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BACKGROUND: Studies have shown that blood platelets contain tumour-specific mRNA profiles tumour-educated platelets (TEPs).
Here, we aim to train a TEP-based breast cancer detection classifier.
METHODS: Platelet mRNA was sequenced from 266 women with stage I–IV breast cancer and 212 female controls from 6 hospitals.
A particle swarm optimised support vector machine (PSO-SVM) and an elastic net-based classifier (EN) were trained on 71% of the
study population. Classifier performance was evaluated in the remainder (29%) of the population, followed by validation in an
independent set (37 cases and 36 controls). Potential confounding was assessed in post hoc analyses.
RESULTS: Both classifiers reached an area under the curve (AUC) of 0.85 upon internal validation. Reproducibility in the
independent validation set was poor with an AUC of 0.55 and 0.54 for the PSO-SVM and EN classifier, respectively. Post hoc analyses
indicated that 19% of the variance in gene expression was associated with hospital. Genes related to platelet activity were
differentially expressed between hospitals.
CONCLUSIONS: We could not validate two TEP-based breast cancer classifiers in an independent validation cohort. The TEP
protocol is sensitive to within-protocol variation and revision might be necessary before TEPs can be reconsidered for breast cancer
detection.

British Journal of Cancer (2023) 128:1572–1581; https://doi.org/10.1038/s41416-023-02174-5

BACKGROUND
The introduction of mammographic screening has enabled
detection of breast cancer in asymptomatic women, both in the
general population, as well as in women with increased risk of
breast cancer who are screened from a young age onwards. Breast
cancer screening has increased early detection rates, thereby
improving treatment opportunities and decreasing morbidity and
mortality [1, 2]. However, mammography is associated with a high
number of false positives, leading to unnecessary invasive
diagnostic procedures [1, 3, 4]. In addition, sensitivity of
mammography is limited in women with high breast density,
which may complicate screening of young women with an
increased risk of breast cancer [5–7].
Implementation of blood-based markers may not only improve

the performance of breast cancer screening but also decrease the
costs and increase compliance to the screening programme due
to its low burden. Currently, a plethora of blood-based biomarkers
is being explored for various applications in breast cancer. Most
efforts focus on circulating tumour DNA and circulating tumour
cells in the context of treatment response monitoring. However,

these biomarkers may be less suited for breast cancer screening,
because of their low levels in blood of patients with early stage
disease and the heterogeneous nature of breast tumours [8–10].
Previously, differences have been shown between the mRNA

content from blood platelets of cancer patients and healthy
controls [11, 12]. Aside from their role in haemostasis and wound
healing, platelets are also involved in cancer associated processes
such as epithelial–mesenchymal transition, metastasis, angiogen-
esis, and immune evasion. It is hypothesised that the altered
platelet mRNA content in cancer patients is the result of specific
splicing activity in response to tumour-associated stimuli, in
combination with ingestion of tumour-associated mRNA. In the
past years, classification algorithms for detection of cancer have
been trained based on mRNA profiles from platelets, also referred
to as tumour-educated platelets (TEPs) [11, 13–15]. A protocol
providing instructions for the complete procedure of TEP
collection, processing and particle swarm optimised classifier
training was published [16]. Prior to this study, TEP-based
classifiers had not been developed for detection of breast cancer.
In addition, previous studies did not compare different classifier
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training methods and did not attempt to reproduce the findings
in an independent validation study.
In this multicentre study, the objective was to develop a

classification algorithm on TEP mRNA profiles to distinguish
patients with breast cancer from healthy controls. In six centres,
blood samples were collected and platelets were isolated
according to the published protocol [16]. Subsequently, RNA
isolation and sequencing was done centrally. Using 71% of the
multicentre study population, a classifier was trained according to
the published protocol by Best et al. For comparison, an
alternative classifier was trained using elastic net regression.
Performance of both classifiers was assessed using the remaining
29% of the study population. Lastly, classifier performance was
validated in an independent separated case–control study, for
which samples were collected exclusively in one of the
participating centres.

METHODS
Experimental model and subject details
Human subjects. In total, blood was collected for 553 women of 18 years
or older (Supplemental Table 1). Subjects provided written informed
consent before blood withdrawal. This study was conducted in accordance
with the principles of the Declaration of Helsinki. Approval for this study
was obtained from the institutional review board and the ethics committee
at each participating hospital (for NKI IRB codes: CFMPB398, CFMPB580,
CFMPB617; for other studies, data are publicly available) [13].

