune system process
GO: 0034341: response to interferom-gamma

CD8A high and ITGAE high

CD8A low and ITGAE high

CD8A high and ITGAE low

CD8A low and ITGAE low

WP2328: allograft rejection

hsa04659: Th17 cell differentiation
hsa04060: Cytokine–cytokine receptor interaction

hsa04060: Hematopoietic cell lineage

hsa04650: natural killer cell mediated cytotoxicity

M54: PID IL12 2PATHWAY
R-HSA-1280215: cytokine signalling in immune system

Correlation with ITGAE

–l
og

10
 (

P
 v

al
ue

)

–log10 (P value)

P value < 0.001 P value = 0.003

P < 0.01

n = 198

n = 199
n = 86
n = 86

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

S
ur

vi
va

l p
ro

ba
bi

lit
y

N
on

-r
ec

ur
re

nc
e 

fr
ee

su
rv

iv
al

 p
ro

ba
bi

lit
y

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

T
ra

ns
cr

ip
ts

 p
er

 m
ill

io
n

200

PDCD1

TRGC2

ZNF683
IL2RB

TBX21
IFNG

HLA.DRA

GZMH GZMA
CTSW

CD2 CD8A
CXCR6

CCL5GNLY

CD3D
NKG7

Fig. 1 CD103, which drives Trm cell generation, correlates with lymphatic activation in CRC. a ITGAE-correlated genes encoding CD103 in
TCGA-COAD and TCGA-READ. b Bar graph showing enriched terms across the gene sets correlated with ITGAE (correlation coefficient >0.4),
coloured by P values. c Bean plots of cytotoxic cytokines, immune checkpoint molecules, and Trm cells are considered core genes of CRC in
TCGA. The genes were categorised according to the median mRNA expression of CD8A and ITGAE as cut-off values into high CD8A and high
ITGAE (H–H), high CD8A and low ITGAE (H–L), low CD8A and high ITGAE (L–H), and low CD8A and low ITGAE (L–L) groups. d Kaplan–Meier
curve of OS for the four groups. e Immunohistochemical staining for CD103 at invasive margins of resected CRC tissue (left: high invasion;
right: low invasion). f Kaplan–Meier curves of OS and RFS by CD103+ and CD8+ cell count. Trm cells tissue-resident memory T cells, CRC
colorectal cancer, ITGAE integrin subunit alpha E, TCGA The Cancer Genome Atlas, COAD colon adenocarcinoma, READ rectum
adenocarcinoma, mRNA messenger RNA, OS overall survival, RFS recurrence-free survival.

M. Kitakaze et al.

1830

British Journal of Cancer (2023) 128:1828 – 1837



cases) were downloaded from The Cancer Genome Atlas (TCGA;
http://tcga-data.nci.nih.gov) data portal, and gene expression
levels that correlated with the CD103 level were analysed to
investigate the role of CD103 in CRC. Integrin subunit alpha E
(ITGAE; encoding CD103) was strongly correlated with the
expression of genes associated with cytotoxic T cells, such as
CD8A, GZMA and IFNG, in both TCGA-COAD and TCGA-READ
(Fig. 1a). Metascape analysis revealed that genes with correlation
coefficients of >0.4 for ITGAE were involved in lymphocyte
activation (Fig. 1b). Cases were classified into four groups
according to the median messenger RNA (mRNA) expression of
CD8A and ITGAE as cut-off values: high CD8A and high ITGAE
(H–H), high CD8A and low ITGAE (H–L), low CD8A and high ITGAE
(L–H), and low CD8A and low ITGAE (L–L). The H–H group had
high cytotoxic cytokines, immune checkpoint molecules, and Trm-
related gene expression (Fig. 1c). Prognostic analysis was further
performed using these data. Kaplan–Meier survival curves
revealed that the H–H group had a better OS than the H–L group
(Fig. 1d). We observed a trend toward a longer OS in the H–H and
L–H groups by comparing the OS with ITGAE expression alone
using other CRC RNA sequence datasets (GSE41258, GSE28814
and TCGA) (Supplementary Fig. 2). Surgically resected specimens
from 126 patients with CRC were immunohistochemically stained
with CD103 and CD8 antibodies to detect CD103+/CD8+

lymphocyte infiltration (Fig. 1e, f, Supplementary Fig. 3 and
Supplementary Tables 1 and 2). The number of CD103+/CD8+

tumour-infiltrating lymphocytes (TILs) was a favourable prognostic
and predictive factor of the OS and RFS (Fig. 1g, P < 0.05).
Univariate and multivariate analyses revealed that a low number
of CD8+ and CD103+ TILs is an independent poor prognostic
factor of OS and RFS (Table 1 and Supplementary Table 3). The
number of CD103+ TILs alone is a prognostic predictive factor of
OS and RFS and was significantly more associated with
pathological factors (lymphatic invasion, lymph node metastasis
and distant metastasis) compared with the number of CD8+ TILs
(Supplementary Figs. 4 and 5). These results suggest that the Trm
cell markers CD8 and CD103 positive TILs are prognostic factors in
patients with CRC.

