Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Dietary intake of total, heme and non-heme iron and the risk of colorectal cancer in a European prospective cohort study



Iron is an essential micronutrient with differing intake patterns and metabolism between men and women. Epidemiologic evidence on the association of dietary iron and its heme and non-heme components with colorectal cancer (CRC) development is inconclusive.


We examined baseline dietary questionnaire-assessed intakes of total, heme, and non-heme iron and CRC risk in the EPIC cohort. Sex-specific multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using Cox regression. We modelled substitution of a 1 mg/day of heme iron intake with non-heme iron using the leave one-out method.


Of 450,105 participants (318,680 women) followed for 14.2 ± 4.0 years, 6162 (3511 women) developed CRC. In men, total iron intake was not associated with CRC risk (highest vs. lowest quintile, HRQ5vs.Q1:0.88; 95%CI:0.73, 1.06). An inverse association was observed for non-heme iron (HRQ5vs.Q1:0.80, 95%CI:0.67, 0.96) whereas heme iron showed a non-significant association (HRQ5vs.Q1:1.10; 95%CI:0.96, 1.27). In women, CRC risk was not associated with intakes of total (HRQ5vs.Q1:1.11, 95%CI:0.94, 1.31), heme (HRQ5vs.Q1:0.95; 95%CI:0.84, 1.07) or non-heme iron (HRQ5vs.Q1:1.03, 95%CI:0.88, 1.20). Substitution of heme with non-heme iron demonstrated lower CRC risk in men (HR:0.94; 95%CI: 0.89, 0.99).


Our findings suggest potential sex-specific CRC risk associations for higher iron consumption that may differ by dietary sources.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Splines of the associations between dietary iron intake and colorectal risk in men and women.

Data availability

For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at


  1. Global Cancer Observatory-Cancer today [Internet]. IARC-WHO. 2020 [cited 22/12/2020].

  2. WCRF. Diet, Nutrition, Physical Activity and Colorectal Cancer. London, UK: World Cancer Research Fund; 2018.

  3. Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16:1599–600.

    Article  PubMed  Google Scholar 

  4. Hallberg L, Hultén L, Gramatkovski E. Iron absorption from the whole diet in men: how effective is the regulation of iron absorption? Am J Clin Nutr. 1997;66:347–56.

    Article  CAS  PubMed  Google Scholar 

  5. Ishikawa S, Tamaki S, Ohata M, Arihara K, Itoh M. Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: a possible mechanism of heme-induced colon cancer. Mol Nutr food Res. 2010;54:1182–91.

    CAS  PubMed  Google Scholar 

  6. Glei M, Klenow S, Sauer J, Wegewitz U, Richter K, Pool-Zobel BL. Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes. Mutat Res. 2006;594:162–71.

    Article  CAS  PubMed  Google Scholar 

  7. Lunn JC, Kuhnle G, Mai V, Frankenfeld C, Shuker DE, Glen RC, et al. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 2007;28:685–90.

    Article  CAS  PubMed  Google Scholar 

  8. Cross AJ, Pollock JRA, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63:2358–60.

    CAS  PubMed  Google Scholar 

  9. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci: Off J Isfahan Univ Med Sci. 2014;19:164–74.

    Google Scholar 

  10. Hunt JR, Zito CA, Johnson LK. Body iron excretion by healthy men and women. Am J Clin Nutr. 2009;89:1792–8.

    Article  CAS  PubMed  Google Scholar 

  11. Lee DH, Anderson KE, Folsom AR, Jacobs DR Jr. Heme iron, zinc and upper digestive tract cancer: the Iowa Women’s Health Study. Int J Cancer. 2005;117:643–7.

    Article  CAS  PubMed  Google Scholar 

  12. Balder HF, Vogel J, Jansen MC, Weijenberg MP, van den Brandt PA, Westenbrink S, et al. Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Preventive Oncol. 2006;15:717–25.

    Article  CAS  Google Scholar 

  13. Larsson SC, Adami H-O, Giovannucci E, Wolk A. Re: Heme Iron, Zinc, Alcohol Consumption, and Risk of Colon Cancer. J Natl Cancer Inst. 2005;97:232–3.

    Article  CAS  PubMed  Google Scholar 

  14. Kabat GC, Miller AB, Jain M, Rohan TE. A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women. Br J Cancer. 2007;97:118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 2010;70:2406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Giovannucci EL, Smith-Warner SA, Wu K, Fuchs CS, Pollak M, et al. A prospective study of intakes of zinc and heme iron and colorectal cancer risk in men and women. Cancer Causes Control. 2011;22:1627–37.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hara A, Sasazuki S, Inoue M, Iwasaki M, Shimazu T, Sawada N, et al. Zinc and heme iron intakes and risk of colorectal cancer: a population-based prospective cohort study in Japan. Am J Clin Nutr. 2012;96:864–73.