Method details. For the multicentre set, peripheral whole blood was
drawn by venipuncture from breast cancer patients and asymptomatic
female controls at the VU University Medical Center, Amsterdam, The
Netherlands, the Netherlands Cancer Institute (NKI-AVL), Amsterdam, The
Netherlands, the Academic Medical Center, Amsterdam The Netherlands,
the Utrecht Medical Center, Utrecht, The Netherlands, the Medical
University of Vienna, Vienna, Austria, and Massachusetts General Hospital,
Boston, USA. For the single-centre external validation set, peripheral whole
blood was drawn by venipuncture from breast cancer patients and
asymptomatic female controls at the Netherlands Cancer Institute (NKI-
AVL), Amsterdam, The Netherlands. Breast cancer patients were diagnosed
by clinical, radiological and pathological examination. Blood of breast
cancer patients was collected before start of or during treatment.
Asymptomatic controls were self-reported to be free of disease at the
moment of blood collection, and were not subjected to additional tests
confirming the absence of cancer or other disease. No power calculation
was used to determine the number of samples required for algorithm
development and validation. Samples for the multicentre set were
collected and processed similarly and simultaneously according to a
previously published protocol [16]. Samples for the external validation set
were collected and processed in the period 2017–2019, following the
multicentre study (2015–2017) and applying the same protocol. The
researchers were not blinded for case–control status of the multicentre set
during processing of the samples, algorithm training and internal
validation. For the single-centre external validation set, blinding of platelet
pellets was performed by the contributing institute. RNA isolation and
sequencing was done blinded and results were linked to case–control
status by an independent third party (A. Heemskerk-Gerritsen, Erasmus MC,
Rotterdam, The Netherlands). For collection and annotation of clinical data,
patient records were manually queried for demographic and clinical vari-
ables, i.e. age, sex, type of tumour and stage. All clinical data was
anonymised and stored in a secured database.

Blood and RNA processing. Whole blood was collected in 6- or 10mL
EDTA-coated Vacutainer tubes and were processed within 12 (part of
samples from VU University Medical Center, and the Netherlands Cancer
Institute, Academic Medical Center, the Utrecht Medical Center, the
Medical University of Vienna) or 48 h (part of samples from VU University
Medical Center, and Massachusetts General Hospital, Boston, USA) using
standardised protocols as described previously [16]. Platelet rich plasma
(PRP) was separated from nucleated blood cells by a 20-min 120 × g
centrifugation step, after which the platelets were pelleted by a 20-min
360 × g centrifugation step. Next, 9/10th of the PRP was removed carefully
to reduce the risk of contamination of the platelet preparation with
nucleated cells.

Platelet pellets were suspended in RNA (Life Technologies) and after
overnight incubation at 4 °C frozen at −80 °C. All RNA isolations and
sequencing was performed at the VU University Medical Center,
Amsterdam, The Netherlands. For RNA isolation, frozen platelets were
thawed on ice and total RNA was isolated using the mirVana miRNA
isolation kit (Ambion, Thermo Scientific, AM1560). Platelet RNA was eluted
in 30 µL elution buffer. Quality was assessed using the RNA 6000 Picochip
(Bioanalyzer 2100, Agilent). Platelet RNA samples with a RIN value >7 and/
or distinctive rRNA curves were considered for subsequent analyses.
To obtain sufficient platelet cDNA for robust RNA-seq library prepara-

tion, the samples were subjected to cDNA synthesis and amplification
using the SMARTer Ultra Low RNA Kit for Illumina Sequencing v3 (Clontech,
cat. nr. 634853). Prior to amplification, all samples were diluted to ~500 pg/
µL total RNA and again the quality was assessed using the Bioanalyzer
Picochip. For samples with a stock yield below 400 pg/µL, a volume of two
or more microlitres of total RNA (up to ~500 pg total RNA) was used as
input for the SMARTer amplification. Quality control of amplified cDNA was
measured using the Bioanalyzer 2100 with DNA High Sensitivity chip
(Agilent). All SMARTer cDNA synthesis and amplifications were performed
together with a negative control, which was required to be negative
by Bioanalyzer analysis. Samples with detectable fragments in the
300–7500 bp region were selected for further processing. All amplified
platelet cDNA was first subjected to nucleic acid shearing by sonication
(Covaris Inc) and subsequently labelled with single index barcodes for
Illumina sequencing using the TruSeq Nano DNA Sample Prep Kit (Illumina,
cat nr. FC-121-4001). To account for the low platelet cDNA input
concentration, all bead clean-up steps were performed using a 15-min
bead-cDNA binding step and a 12-cycle enrichment PCR. All other steps
were according to the manufacturer’s protocol. Labelled platelet DNA
library quality and quantity were measured using the DNA 7500 chip or
DNA High Sensitivity chip (Agilent). High-quality samples with product
sizes between 300 and 500 bp were pooled (12–19 samples per pool) in
equimolar concentrations for shallow thromboSeq and submitted for
100 bp Single Read sequencing on the Illumina Hiseq 2500 and 4000
platform using version 4 sequencing reagents.