Trm cells in CRC are the activated population of CD8+ T cells
The number of Trm cells is correlated with the pathological depth
of invasion and lymph node and distant metastasis, OS, and RFS of

CRCs. Thus, we investigated the characteristics of CRC Trm cells.
Intratumor 17257 immune cells were obtained from resected CRC
tissues of two patients, and single-cell RNA-seq analysis was
performed to investigate the characteristics of Trm cells. The
t-distributed stochastic neighbour embedding (t-SNE) plot
showed that ITGAE+ cells co-express CD3D or CD3E and
commonly co-express CD8A. Cells co-expressing ITGAE and
CD8A were identified as Trm cells, and Trm cell clusters revealed
a higher gene expression of cytotoxic cytokines and immune
checkpoint molecules (Fig. 2a). ITGAE+ CD8A+ T-cell and
ITGAE–CD8A+ T-cell clusters were defined as Trm cell (red area)
and non-Trm cell (green area) clusters to compare Trm and non-
Trm cells, respectively (Fig. 2b). The Trm cell cluster had a higher
gene expression of cytotoxic cytokines and immune checkpoint
molecules compared with the non-Trm cell cluster. The expression
of the gene related to cytotoxic T cells in the Trm cell cluster was
stronger compared with the non-Trm cell cluster although the Trm
cell cluster showed a strong correlation with the non-Trm cell
cluster (Fig. 2c). Expression of the exhaustion markers CTLA4,
HAVCR2 and ENTPD1 were greater in the Trm cell population than
in the non-Trm cell cluster (Fig. 2d). Gene expression of cytotoxic
cytokines and immune checkpoint molecules was also signifi-
cantly higher in the Trm cell cluster (Fig. 2e). The top-ranked genes
were gene sets related to the inflammatory response and IFNG
response in gene set enrichment analysis (GSEA) (Fig. 2f). In
addition, we searched for gene expression in tumour-infiltrating
Trm by comparing CD8+ CD103+ T cells with CD8+ CD103− T cells
in lung cancer in GSE111898, which is a dataset comprising the
results a single-cell analysis of lung cancer. We compared the
genes that showed a fold change of >2 in Trm cells from lung
cancer with genes that revealed a fold change of >2 in Trm cells
from colon cancer. Similar movements were observed in 18 genes
in Trm cells in lung cancer, and these genes may be central in Trm
cells (Fig. 2g).
Trm cells in CRC were a particularly cytotoxic cell population

among CD8+ T cells. In addition, Trm cells showed high expression
of immune checkpoint molecules, termed exhaustion markers.

High-infiltrating Trm cells in cancer highly expressed ZNE683
We compared cancer Trm cells with noncancer Trm cells to identify
the characteristics of cancer Trm cells. Figure 3a shows t-SNE plots
representing immune cells in cancer and noncancer areas, with

Table 1. Factors evaluated for OS (univariate and multivariate analyses).

OS Univariate analysis Multivariate analysis

Variables HR 95% CI P value HR 95% CI P value

Age (>=65 years) 1.93 0.87–4.31 0.098

Sex (male) 1.11 0.51–2.43 0.792

BMI (<25 kg/m²) 1.56 0.73–3.38 0.260

Tumour location (rectum) 1.03 0.48–2.20 0.937

Histological type (undifferentiated) 2.34 0.88–6.21 0.089

Greatest tumour diameter (≧35mm) 3.24 1.30–8.03 0.006 1.70 0.50–5.71 0.389

Pathological T category (T2–T4) 4.12 0.96–17.6 0.056

Lymphatic invasion (+) 2.02 0.91–4.50 0.086

Vascular invasion (+) 2.98 1.36–6.55 0.007 1.71 0.71–4.16 0.234

Lymph node metastasis (+) 1.75 0.81–3.78 0.154

Distant metastasis (+) 5.58 2.49–12.5 <0.001

Pathological Stage (III–IV) 3.56 1.43–8.83 0.006 2.12 0.61–7.48 0.239

LL (CD103+ < 60 /10HPF and CD8+ < 62/10HPF) 3.48 1.38–8.78 0.001 2.81 1.08–7.31 0.034

OS overall survival, HR hazard ratio, CI confidence interval, BMI body mass index, LL the numbers of both CD103+ and CD8+ cells were low, HPF high-
power field.