    Article  CAS  PubMed  Google Scholar 

  18. Etemadi A, Abnet CC, Graubard BI, Beane-Freeman L, Freedman ND, Liao L, et al. Anatomical subsite can modify the association between meat and meat compounds and risk of colorectal adenocarcinoma: Findings from three large US cohorts. Int J Cancer. 2018;143:2261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk—a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Preventive Oncol. 2014;23:12–31.

    Article  CAS  Google Scholar 

  20. Qiao L, Feng Y. Intakes of heme iron and zinc and colorectal cancer incidence: a meta-analysis of prospective studies. Cancer Causes Control. 2013;24:1175–83.

    Article  PubMed  Google Scholar 

  21. Bastide N, Pierre F, Corpet D. Heme Iron from Meat and Risk of Colorectal Cancer: A Meta-analysis and a Review of the Mechanisms Involved. Cancer Prev Res (Phila, Pa). 2011;4:177–84.

    Article  CAS  Google Scholar 

  22. Lee DH, Anderson KE, Harnack LJ, Folsom AR, Jacobs DR Jr. Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women’s Health Study. J Natl Cancer Inst. 2004;96:403–7.

    Article  CAS  PubMed  Google Scholar 

  23. Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24.

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez CA. The European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2006;9:124–6.

    Article  PubMed  Google Scholar 

  25. Van Puyvelde H, Perez-Cornago A, Casagrande C, Nicolas G, Versele V, Skeie G, et al. Comparing Calculated Nutrient Intakes Using Different Food Composition Databases: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Nutrients 2020;12:2906.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cross AJ, Harnly JM, Ferrucci LM, Risch A, Mayne ST, Sinha R. Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food Nutr Sci. 2012;3:905–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jakszyn P, Agudo A, Lujan-Barroso L, Bueno-de-Mesquita HB, Jenab M, Navarro C, et al. Dietary intake of heme iron and risk of gastric cancer in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;130:2654–63.

    Article  CAS  PubMed  Google Scholar 

  28. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348:2599–608.

    Article  PubMed  Google Scholar 

  29. Kleinbaum D, Klein M. Survival Analysis: A Self-Learning Text. 1. NY, USA: Springer; 2005. p. 700.

  30. Hess KR. Graphical methods for assessing violations of the proportional hazards assumption in cox regression. Stat Med. 1995;14:1707–23.

    Article  CAS  PubMed  Google Scholar 

  31. Harrell FEJ. [Internet]. Rms: Regression Modeling Strategies.R package version 6.3-0 [cited 31/12/2016].

  32. Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transpl. 2007;40:381–7.

    Article  CAS  Google Scholar 

  33. Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, et al. Statistical methods for studying disease subtype heterogeneity. Stat Med. 2016;35:782–800.

    Article  PubMed  Google Scholar 

  34. Ibsen DB, Laursen ASD, Würtz AML, Dahm CC, Rimm EB, Parner ET, et al. Food substitution models for nutritional epidemiology. Am J Clin Nutr. 2021;113:294–303.

    Article  PubMed  Google Scholar 

  35. Song M, Giovannucci E. Substitution analysis in nutritional epidemiology: proceed with caution. Eur J Epidemiol. 2018;33:137–40.

    Article  PubMed  Google Scholar 

  36. Tomova GD, Gilthorpe MS, Tennant PWG. Theory and performance of substitution models for estimating relative causal effects in nutritional epidemiology. Am J Clin Nutr. 2022;116:1379–88.

    Article  PubMed  PubMed Central  Google Scholar 

  37. van den Brandt PA. Red meat, processed meat, and other dietary protein sources and risk of overall and cause-specific mortality in The Netherlands Cohort Study. Eur J Epidemiol. 2019;34:351–69.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alferink LJ, Kiefte-de Jong JC, Erler NS, Veldt BJ, Schoufour JD, de Knegt RJ, et al. Association of dietary macronutrient composition and non-alcoholic fatty liver disease in an ageing population: the Rotterdam Study. Gut 2019;68:1088–98.

    Article  CAS  PubMed  Google Scholar 

  39. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  40. Ronco A, Calderon J, Mendoza B, Espinosa E, Lasalvia-Galante E. Dietary Iron Sources and Colorectal Cancer Risk: A Role for Sex. Journal of Cancer Science and Treatment. 2019:93–110.