Processing of raw RNA-sequencing data. Raw RNA-seq data of platelets
encoded in FASTQ-files were subjected to a standardised RNA-seq
alignment pipeline, as described previously [16]. In summary, RNA-seq
reads were subjected to trimming and clipping of sequence adaptors by
Trimmomatic (v. 0.22), mapped to the human reference genome (hg19)
using STAR (v. 2.3.0), and summarised using HTSeq (v. 0.6.1), which was
guided by the Ensembl gene annotation version 75. Of samples that
yielded less than 0.2 × 106 intron-spanning reads in total after sequencing,
we again sequenced the original TruSeq preparation of the sample and
merged the read counts generated from the two individual FASTQ-files
after HTSeq count summarisation. RNAs encoded on the mitochondrial
DNA were excluded from downstream analyses. All subsequent statistical
and analytical analyses were performed in R (version 4.0.3). Initial QC and
filtering operations were performed according to the previously published
pipeline (https://github.com/MyronBest/thromboSeq_source_code [16]).
Briefly, genes which yielded <30 intron-spanning reads in >90% of the
dataset were removed from the count matrix. For each sample, we
quantified the number of RNAs for which at least one intron-spanning read
was mapped, and excluded samples with <750 detected RNAs. No samples
were removed based on this exclusion principle. Next, we performed a
leave-one-sample-out cross-correlation analysis, using a correlation thresh-
old of 0.3. Six samples from the control group were excluded due to low
inter-sample correlation.

Quantification and statistical analyses
Normalisation strategies. For the elastic net, PSO-SVM, and some down-
stream analyses, TMM normalisation from the edgeR package [17, 18] was
implemented, with some modifications. The calcNormFactors function was
adjusted so that both the TMM reference sample and the TMM correction
factors could be drawn from a subset of the samples (in this case, the
training samples) instead of the entire dataset. This prevented bleed-
through of the validation set into the training data. TMM normalisation
factors could then be applied during counts-per-million (cpm) and log2
transformation.
In addition to TMM, the PSO-SVM and some downstream analyses

utilised RUV factor correction, described in detail in Best et al. [11] and
implemented in the publically available repository https://github.com/
MyronBest/thromboSeq_source_code. Briefly, the count matrix was
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normalised using an approach based on the remove unwanted variation
(RUV) method, proposed by Risso et al. [19]. The RUVg function employed
singular value decomposition to estimate the contribution of covariates of
interest (case–control status) and unwanted variation (age, library size, and
isolation location). The count matrix was then corrected to compensate for
factors of unwanted variation. To prevent removal of unwarranted
variation that was correlated with biological signal, two thresholds were
applied, based on a Student’s t test: (a) the p value between RUVg variable
and case–control status must exceed 0.01, and (b) the p value between
RUVg variable and the potentially confounding variable must be less
than 0.01.

Data partitions for algorithm training. Female breast cancer cases were
stratified by stage, followed by random allocation to training, evaluation
and internal validation subsets using a 40%–30%–30% schema. For the
training and evaluation subsets, a proportionally sized number of age-
matched female controls was selected randomly [16]. Age matching
between cases and controls was performed using the matchControls
function from the R package e1071.

Classifier development. The PSO-SVM was trained and evaluated using
publicly available code https://github.com/MyronBest/thromboSeq_
source_code and is described in detail in Best et al. [11, 16]. Briefly, the
PSO-SVM iterates between the training and evaluation data partitions to
minimise “1−AUC” as a metric of classifier performance. Algorithm
parameters (“particles”) are optimised in an iterative process during which
the best performing parameters are communicated within the swarm,
allowing the swarm to converge upon the most optimal solution within
the search space. The PSO-SVM makes use of this principle to optimise the
RUV normalisation thresholds described above, the number of biomarker
genes and their rank, and the cost and gamma parameters of the SVM
itself. This process relies primarily upon the R packages ppso (for particle
swarm implementation), e1071 (for implementation of the SVM), and
RUVSeq (for RUV normalisation). For the breast cancer classifier, 100
particles and 10 iterations were employed. Input for the PSO-SVM is RUV-
corrected, TMM-normalised, cpm-log2 transformed counts, with age,
library size and hospital of origin as RUV factors to correct.
The elastic net was developed using publicly available code and

standard methodologies from the caret package in R. The model was
produced using the glmnet engine (method= “glmnet”) and ROC as the
optimisation metric. Ten-fold cross-validation was employed to optimise
the regularisation penalty lambda and the mixing parameter alpha. As
the elastic net does not require a separate “evaluation” data partition,
“training” and “evaluation” samples were combined to train the elastic net.
To reduce the potential impact of sampling artefacts on classifier
performance, we additionally trained a second elastic net with leave-
one-out cross-validation (LOOCV). This experiment was not possible for the
PSO-SVM due to the extremely long runtimes (estimated >1 year) for the
PSO-SVM in an LOOCV setting.
Classifier performance on validation sets for both the PSO-SVM and the

elastic net was assessed using the R package pROC and ggplot2.
Confidence intervals for the ROCs were calculated using the Delong
method. Additional performance metrics were extracted via
caret::confusionMatrix.

