Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Studies

A DNA methylation signature for the prediction of tumour recurrence in stage II colorectal cancer

Abstract

Background

A major challenge in stage II colorectal carcinoma is to identify patients with increased risk of recurrence. Biomarkers that distinguish patients with poor prognosis from patients without recurrence are currently lacking. This study aims to develop a robust DNA methylation classifier that allows the prediction of recurrence and chemotherapy benefit in patients with stage II colorectal cancer. We performed a genome-wide DNA methylation capture sequencing in 243 stage II colorectal carcinoma samples and identified a relapse-specific DNA methylation signature consisting of eight CpG sites.

Methods

Two hundred and forty-three patients with stage II CRC were enrolled in this study. In order to select differential methylation sites among recurrence and non-recurrence stage II CRC samples, DNA methylation profiles of 62 tumour samples including 31 recurrence and 31 nonrecurrence samples were analysed using the Agilent SureSelectXT Human Methyl-Seq, a comprehensive target enrichment system to analyse CpG methylation. Pyrosequencing was applied to quantify the methylation level of candidate DNA methylation sites in 243 patients. Least absolute shrinkage and selection operator (LASSO) method was employed to build the disease recurrence prediction classifier.

Results

We identified a relapse-related DNA methylation signature consisting of eight CpG sites in stage II CRC by DNA methylation capture sequencing. The classifier showed significantly higher prognostic accuracy than any clinicopathological risk factors. The Kaplan–Meier survival curve showed an association of high-risk score with poor prognosis. In multivariate analysis, the signature was the most significant prognosis factor, with an HR of 2.80 (95% CI, 1.71–4.58, P < 0.001). The signature could identify patients who are suitable candidates for adjuvant chemotherapy.

Conclusions

An eight-CpG DNA methylation signature is a reliable prognostic and predictive tool for disease recurrence in patients with stage II CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study flowchart.
Fig. 2: CpG methylation sites are significantly associated with recurrence in stage II CRC.
Fig. 3: DNA methylation signature is a biomarker for recurrence in stage II CRC.
Fig. 4: Association between the DNA methylation classifier and prognosis.
Fig. 5: DNA methylation signature is an independent prognostic factor in stage II CRC.
Fig. 6: DNA methylation classifier is more accurate in the prediction of disease recurrence and disease-free survival than other clinicopathological risk factors.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon request from the corresponding authors.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  3. André T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350:2343–51.

    Article  PubMed  Google Scholar 

  4. Gramont A. Adjuvant therapy of stage II and III colon cancer. Semin Oncol. 2005;32:11–4.

    Article  PubMed  Google Scholar 

  5. Kelly H, Goldberg RM. Systemic therapy for metastatic colorectal cancer: current options, current evidence. J Clin Oncol. 2005;23:4553–60.

    Article  CAS  PubMed  Google Scholar 

  6. Kannarkatt J, Joseph J, Kurniali PC, Al-Janadi A, Hrinczenko B. Adjuvant chemotherapy for stage II colon cancer: a clinical dilemma. J Oncol Pract. 2017;13:233–41.

    Article  PubMed  Google Scholar 

  7. André T, de Gramont A, Vernerey D, Chibaudel B, Bonnetain F, Tijeras-Raballand A, et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol. 2015;33:4176–87.

    Article  PubMed  Google Scholar 

  8. O’Connor ES, Greenblatt DY, LoConte NK, Gangnon RE, Liou JI, Heise CP, et al. Adjuvant chemotherapy for stage II colon cancer with poor prognostic features. J Clin Oncol. 2011;29:3381–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang JX, Song W, Chen ZH, Wei JH, Liao YJ, Lei J, et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 2013;14:1295–306.

    Article  CAS  PubMed  Google Scholar 

  10. Feng Q, Chang W, Mao Y, He G, Zheng P, Tang W, et al. Tumor-associated macrophages as prognostic and predictive biomarkers for postoperative adjuvant chemotherapy in patients with stage II colon cancer. Clin Cancer Res. 2019;25:3896–907.