  41. Luo H, Zhang NQ, Huang J, Zhang X, Feng XL, Pan ZZ, et al. Different forms and sources of iron in relation to colorectal cancer risk: a case-control study in China. Br J Nutr. 2019;121:735–47.

    Article  CAS  PubMed  Google Scholar 

  42. Fairweather-Tait SJ, Jennings A, Harvey LJ, Berry R, Walton J, Dainty JR. Modeling tool for calculating dietary iron bioavailability in iron-sufficient adults. Am J Clin Nutr. 2017;105:1408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Woodhead JC, Drulis JM, Nelson SE, Janghorbani M, Fomon SJ. Gender-Related Differences in Iron Absorption by Preadolescent Children. Pediatr Res. 1991;29:435–9.

    Article  CAS  PubMed  Google Scholar 

  44. Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33:940–59.

    Article  CAS  PubMed  Google Scholar 

  45. Johnston KL, Johnson DM, Marks J, Srai SK, Debnam ES, Sharp PA. Non-haem iron transport in the rat proximal colon. Eur J Clin Investig. 2006;36:35–40.

    Article  CAS  Google Scholar 

  46. Takeuchi K, Bjarnason I, Laftah AH, Latunde-Dada GO, Simpson RJ, McKie AT. Expression of iron absorption genes in mouse large intestine. Scand J Gastroenterol. 2005;40:169–77.

    Article  CAS  PubMed  Google Scholar 

  47. Sesink AL, Termont DS, Kleibeuker JH, Van der Meer R. Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 1999;59:5704–9.

    CAS  PubMed  Google Scholar 

  48. Watling CZ, Schmidt JA, Dunneram Y, Tong TYN, Kelly RK, Knuppel A, et al. Risk of cancer in regular and low meat-eaters, fish-eaters, and vegetarians: a prospective analysis of UK Biobank participants. BMC Med. 2022;20:73.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study. J Nutr Biochem. 2019;67:20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamphuis JBJ, Mercier-Bonin M, Eutamène H, Theodorou V. Mucus organisation is shaped by colonic content; a new view. Sci Rep. 2017;7:8527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Winter J, Nyskohus L, Young GP, Hu Y, Conlon MA, Bird AR, et al. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon. Cancer Prev Res (Philos). 2011;4:1920–8.

    Article  CAS  Google Scholar 

  52. Le Leu RK, Winter JM, Christophersen CT, Young GP, Humphreys KJ, Hu Y, et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015;114:220–30.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5:e10667.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Skeie G, Braaten T, Hjartåker A, Lentjes M, Amiano P, Jakszyn P, et al. Use of dietary supplements in the European Prospective Investigation into Cancer and Nutrition calibration study. Eur J Clin Nutr. 2009;63:S226–38.

    Article  CAS  PubMed  Google Scholar 

Download references


The authors would like to thank the EPIC study participants and staff for their valuable contribution to this research. The coordination of EPIC is financially supported by International Agency for Research on Cancer (IARC) and also by the Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London which has additional infrastructure support provided by the NIHR Imperial Biomedical Research Centre (BRC). The national cohorts are supported by: Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), German Institute of Human Nutrition PotsdamRehbruecke (DIfE), Federal Ministry of Education and Research (BMBF) (Germany); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy, Compagnia di SanPaolo and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS), Instituto de Salud Carlos III (ISCIII), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, and the Catalan Institute of Oncology, ICO (Spain); Swedish Cancer Society, Swedish Research Council, Region Skåne and Region Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C8221/A29017 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk; MR/M012190/1 to EPIC-Oxford). (United Kingdom). VF is supported by the Cancer Prevention and Research Institute of Texas (CPRIT) Rising Stars Award (Grant ID RR200056). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the paper.


Internal funds of the IARC were used to support these analyses.

Author information

Authors and Affiliations



Conception and design: MJ, EKA, Acquisition and interpretation of data: all authors; Performed analyses: EKA, MJ, Drafted the paper: EKA, AJC, ER, VF, PJ, HF, DJH; Critically revised paper: all authors; Approved of final submission: all authors.

Corresponding author

Correspondence to Mazda Jenab.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Ethical approval was obtained from the IARC Ethical Committee and from local ethics committees pertaining to each EPIC center. All the participants provided written informed consent to enter the cohort.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aglago, E.K., Cross, A.J., Riboli, E. et al. Dietary intake of total, heme and non-heme iron and the risk of colorectal cancer in a European prospective cohort study. Br J Cancer 128, 1529–1540 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links