Dimensionality analyses. t-SNE visualisations were generated via the R
package Rtsne. All t-SNE visualisations were performed on TMM-cpm-log2
corrected counts as described above. Where indicated, some t-SNE plots
depicted counts normalised by RUV-correction prior to further
normalisation steps.

Differential expression. All differential expression tests were performed
using the edgeR package in R. TMM normalisation was applied before-
hand, using unmodified edgeR methodology. Significance was determined
using a quasi-likelihood test. For pairwise comparisons between hospitals,
the design formula was ~ age + group + hosp, where “group” indicates
case–control status. Additional comparisons were subsetted to produce
count matrices containing either cases only, or controls only. These
comparisons were made using the design formula ~age + hosp.

Batch correction. A comparison of the efficacy of batch correction
methods was performed between the ComBat method from the R
package sva, and RUV-based correction, described above. With given batch
factors (in this case, hospital of origin), RUV was used as a batch correction

method in addition to a normalisation method. This was not intended as
an exhaustive exploration of all available batch correction methods, but
rather as a comparison between RUV-based correction, which was
implemented in the previous PSO-SVM-based TEP-cancer publications
[11, 16], and a widely used baseline. ComBat was applied as an intercept
model on TMM-cpm-log normalised counts.

Variance partition. The variance partition analysis was performed using
the eponymous R package (variancePartition) [20]. Variance partition
applies a linear mixed model to quantify the variance contributed by each
element in the design formula, in this case ~Age+ (1|hosp) + (1|cancer).
As recommended, discrete variables like hospital and case–control status
were modelled as random effects when performing this analysis. The
overall contribution to variance could subsequently be computed on a per
gene basis.

RESULTS
Multicentre study: training and assessing performance of the
TEP classifiers
We utilised blood platelets from 266 patients with invasive breast
cancer and 212 healthy controls from six different centres to
develop and assess performance of a breast cancer classifier based
on RNA-sequencing data. The study design is visualised in Fig. 1. In
line with previously published TEP studies, the multicentre study
population was divided into three case–control subsets: a
“training”, “evaluation” and “internal validation” subset [16]. After
selection of genes with sufficient coverage in the RNA sequencing
data, a particle swarm optimised support vector machine (PSO-
SVM) classifier was trained on reads that span splice junctions. The
PSO-SVM algorithm employs multiple different parameter settings
(“particles”) when training the algorithm in the training set and
evaluating the performance of each particle in the evaluation set.
Because the PSO-SVM learns from the evaluation set when
selecting optimal parameters, both training and evaluation
samples contributed to training the algorithm. Classifier perfor-
mance was assessed in the “internal validation” set; these samples
did not contribute to the training of the classifier, but were
collected, processed and sequenced alongside the samples of the
training and evaluation subsets.
Breast cancer cases were stratified by stage, followed by

random allocation to the training (n= 106, 40.8%), evaluation
(n= 82, 30.9%) and internal validation (n= 78, 29.3%) subsets. For
the training and evaluation subsets, a proportionally sized number
of age-matched controls was selected randomly, while the
remainder of the controls was assigned to the internal validation
set. Descriptive statistics for the total multicentre study population
and for each of the three subsets are presented in Table 1.
Due to extensive computing time (several weeks per run), it is

not feasible to test more than a few randomly assigned data
partitions with the PSO-SVM. To assess the impact of sample
partitioning on performance, and to provide a baseline perfor-
mance against which to measure the PSO-SVM, an alternative
classifier was trained using an elastic net regression approach (EN).
Elastic nets are less computationally intensive and are therefore
well suited to nested cross-validation.
For optimal comparison with the PSO-SVM, the EN was trained

by 10-fold cross validation using the same data partitions as the
PSO-SVM. Since the EN does not require an evaluation set, the
training and evaluation sets of the PSO-SVM were combined for
training of the EN. Performance of both classifiers in the internal
validation set was high, with an area under the curve (AUC) of 0.85
(95% CI 0.79–0.92) for the PSO-SVM and 0.85 (95% CI 0.78–0.91)
for the EN classifier (Supplemental Fig. 1).
We additionally tested an EN using a leave-one-out cross-

validation (LOOCV) approach, during which a single sample is
randomly assigned to be the “test” sample, while the remainder of
the dataset is used for training. This process is repeated until every
sample has been “left out”, after which performance can be
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calculated. The LOOCV- EN classifier also performed well, with an
AUC of 0.83 (95% CI: 0.79–0.87). Taken together, the PSO-SVM
performed well, but not better than the baseline established by
the EN classifier (Table 2).

Hospital of origin is a confounder within the multicentre study
Although efforts were made to ensure the study design was
balanced regarding case–control distribution from participating
centres, it was impossible to achieve a completely balanced
design due to limited sample availability. Analysis of the

multicentre dataset demonstrated a strong correlation between
hospital of origin and case–control status (Chi square p < 0.001;
Fig. 2a). Specifically, controls consisted primarily of samples
originating from the VUMC, whereas breast cancer cases were
skewed towards NKI and MGH. This observation warranted
additional investigation into the potential effect of hospital-
related batch effects on platelet RNA profiles.
In dimensionality analyses, it could be seen that there was

separation between samples originating from different hospitals
(Fig. 2b), but not between cases and controls (Fig. 2c).