M. Kitakaze et al.

1831

British Journal of Cancer (2023) 128:1828 – 1837

http://tcga-data.nci.nih.gov


cancer Trm cell (orange area) and noncancer Trm cell (blue area)
clusters defined. Volcano plot showing differentially expressed
genes (DEGs) between Trm and non-Trm cell clusters revealed that
Trm clusters were more characterised by higher gene expression
related to inflammation (e.g., GZMK, IFNG, CD8A), immune
checkpoint molecules (e.g., PDCD1, HAVCR2, ICOS, DUSP4), and

proliferative potential (MKi67) (Fig. 3b). We compared the gene
expression of Trm cells between cases with high and low Trm cell
infiltration to identify the characteristic of cancer-specific Trm cells.
We assumed that Trm cells in this group recognise the tumour
because the OS of patients with CRC was better in the high Trm
infiltration group. Single-cell analysis of tumour-infiltrating immune
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cells from two resected CRC cases was performed and a t-SNE plot
was generated to compare Trm cells between high- and low-
infiltrating Trm cell cases. Characteristics and immunostaining count
data of two cases are shown in Supplementary Table 4. The number
of infiltrating Trm cells was higher in Case 1 than in Case 2 in the
resected immunostained specimens (Fig. 3c). t-SNE plot showed
Case 1 and Case-2 immune cells. Trm cell clusters were defined
based on CD8A and ITGAE expression (red circle and blue circle)
(Fig. 3d). Trm cluster in red circle consisted of almost Case 1 Trm
cells and Trm cluster in blue circle consisted of both of Case 1 and
Case-2 Trm. Most Case-2 Trm was in the light green circle. The Trm
cluster in the red circle was defined as the high-infiltrating Trm cell
cluster. The Trm cluster in the blue circle was defined as the low-
infiltrating Trm cell cluster. The high-infiltrating Trm cluster was
compared with the low-infiltrating Trm cluster, and the volcano plot
revealed highly expressed gene in the high-infiltrating Trm cluster
(Fig. 3e). ZNF683 expression was higher in cancer Trm cells than in
noncancer Trm cells, and was also upregulated in lung cancer Trm
cells (Fig. 3f). ZNF683 was more upregulated in high-infiltrating Trm
cells in cancer, which may be related to cancer-specific Trm than
low-infiltrating Trm in cancer.

The characteristics of ZNF683+ Trm
ZNF683, which is a transcription factor, is a homologous gene of B-
lymphocyte-induced maturation protein-1 (BLIMP-1) and has been
reported as a core gene of Trm cells. However, the single-cell
analysis revealed the existence of both Trm cells with and without
ZNF683 expression (Fig. 4a). We determined the characteristics of
ZNF683+ Trm cells by comparing ZNF683+ and ZNF683– Trm cells
because ZNF683 was hypothesised as a cancer-specific marker.
ZNF683+ Trm cells revealed increased expression of gene sets
related to the T-cell receptor (TCR) signalling pathway in GSEA
(Fig. 4b). Moreover, the expression of cytotoxic cytokines and
immune checkpoint molecules was higher in ZNF683+ than in
ZNF683– Trm cells (Fig. 4c). Next, we investigated the pathways
associated with ZNF683 expression in Trm cells. We hypothesised
a pathway for ZNF683 expression based on previous reports on
ZNF683 (Fig. 4d). We searched for the expression of the
transcription factor TBX21, which has been reported to exist
upstream of ZNF683 [33]. TBX21 expression was higher in
ZNF683+ than in ZNF683– Trm cells, and the ratio of TBX21
positive cells was higher in ZNF683+ than in ZNF683–Trm cells
(Fig. 4e, f). TBX21 has been reported to be upregulated by stimuli
such as TCR signalling and IFN-γ signalling [33, 34], thereby
supporting the hypothesis that ZNF683+ Trm cells are cancer-
specific Trm cells. In addition, IFNG expression was upregulated in
ZNF683+ Trm cells. Cases with high ZNF683 expression in the
TCGA database revealed gene set enrichment of TCR and IFN-γ
signalling (Fig. 4g). ZNF683+ Trm cells revealed activated TCR
signalling. In addition, TCR signalling was shown to upregulate
ZNF683 expression via TBX21, and the positive feedback from IFN-
γ signalling to ZNF683 is triggered by IFNG upregulation. We
analysed data from single-cell analysis of 59364 CRC-infiltrating
immune cells in 39 CRC cases (GSE108989, GSE146711 and
GSE164522) to confirm the accuracy of single-cell analysis results.
The Trm cell cluster revealed high expression of cytotoxic