    Article  CAS  PubMed  Google Scholar 

  11. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dalerba P, Sahoo D, Paik S, Guo X, Yothers G, Song N, et al. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N Engl J Med. 2016;374:211–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parent P, Cohen R, Rassy E, Svrcek M, Taieb J, André T, et al. A comprehensive overview of promising biomarkers in stage II colorectal cancer. Cancer Treat Rev. 2020;88:102059.

    Article  CAS  PubMed  Google Scholar 

  15. Gangadhar T, Schilsky RL. Molecular markers to individualize adjuvant therapy for colon cancer. Nat Rev Clin Oncol. 2010;7:318–25.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu L, Dong C, Cao Y, Fang X, Zhong C, Li D, et al. Prognostic role of BRAF mutation in stage II/III colorectal cancer receiving curative resection and adjuvant chemotherapy: a meta-analysis based on randomized clinical trials. PLoS ONE. 2016;11:e0154795.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fariña-Sarasqueta A, van Lijnschoten G, Moerland E, Creemers GJ, Lemmens V, Rutten HJT, et al. The BRAF V600E mutation is an independent prognostic factor for survival in stage II and stage III colon cancer patients. Ann Oncol. 2010;21:2396–402.

    Article  PubMed  Google Scholar 

  18. Kim SK, Kim SY, Kim CW, Roh SA, Ha YJ, Lee JL, et al. A prognostic index based on an eleven gene signature to predict systemic recurrences in colorectal cancer. Exp Mol Med. 2019;51:1–12.

    PubMed  PubMed Central  Google Scholar 

  19. Pagès F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391:2128–39.

    Article  PubMed  Google Scholar 

  20. Lanzi A, Pagès F, Lagorce-Pagès C, Galon J. The consensus immunoscore: toward a new classification of colorectal cancer. Oncoimmunology. 2020;9:1789032.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yamanaka T, Oki E, Yamazaki K, Yamaguchi K, Muro K, Uetake H, et al. 12-Gene recurrence score assay stratifies the recurrence risk in stage II/III colon cancer with surgery alone: the SUNRISE Study. J Clin Oncol. 2016;34:2906–13.

    Article  CAS  PubMed  Google Scholar 

  22. Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8:346ra92.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tie J, Cohen JD, Lahouel K, Lo SN, Wang Y, Kosmider S, et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med. 2022;386:2261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  25. Fearon ER. Genetic alterations underlying colorectal tumorigenesis. Cancer Surv. 1992;12:119–36.

    CAS  PubMed  Google Scholar 

  26. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–99.

    Article  CAS  PubMed  Google Scholar 

  27. Hanley MP, Hahn MA, Li AX, Wu X, Lin J, Wang J, et al. Genome-wide DNA methylation profiling reveals cancer-associated changes within early colonic neoplasia. Oncogene. 2017;36:5035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    Article  CAS  PubMed  Google Scholar 

  29. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  30. Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. 2015;149:1204.e12–25.e12.

    Article  Google Scholar 

  31. Oster B, Thorsen K, Lamy P, Wojdacz TK, Hansen LL, Birkenkamp-Demtröder K, et al. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas. Int J Cancer. 2011;129:2855–66.

    Article  CAS  PubMed  Google Scholar 

  32. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13:679–92.

    Article  CAS  PubMed  Google Scholar 

  33. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–93.

    Article  CAS  PubMed  Google Scholar 

  35. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    Article  CAS  PubMed  Google Scholar 

  36. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet. 2006;38:149–53.

    Article  CAS  PubMed  Google Scholar 

  37. Kong X, Chen J, Xie W, Brown SM, Cai Y, Wu K, et al. Defining UHRF1 domains that support maintenance of human colon cancer DNA methylation and oncogenic properties. Cancer Cell. 2019;35:633.e7–48.e7.

    Article  Google Scholar 

  38. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;176:98.e14–112.e14.