Table 1. Descriptive statistics of the training, evaluation, internal validation and external validation sets.

Characteristics Training Evaluation Internal validation External validation

Cases, N 106 82 78 37

Median age (IQR) 51 (40–60) 51 (42–58) 52 (44–61) 60 (53–67)

Stage, N (%)

I 14 (13.2) 11 (13.4) 11 (14.1) 7 (18.9)

II 51 (48.1) 39 (47.6) 38 (48.7) 23 (62.2)

III 14 (13.2) 11 (13.4) 10 (12.8) 5 (13.5)

IV 27 (25.5) 21 (25.6) 19 (24.4) 2 (5.4)

Controls, N 85 64 63 36

Median age (IQR) 51 (42–61) 53 (42–60) 52 (24–63) 62 (53–67)

IQR interquartile range.

Table 2. Performance of EN and PSO-SVM classifiers.

Stage Model Features AUC 95% CI Sensitivity Specificity Precision Recall F1

All stages EN 963 0.85 0.78–0.91 0.79 0.71 0.78 0.79 0.78

Early (I–II) EN 963 0.81 0.73–0.90 0.73 0.71 0.67 0.73 0.70

Late (III–IV) EN 963 0.91 0.83–0.98 0.90 0.71 0.59 0.90 0.71

All stages PSO-SVM 1749 0.85 0.79–0.91 0.86 0.60 0.73 0.86 0.79

Early (I–II) PSO-SVM 1749 0.81 0.74–0.89 0.80 0.60 0.61 0.80 0.69

Late (III–IV) PSO-SVM 1749 0.92 0.86–0.98 0.97 0.60 0.53 0.97 0.68

EN elastic net, PSO-SVM particle swarm optimised support vector machine, AUC area under the curve, 95% CI 95% confidence interval.

Training set
N = 106 cases

N = 85 controls

Evalua�on set
N = 82 cases

N = 64 controls

Valida�on set
N = 78 cases

N = 63 controls

TRAINING INTERNAL VALIDATION

Par�cle swarm op�miza�on of algorithm

Evalua�on

EXTERNAL VALIDATION

Valida�on set
N = 37 cases

N = 36 controls

Training set 
N = 188 cases N = 149 controls

Valida�on set
N = 78 cases

N = 63 controls

TRAINING INTERNAL VALIDATION

Evalua�on

Training folds Test fold

1st

2nd

10th

. . . 

PSO-SVM

ELASTIC NET

EXTERNAL VALIDATION

Valida�on set
N = 37 cases

N = 36 controls

MULTICENTRE SET SINGLE-CENTRE SET

Fig. 1 Study design. PSO-SVM particle swarm optimised support vector machine.
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We quantified the contribution of hospital of origin relative to
variance explained by case–control status. This was accomplished
using the variancePartition package in R. Briefly, a linear mixed
effect model was fit to predict gene expression based on hospital
of origin, age and case–control status. As shown in the violin plots
in Fig. 2d, an average of 67% of the variance in TEP samples could
be attributed to residuals, indicating that the overall fit of the
model was poor. Of the remaining variance, 19% was on average
explained by hospital of origin, and 14% by case–control status.
This indicated that hospital-related batch effects might act as a
confounder when training TEP-based classifiers, causing perfor-
mance to deteriorate when subsequent batches were introduced.

Platelet activity-related gene expression differs between
hospitals
To further investigate the potential confounding influence of
hospital-related batch effects, we performed a series of differential
expression tests. The KEGG term “platelet activation” was strongly
differentially expressed in comparisons between the three centres
that contributed the most samples (NKI, VUMC, MGH). Platelet
activation was the top upregulated term in MGH vs NKI
(FDR= 0.00001, Supplemental Fig. 2a) and VUMC vs NKI (FDR=
7.1e−05, Supplemental Fig. 2b). Comparing VUMC to MGH it was
the third most significant term (FDR= 0.03, Supplemental Fig. 2c).
The uneven contribution of cases and controls per hospital might
also act here as a confounder in differential expression analysis
between hospitals. To compensate, we performed expression
analysis stratified for case–control status. Given the available
numbers, this comparison could be made between VUMC and the
NKI for controls, and between MGH and the NKI for cases. Platelet
activation was the top enriched term in both comparisons
(FDR= 0.001 and FDR= 7.41e−06, respectively, Supplemental
Fig. 2d, e), indicating that platelet activation contributed strongly
to the batch effect observed between centres.