cytokines (Supplementary Fig. 6a). CD8A+ and ITGAE+ cells, which
are considered Trm cells, were divided into two groups according
to the presence or absence of ZNF683 expression. The ZNF683+

Trm cell cluster revealed significantly higher TBX21 and IFNG
expression (Supplementary Fig. 6b). GSEA revealed that ZNF683+

Trm cells showed significantly higher TCR and IFN-γ signalling
compared with ZNF683– Trm cells (Supplementary Fig. 6c). The
ZNF683+ Trm cell population showed gene set enrichment of TCR
and IFN-γ signalling in addition to our dataset. Moreover, the
TBX21 and IFNG expression in ZNF683+ Trm cells was
upregulated.

DISCUSSION
This study determined the characteristics of cancer-specific Trm
cells. We identified ZNF683 as one of the makers of cancer-specific
Trm cells, which appear to have high cytotoxicity, by comparing
Trm cells under various conditions at the single-cell level. We
hypothesised that ZNF683 expression is possibly mediated by self-
positive feedback via IFN-γ signalling.
Trm cells can induce a potent antitumor immune response in

various solid tumours [12]. However, the functions and prog-
nostic significance of Trm cells in CRC have not been system-
atically addressed. The CD8+ T-cell infiltration level in CRC is an
independent prognostic factor [35–37]. Trm cells are a useful
predictive factor of prognosis in CRC in this study, and the
upregulated gene of the high-infiltrating Trm cluster was
ZNF683 in single-cell analysis. This study revealed ZNF683 as a
marker for cancer-specific Trm, assuming that tumours with high
Trm infiltration have a high number of cancer-specific Trm cells.
ZNF683+ Trm cells revealed higher expression of cytotoxic
cytokines and immune checkpoint molecules and activated TCR
signalling, which suggests that ZNF683+ Trm plays an anti-
tumor role within the tumour. Moreover, ZNF683+ Trm cells
revealed high expression of TBX21, which acts upstream of
ZNF683 [2, 28].
TBX21 has various signals upstream, one of which is TCR

stimulation [33, 34]. IFN-γ signalling was reported as an upstream
signal of TBX21 [33, 38, 39]. In this study, IFNG expression was
upregulated in ZNF683+ Trm cells, suggesting the feasibility of
IFN-γ autocrine positive feedback [40]. IFN-γ is a cytokine with
high antitumor effects, and ZNF683+ Trm cells upregulate IFNG
expression and enhance its antitumor effect.
This study has some limitations. First, we were unable to

confirm whether ZNF683+ Trm cells could recognise or attack
tumours because our analysis was performed only at the gene
expression level in cells. However, a recent study suggested that
ZNF683 is upregulated in neoantigen-specific TILs in lung cancer
[41], which was consistent with our findings. Second, we were
unable to confirm whether ZNF683+ Trm cells could affect long-
term prognosis, including OS, in CRC because we used freshly
resected specimens. However, the presence of cancer-specific Trm
cells is likely to positively impact tumour prognosis because Trm
cells are associated with tumour prognosis. Third, we were unable
to conduct a detailed analysis of the relationship among ZNF683,
TBX21, and IFNG. Additionally, the mechanism by which TBX21