    Article  Google Scholar 

  39. Kaminskas E, Farrell A, Abraham S, Baird A, Hsieh LS, Lee SL, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 2005;11:3604–8.

    Article  CAS  PubMed  Google Scholar 

  40. Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol. 2018;15:459–66.

    Article  CAS  PubMed  Google Scholar 

  41. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong S, Li W, Wang L, Hu J, Song Y, Zhang B, et al. Histone-related genes are hypermethylated in lung cancer and hypermethylated HIST1H4F could serve as a pan-cancer biomarker. Cancer Res. 2019;79:6101–12.

    Article  CAS  PubMed  Google Scholar 

  43. Benson AB 3rd, Schrag D, Somerfield MR, Cohen AM, Figueredo AT, Flynn PJ, et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol. 2004;22:3408–19.

    Article  PubMed  Google Scholar 

  44. Baxter NN, Kennedy EB, Bergsland E, Berlin J, George TJ, Gill S, et al. Adjuvant therapy for stage II colon cancer: ASCO guideline update. J Clin Oncol. 2022;40:892–910.

    Article  CAS  PubMed  Google Scholar 

  45. Ding W, Chen G, Shi T. Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis. Epigenetics. 2019;14:67–80.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang H, Song G, Song G, Li R, Gao M, Ye L, et al. Identification of DNA methylation prognostic signature of acute myelocytic leukemia. PLoS ONE. 2018;13:e0199689.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guo W, Zhu L, Yu M, Zhu R, Chen Q, Wang Q. A five-DNA methylation signature act as a novel prognostic biomarker in patients with ovarian serous cystadenocarcinoma. Clin Epigenetics. 2018;10:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Méndez-González J, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology. 2015;61:1945–56.

    Article  CAS  PubMed  Google Scholar 

  49. Sandoval J, Mendez-Gonzalez J, Nadal E, Chen G, Carmona FJ, Sayols S, et al. A prognostic DNA methylation signature for stage I non-small-cell lung cancer. J Clin Oncol. 2013;31:4140–7.

    Article  PubMed  Google Scholar 

  50. Haldrup C, Mundbjerg K, Vestergaard EM, Lamy P, Wild P, Schulz WA, et al. DNA methylation signatures for prediction of biochemical recurrence after radical prostatectomy of clinically localized prostate cancer. J Clin Oncol. 2013;31:3250–8.

    Article  CAS  PubMed  Google Scholar 

  51. Jonker DJ, Karapetis CS, Harbison C, O’Callaghan CJ, Tu D, Simes RJ, et al. Epiregulin gene expression as a biomarker of benefit from cetuximab in the treatment of advanced colorectal cancer. Br J Cancer. 2014;110:648–55.

    Article  CAS  PubMed  Google Scholar 

  52. Lin CY, Hsieh PL, Chou CL, Yang CC, Lee SW, Tian YF, et al. High EREG expression is predictive of better outcomes in rectal cancer patients receiving neoadjuvant concurrent chemoradiotherapy. Oncology. 2020;98:549–57.

    Article  CAS  PubMed  Google Scholar 

  53. Li XD, Miao SY, Wang GL, Yang L, Shu YQ, Yin YM. Amphiregulin and epiregulin expression in colorectal carcinoma and the correlation with clinicopathological characteristics. Onkologie. 2010;33:353–8.

    Article  CAS  PubMed  Google Scholar 

  54. Stahler A, Heinemann V, Giessen-Jung C, Crispin A, Schalhorn A, Stintzing S, et al. Influence of mRNA expression of epiregulin and amphiregulin on outcome of patients with metastatic colorectal cancer treated with 5-FU/LV plus irinotecan or irinotecan plus oxaliplatin as first-line treatment (FIRE 1-trial). Int J Cancer. 2016;138:739–46.