Batch correction is insufficient for removing confounding by
hospital of origin
In line with previous publications, we initially applied an RUV-
based method of batch correction which iteratively corrects the
count matrix by removing factors of unwanted variation, such as
those correlated with hospital of origin. This method is integrated
with the training of the PSO-SVM, and can also be deployed prior
to training an EN. However, RUV batch correction is designed to
only discard factors of unwanted variation if they are not
correlated with case–control status. It is therefore unsuitable for
correction of the imbalance in this dataset. Indeed, t-SNE
visualisations of the TEP count matrix after iterative RUV correction
continued to show substantial clustering based on hospital of
origin (Fig. 2e). We therefore compared RUV-based batch
correction with ComBat, a well-established batch correction
algorithm designed for bulk RNA-seq. ComBat-corrected counts
were more diffuse with regards to hospital of origin (Fig. 2f). An EN
classifier trained on batch-corrected counts from the multicentre
dataset had lower performance when ComBat was applied vs RUV
correction (AUCs 0.59 and 0.80 respectively, Supplemental Table 2).
Taken together, it would appear that ComBat was able to
successfully remove clustering based on hospital of origin, but
simultaneously resulted in loss of biological signal. By contrast,
RUV correction preserved high classifier performance, but was
unable to effectively remove variation due to hospital of origin.
Neither method performed adequately for clinical applications,
which will involve analysing new batches of samples on an
ongoing basis.

Single-centre classifiers perform poorly on samples from other
locations
In order to circumvent hospital-related batch effects, we retrained
the classifier on samples originating from a single hospital. Of all

the hospitals contributing samples to the multicentre study, only
the NKI delivered a sufficient amount of both cases and controls
for classifier development (Supplemental Table 1). The EN-
classifier was retrained on NKI-only samples using 10-fold cross-
validation, balancing case and controls via down-sampling within
the cross-validation loop, and predictions made on samples
originating from MGH and the VUMC. Centers which contributed
less than 10 samples (AMC, UMCU, Vienna) were excluded from
this analysis.
The single-centre classifier yielded an AUC of 0.65 when

predicting on samples that originated from other locations
(Supplemental Table 3). Using a 0.5 probability threshold, accuracy
was 41%, correctly classifying all 100 breast cancer samples (94 of
which originated from MGH) and misclassifying all but 3 of the 149
controls (entirely contributed by the VUMC). Sample classification
was predicted with low certainty, with probabilities clustered
between 0.49 and 0.58 (Fig. 3a). This was consistent with
dimensionality analysis on case–control status when faceted by
hospital (Fig. 3b). Within the NKI, cases and controls were well-
separated, and the cases from MGH could be superimposed upon
the cases from the NKI. However, the controls originating from the
VUMC were widely dispersed and largely overlapped with cases of
NKI origin. Together, these observations explained why the single-
centre classifier demonstrated perfect sensitivity (1.0) but very
poor specificity (0.02). Although it is possible to artificially inflate
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classifier performance by adjusting the probability threshold,
doing so would entail mixing training and validation data, and
may not be transferable to samples derived from new locations.

Classifier performance in an external one-centre validation
dataset
Having observed a clear batch effect related to hospital of origin
that could not be corrected without loss of classifier performance,
and having observed that high performance within a single centre
might not validate on samples from other locations, we set out to
validate both the PSO-SVM and EN in a new, independent,
external validation case–control study (37 cases and 36 age-
matched controls) conducted at the NKI after the multicentre
study. These samples were collected, processed and sequenced
according to the same protocol as applied in the multicentre
study. Isolation of mRNA, sequencing and classification was
performed blinded, and case–control status was predicted by
the PSO-SVM and EN classifiers described in the previous section.
Classification labels were subsequently linked to true class labels
by an independent third party. Descriptive statistics of the study
population are provided in Table 1. Both classifiers showed poor
performance, with an AUC of 0.55 (95% CI 0.42–0.69) and 0.54
(95% CI 0.40–0.68) for the PSO-SVM and EN, respectively (Fig. 4a
and Supplemental Table 4). Only modest improvement was seen
when applying an elastic net classifier trained on batch-corrected
counts (RUV is already part of the PSO-SVM). Notably, on the
external validation set, ComBat-trained classifiers performed

comparable to RUV-trained classifiers (AUCs 0.63 vs 0.62,
Supplemental Table 5). This is an indicator that both methods
were unable to remove hospital-related batch effects during the
training phase, while still preserving biological signal.
Finally, we applied the NKI-only EN classifier to the external

validation dataset. Since all samples in the training and validation
sets are from the same centre, this analysis should be free of
confounding by hospital of origin. Unfortunately, performance on
the external validation dataset remained poor, with an AUC of 0.62
(Supplemental Table 6). In this case, probabilities of both cases
and controls were distributed around or slightly below the
threshold of 0.5 (Fig. 4b). The sensitivity and specificity were
0.27 and 0.72, respectively, with an overall accuracy of 0.49. The
poor performance of the NKI-only classifier on a new batch of
samples that originated from the same hospital suggests that each
new batch effectively represents a new distribution. In line with
previous differential expression results, platelet activation was the
most statistically significant downregulated KEGG pathway when
comparing the external validation samples to the entire multi-
centre dataset (FDR= 4.5e−05), and also the most significant
downregulated pathway when comparing the external validation
samples to other samples previously collected from the NKI
(FDR= 8.3e–06).
We further investigated the quality of the samples from the