Fig. 2 Trm cells represent the most activated subset of CD8+ T cells in CRC. a t-SNE plots of ~12,000 live and singlet-gated CD45+ single-cell
transcriptomes obtained from resected CRC tissue showing gene expression encoding Trm cell markers, cytotoxic cytokines, and immune
checkpoint molecules. b Trm (red) and non-Trm (green) clusters are defined according to ITGAE (encoding CD103) and CD8A expression.
c Correlation between Trm and non-Trm cell clusters: mean (log10 [molecules/cell/gene]). d Volcano plot showing DEGs between Trm and non-
Trm cell clusters. Dot lines represent an FDR of <0.05 and a fold change of >2. e Violin plot of the expression of cytotoxic cytokines and
immune checkpoint molecule genes in the two clusters in (b). f Top 3 NES of hallmark gene sets in GSEA between Trm and non-Trm cell
clusters. g Venn diagrams overlapping transcripts differentially expressed with a fold change of >2 between Trm and non-Trm cell clusters in
lung cancer (left) and CRC (right). Trm cells tissue-resident memory T cells, CRC colorectal cancer, ITGAE integrin subunit alpha E, t-SNE t-
distributed stochastic neighbour embedding, DEG differentially expressed gene, FDR false discovery rate, NES normalised-enrichment scores,
GSEA gene set enrichment analysis.
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Fig. 3 Characteristics of cancer-specific Trm cells in CRC. a t-SNE plots of singlet-gated CD45+ single-cell transcriptomes obtained from
resected CRC and adjacent normal colon tissue and gene expression of ITGAE and CD8A. Tumour Trm (orange) and non-Trm (blue) cell
clusters are defined according to ITGAE and CD8A expression. b Volcano plot showing the DEGs between Trm and non-Trm cell clusters.
c Immunohistochemical staining of CRC tissues at the invasive margins; CD103 staining of Case 1 (high invasion; upper left), CD8 staining of
Case 1 (high invasion; upper right), CD103 staining of Case 2 (low invasion; lower left) and CD8 staining of Case 2 (low invasion; lower right).
d t-SNE plots of singlet-gated CD45+ single-cell transcriptomes obtained from Trm high- and low invasion cases of resected CRC. High
(orange) and low (dark yellow) Trm invasion are defined according to ITGAE and CD8A expression. e Volcano plot showing DEGs between
Case 1 and Case-2 Trm cell clusters. f Venn diagram of upregulated genes in Fig. 2e, tumour Trm cells, and high invasion Trm cells. Trm cells
tissue-resident memory T cells, CRC colorectal cancer, ITGAE integrin subunit alpha E, t-SNE t-distributed stochastic neighbour embedding,
DEG differentially expressed gene.
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upregulates ZNF683 expression and the effect of ZNF683 on
increased IFNG expression were not verified. However, previous
studies have reported that TBX21 is required for ZNF683
expression and that TBX21 is a feedback factor in IFN-γ signalling

[2, 28, 42]. Hence, ZNF683 is assumed as feedback to the IFNG that
it produces, leading to increased IFNG expression.
This study revealed that only a portion of Trm cells in the

tumour is activated, suggesting the existence of cancer-specific
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and non-cancer-specific Trm cell populations. The passage of food
residues and the development of bacterial flora in the colorectum
results in the presence of many antigens; thus, we can assume
various Trm cells specific to certain antigens. Therefore, identifying
cancer-specific Trm cells is important. ZNF683+ Trm cells,
identified as cancer-specific Trm cells in this study, have higher
IFNG and GZMB expression compared with ZNF683– Trm cells,
suggesting that cancer-specific Trm cells have high cytotoxic
potential. This suggests that cancer-specific Trm cells would have
exceptionally high tumour immunity among Trm cells.
ZNF683, also known as Hobit, is a transcription factor that is a

homologous gene of BLIMP-1 [43]. The single-cell analysis revealed
the existence of ZNF683+ and ZNF683–Trm cell subsets although
increased ZNF683 expression in Trm cell populations indicates that
ZNF683 is a core gene [27]. The ZNF683 expression is not well
understood; however, our results suggest that ZNF683 expression
is activated by TCR or IFN-γ signalling stimulation. Reports on
genes upstream of ZNF683 are limited, and TBX21 is one of the
few upstream genes reported [33–37]. TBX21 encodes the protein
T-bet, which is a positive IFN-γ regulator, the signature cytokine of
Th1 cells [44, 45]. However, this study expressed TBX21 in Trm
cells, which not only play a role in initial tumour immunity but also
have a strong influence on other immune cells, such as Th1 cells,
due to IFN-γ expression. ZNF683+ Trm cells play a central role in
cellular immunity, especially tumour immunity.
In conclusion, the number of tumour-infiltrating CD103+ Trm

cells is a prognostic predictive factor in the OS and RFS in CRC, and
tumour-infiltrating CD103+ Trm cells predominantly comprise CD8
T cells expressing cytotoxic cytokines and immune checkpoint
molecules. Additionally, we identified cancer-specific Trm cells as
cancer-specific Trm cells. ZNF683+ Trm cells could play a role in
tumour immunity by expressing IFN-γ (Supplementary Fig. 6d).

DATA AVAILABILITY
The processed gene expression data were deposited in the Gene Expression
Omnibus database under accession id GSE 188381.
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