    Article  CAS  PubMed  Google Scholar 

  55. Scherer D, Deutelmoser H, Balavarca Y, Toth R, Habermann N, Buck K, et al. Polymorphisms in the angiogenesis-related genes EFNB2, MMP2 and JAG1 are associated with survival of colorectal cancer patients. Int J Mol Sci. 2020;21:5395.

  56. Zhu F, Dai SN, Xu DL, Hou CQ, Liu TT, Chen QY, et al. EFNB2 facilitates cell proliferation, migration, and invasion in pancreatic ductal adenocarcinoma via the p53/p21 pathway and EMT. Biomed Pharmacother. 2020;125:109972.

    Article  CAS  PubMed  Google Scholar 

  57. Oweida A, Bhatia S, Hirsch K, Calame D, Griego A, Keysar S, et al. Ephrin-B2 overexpression predicts for poor prognosis and response to therapy in solid tumors. Mol Carcinog. 2017;56:1189–96.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang D, Zhao J, Han C, Liu X, Liu J, Yang H. Identification of hub genes related to prognosis in glioma. Biosci Rep. 2020;40:5.

    CAS  Google Scholar 

  59. Zhang X, Zhang L, Lin B, Chai X, Li R, Liao Y, et al. Phospholipid phosphatase 4 promotes proliferation and tumorigenesis, and activates Ca(2+)-permeable cationic channel in lung carcinoma cells. Mol Cancer. 2017;16:147.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Wang J, Zhang L, Karatas OF, Shao L, Zhang Y, et al. RGS12 is a novel tumor-suppressor gene in african american prostate cancer that represses AKT and MNX1 expression. Cancer Res. 2017;77:4247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Y, Liu M, Yang S, Fuller AM, Karin Eisinger-Mathason TS, Yang S. RGS12 is a novel tumor suppressor in osteosarcoma that inhibits YAP-TEAD1-Ezrin signaling. Oncogene. 2021;40:2553–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu C, Yuan G, Yang ST, Zhang D, Yang S. RGS12 represses oral cancer via the phosphorylation and SUMOylation of PTEN. J Dent Res. 2021;100:522–31.

    Article  CAS  PubMed  Google Scholar 

  63. Ahluwalia P, Mondal AK, Bloomer C, Fulzele S, Jones K, Ananth S, et al. Identification and clinical validation of a novel 4 gene-signature with prognostic utility in colorectal cancer. Int J Mol Sci. 2019;20:3818.

  64. Kandimalla R, Gao F, Matsuyama T, Ishikawa T, Uetake H, Takahashi N, et al. Genome-wide discovery and identification of a novel miRNA signature for recurrence prediction in stage II and III colorectal cancer. Clin Cancer Res. 2018;24:3867–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Ministry of Science and Technology of China (2021YFA0804700) (QH), National Natural Science Foundation of China (82072914, 81872358) (QH), National Key Research and Development Program of China (2020YFC2008400) (CM), and The Science and Technology Commission of Shanghai Municipality (20DZ1100101) (YX).

Author information

Authors and Affiliations

Authors

Contributions

M Li: data curation, formal analysis, methodology, validation, writing; CZ: data curation, formal analysis; YX: data curation, formal analysis; CM: funding acquisition, resources; RH: data curation; WL: data curation; BZ: data curation; WY: funding acquisition, resources; XH: funding acquisition, resources; M Lv: formal analysis, validation, writing—original draft, writing—review and editing; YX: conceptualisation, formal analysis, funding acquisition, resources, supervision, writing—review and editing; QH: conceptualisation, formal analysis, funding acquisition, resources, supervision, writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to Minzhi Lv, Ye Xu or Qihong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of the Fudan University Shanghai Cancer Center. All included patients gave their written consent to participate in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhu, C., Xue, Y. et al. A DNA methylation signature for the prediction of tumour recurrence in stage II colorectal cancer. Br J Cancer 128, 1681–1689 (2023). https://doi.org/10.1038/s41416-023-02155-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02155-8

This article is cited by

Search

Quick links