independent validation set, to exclude the possibility that the
samples were of a lesser quality. We analysed potential
erythrocyte and lymphocyte contamination, both by visual
inspection analysis of haemoglobin related gene expression and
lymphocyte markers (Supplemental Data and Supplemental Figs. 3
and 4). These data showed that there is no reason to expect that
erythrocyte or lymphocyte contamination were confounders for
the poor classifier performance in the independent validation set.

DISCUSSION
In the current study, we applied a recently published protocol to
develop a particle swarm optimised classifier based on platelet
mRNA from blood samples of breast cancer patients and healthy
controls. In addition, we compared the performance of the particle
swarm-based classifier to an alternative classifier trained on the
same samples using elastic net regression. Although initial
performance of the classifiers was adequate, post hoc analyses
warranted further analyses into hospital of origin as a potential
confounder. An attempt to reproduce the findings in an
independent, single-centre, external validation set showed low
accuracy and was deemed unsuccessful. Our results reveal several
issues with the current TEP protocol that need to be addressed in
future studies, which are summarised in Table 3.
First, we found that gene expression in platelets was heavily

influenced by hospital of origin, despite all hospitals using the
same platelet-processing protocol, and despite technicians at the
NKI-AVL being trained in platelet isolation by technicians of the
VUMC. Specifically, platelet activation related genes were differ-
entially expressed between the three largest contributing
hospitals, independent of case–control status. This may possibly
be explained by differences in processing allowed for within the
protocol, such as the time allowed between blood withdrawal and
platelet isolation. According to the protocol, whole blood can be
stored at room temperature for up to 48 h before platelet isolation
[16]. However, previous studies have shown that platelet activity is
increased with longer time to processing and higher temperature
[21]. A previous TEP study in non-small cell lung cancer showed
stable levels of platelet activation markers such as P-selectin and
CD63 for different processing times, but the sample size was small
(n= 6) and the same study did show enhanced platelet activation
related gene expression in controls vs cases, which was not
discussed in depth [11]. Since data on exact duration of
processing was not registered for samples from some centres,
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we could not formally analyse this variable in our study. However,
in practice we observed that in the NKI, samples are processed
faster than in the VUMC (2–6 h vs 12–24 h). Therefore, further
research to investigate the magnitude of processing time as a
confounding factor is warranted. Moreover, other within-protocol
differences may also play a role. According to the protocol, blood
tube volumes of 4, 6 or 10 mL are accepted. In the NKI, 10 mL
blood tubes are used, whereas in the VUMC, 6 mL blood tubes are
used. In a previous study comparing several protocols for isolation
of platelet-rich-plasma (PRP) for treatment purposes, it was shown
that the platelet concentration correlates with blood tube volume
and centrifugation speed [22]. Although the aforementioned
study did not investigate the current TEP protocol, and no platelet
RNA sequencing was performed, it is possible that TEP gene
expression may be also be influenced by these factors.
To bypass the confounding effect of hospital we trained and

tested a classifier solely on samples from a single hospital, which
did not result in improved classifier performance. This suggests
that batch effects are not only relevant between hospitals, but also
within hospitals, indicating that the protocol is highly sensitive to
subtle variations in execution other than the variables mentioned
earlier. Moreover, batch correction as implemented in the classifier
training portion of the protocol, proved unsuccessful in removing
hospital-related confounding. In future studies these batch-related
issues may in part be addressed by centralised sample processing.
However, sample transportation time and temperature may
influence TEP gene expression results, which is another concern.
In addition, before TEP-based biomarkers can be implemented
clinically, showing analytical validity of the protocol by reprodu-
cing study results in other centres is mandatory.
Given the poor performance of the classifiers in the external

validation set, and the lack of a leukodepletion step in the TEP
protocol underlying our study, we investigated sample quality in
post-hoc analyses. While the samples in the external validation set
showed higher CD3 subunit expression than the samples in the
original set, indicative of leucocyte contamination, no correlation
was found with incorrect classification of the samples. Previous
multi-centre studies based on the current TEP protocol have
resulted in highly accurate classifiers without a leukodepletion
step, but expression of leucocyte-specific markers was not
reported [11, 13–15]. Given the absence of a predictive relation-
ship between putative leucocyte contamination and sample
misclassification, we consider it unlikely that leukodepletion alone
will be sufficient to rescue TEP classifier performance. Never-
theless, we do recommend evaluation of the extent and influence
of contamination in future TEP studies.
The majority of the gene expression signal in our study was

attributable to residual factors, which might be explained by

variables such as use of medication or presence of other systemic
disease. Our study contains some individuals with breast cancer who
had started treatment at the time of blood withdrawal. While
previous studies have shown that the TEP profile seems to normalise
after tumour resection, impact of systemic treatment on platelet
gene expression has not been investigated [15]. Given that most
chemotherapeutic drugs suppress the bone marrow with thrombo-
cytopenia as a common side effect, an effect on the platelet gene
expression profile seems probable. In our study, we were unable to
analyse the effect of treatment on the platelet profile, since data was
not available for most patients. However, given that our study was
set up to include patients at the time of diagnosis, the number of
patients that are pre-treated is likely to be low, and we expect the
majority to still have detectable disease upon blood withdrawal. In
addition, previous studies have been able to successfully train
classifiers with inclusion of patients who had started treatment
[11, 13]. Besides treatment effects, it has been shown that the
platelet transcriptome is altered in patients with severe acute
disease such as sepsis and myocardial infarction, but also chronic
disease such as lupus and chronic kidney disease [23–26]. Changes
in the platelet mRNA profile have also been linked to obesity, race,
and medication use [27–29]. In our study, co-morbidities were not
reported for breast cancer patients. Healthy controls were self-
reported to be free of disease, and they were not asked about
medication use or subjected to any diagnostic investigations to
confirm absence of disease. Therefore, we cannot exclude the
presence of (latent) disease and response bias. A previous study
evaluating TEP RNA in healthy subjects showed minor differences
based on age and sex, storage time and library size [30], and showed
clustering based on immune-related genes potentially related to
infection. Although it was deemed unlikely by the authors that the
small variability resulting from these factors would have a biological
effect, this may significantly complicate development of classifiers
intended for large-scale screening. Ideally, future studies should
extensively document the health state and treatment status of
participating subjects and the relation to TEP gene expression.
In our study, the top genes that were selected in the PSO-SVM

and EN classifiers did not correspond to the top genes that were
associated with case–control status, indicating that there is no
substantial signal in the data that can be utilised for reliable
classifier training. In addition, the top classifier features do not
represent known breast cancer biology, which raises uncertainty
on their utility as biomarkers. The lack of a breast cancer signal
may in part be explained by the small amounts of TEP mRNA
subjected to PCR, which may give rise to PCR artefacts. In addition,
only reads that span the splice junction were used for feature
selection, which left out the majority of mRNA sequencing
information that might be useful for classification.

Table 3. TEP-related issues highlighted in our study and potential solutions for future studies.

Issue to resolve Potential solutions

Optimisation of study design • Balanced study design with matched cases and controls from the same hospital

• Extensive collection of detailed information on clinical variables such as
treatment status

Prevention of batch effects related to sample
processing

• Detailed registration of sample processing, including processing time and blood
tube volume

• Dedicated trained technicians for sample processing

• Homogenisation of blood processing, including blood tube volume and
processing time

• Centralised processing whenever feasible

• Addition of leukodepletion step in the protocol

• Standardised evaluation of lymphocyte and erythrocyte contamination

Ensuring detection of tumour-specific signal if present • Increase amounts of RNA subjected to PCR

• Training on all reads, not just spliced reads
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Our findings may have impact on the interpretation of
previously published papers on TEP RNA based classifiers. A
pan-cancer detection algorithm that was published in
2015 showed a detection accuracy of 96% using an internal
validation subset, and correct tumour classification over six
tumour types of 71% [13]. Similarly, also using internal validation
subsets a PSO-SVM trained for detection of non-small-cell lung
cancer showed 88 and 81% classification accuracy in late stage
and early stage cancer, respectively [11]. However, in the subset
used for training of the non-small cell lung cancer classifier,
hospital of origin was also unevenly distributed between cases
and controls. Therefore, the classifier might be subject to a similar
hospital-of-origin batch effect, although the imbalance was less
pronounced than in our dataset. For our study, we followed the
protocol as published by Best et al. in Nature Protocols, which is
the same protocol used for aforementioned studies [16]. In
contrast to the previous studies, our population included mainly
early stage patients. Previous studies investigating other blood
based biomarkers in breast cancer have shown that it is difficult to
reliably reproduce biomarkers in early stage breast cancer.
Classification accuracy may be better when more late stage
patients are included in the training set. However, since the aim of
our study was to find a biomarker suited for screening, a potential
classifying algorithm should be able to sufficiently recognise early
stage breast cancer.
In conclusion, we were unable to successfully validate a TEP

RNA based breast cancer detection classifier in a single-centre,
independent, blinded study. Both elastic net and particle swarm-
based classifiers performed poorly. The gene expression profile
was severely influenced by hospital of origin and other factors
unrelated to case–control status, suggesting that the wet lab
protocol is highly sensitive to within-protocol variations in
execution. Therefore, thorough revision of the protocol is
necessary before TEP RNA based classifiers can be reconsidered
for breast cancer detection in the future.
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