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BACKGROUND: A non-invasive endometrial cancer detection tool that can accurately triage symptomatic women for definitive
testing would improve patient care. Urine is an attractive biofluid for cancer detection due to its simplicity and ease of collection.
The aim of this study was to identify urine-based proteomic signatures that can discriminate endometrial cancer patients from
symptomatic controls.
METHODS: This was a prospective case–control study of symptomatic post-menopausal women (50 cancers, 54 controls). Voided
self-collected urine samples were processed for mass spectrometry and run using sequential window acquisition of all theoretical
mass spectra (SWATH-MS). Machine learning techniques were used to identify important discriminatory proteins, which were
subsequently combined in multi-marker panels using logistic regression.
RESULTS: The top discriminatory proteins individually showed moderate accuracy (AUC > 0.70) for endometrial cancer detection.
However, algorithms combining the most discriminatory proteins performed well with AUCs > 0.90. The best performing diagnostic
model was a 10-marker panel combining SPRR1B, CRNN, CALML3, TXN, FABP5, C1RL, MMP9, ECM1, S100A7 and CFI and predicted
endometrial cancer with an AUC of 0.92 (0.96–0.97). Urine-based protein signatures showed good accuracy for the detection of
early-stage cancers (AUC 0.92 (0.86–0.9)).
CONCLUSION: A patient-friendly, urine-based test could offer a non-invasive endometrial cancer detection tool in symptomatic
women. Validation in a larger independent cohort is warranted.

British Journal of Cancer (2023) 128:1723–1732; https://doi.org/10.1038/s41416-022-02139-0

INTRODUCTION
Endometrial cancer is the most common gynaecological malig-
nancy in high-income countries and the sixth most common
cancer in women worldwide. In 2020, there were over 400,000
incident cases and 97,000 endometrial cancer-related deaths
globally [1]. The incidence of endometrial cancer is rising rapidly, a
consequence of the growing obesity epidemic and an ageing
population [2]. When diagnosed early, endometrial cancer is
amenable to curative surgical resection and has a favourable
prognosis [3]. A significant minority of women, however, present
with high risk or advanced disease and have poor outcomes [4, 5].
Novel approaches that facilitate the early detection of endometrial
cancer have potential to improve the outlook of women with
biologically aggressive disease [3].

Post-menopausal bleeding (PMB) is a red flag symptom of
endometrial cancer that triggers urgent investigation by sequential
invasive tests, including transvaginal ultrasound scan (TVS),
hysteroscopy and endometrial biopsy. These tests aim to identify
the 5–10% of symptomatic women with sinister underlying
pathology [6]. The use of TVS as a triage tool exposes more than
50% of symptomatic women to further tests due to its low
specificity [7]. Hysteroscopy and endometrial biopsy have high
diagnostic accuracy but are invasive, anxiety provoking and painful;
furthermore, the risk of technical failure is high [8]. Globally, millions
of intrauterine investigations are carried out every year, with huge
financial implications for health service providers [9] and at a
significant personal cost to women [10]. An accurate, non-invasive,
endometrial cancer detection tool that can triage symptomatic
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women for definitive testing while reassuring the large majority of
women who do not have cancer would improve patient care [3].
The quest for simple, non-invasive, painless and convenient

tests was voted the most important research priority for detecting
cancer early by the James Lind Alliance, representing the views of
patients, the general public and healthcare professionals [11].
Voided self-collected urine is an attractive biofluid for cancer
biomarker discovery due to its simplicity, low-cost and ease of
collection [12]. A urine test lends itself to self-sampling in
community settings and is therefore likely to be acceptable to
patients and clinicians alike [13]. The identification of endometrial
cancer biomarkers in urine is dependent on renal excretion of
systemic biomarkers or contamination of voided urine by uterine-
derived biomarkers [12]. A urine test that accurately discriminates
endometrial cancer from benign causes of PMB would represent a
major advance in the field [14].
Recent progress in high-throughput and incisive technologies

coupled with machine learning techniques have led to a new era of
cancer biomarker discovery and validation [15]. Sequential window
acquisition of all theoretical mass spectra (SWATH-MS), a data
independent proteomic profiling platform, is a highly accurate and
reproducible method for analysing biological samples and offers
technological advantages for biomarker discovery due to its
reproducibility, versatility, sensitivity and potential for data re-
interrogation [16]. In this study, we carried out quantitative SWATH-
MS-based proteomic profiling of urine acquired from a cohort of
symptomatic women with and without endometrial cancer. Using
machine learning techniques, robust predictive models for endome-
trial cancer detection were developed. This study provides proof of
principle that a urine-based test could facilitate endometrial cancer
detection and enable the effective triage of symptomatic post-
menopausal women for urgent clinical diagnostics.

MATERIALS AND METHODS
Study hypothesis
Endometrial cancer biomarkers in urine may originate from two main sources: (i)
the renal excretion of systemic cancer-related biomarkers and (ii) contamination
of urine by naturally shed uterine-derived biomarkers due to the anatomical
proximity of the urethra to the vagina [12]. We hypothesised that a two-pronged
biomarker discovery approach, in which proteomic data files obtained from the
SWATH-MS analysis of urine samples are searched against two spectral libraries
(human plasma library and a bespoke endometrial cancer cervico-vaginal fluid
library), has potential to deliver clinically relevant endometrial cancer biomarkers.
This methodology is more likely to yield cancer-specific biomarkers than a urine-
based spectral library, which would contain abundant nitrogenous waste
products and urothelial proteins, leading to low cancer biomarker discovery rates.
A urine-based spectral library is unlikely to contain endometrial cancer-derived
proteins in the absence of direct tumour spread into the mucosal layer of the
bladder, a rare and late event in endometrial cancer.

Study participants
We recruited women with abnormal uterine bleeding, including those with
known endometrial cancer attending the Gynaecology Outpatient
Departments of St Mary’s Hospital, Manchester University NHS Foundation
Trust and the Royal Oldham Hospital of the Northern Care Alliance NHS
Group, between April 2019 and March 2020. Cases were confirmed to have
endometrial cancer based on histological evaluation of biopsy or
hysterectomy specimens, by at least two specialist gynaecological
pathologists reporting to Royal College of Pathology Standards. Controls
were women with no evidence of endometrial cancer or atypical
hyperplasia, following routine diagnostic investigation for suspected
endometrial cancer that included TVS, endometrial biopsy and/or
hysteroscopy. Women with atrophic vaginitis, polyps and other benign
conditions were eligible to serve as controls. We excluded women with a
past history of gynaecological cancer and those without a uterus.

Research sample and clinical data collection
Voided urine samples were self-collected in dry sterile urine collection
pots. Samples were acquired prior to gynaecological examination and

diagnostics (controls), or prior to treatment (cases). Samples were
centrifuged at 1000 × g for 10min at room temperature and the
supernatant collected and stored at −80 °C, pending analysis. Demo-
graphic data, including age, body mass index, co-morbidities and
medications used were recorded for all participants.

Urine sample preparation
Urine supernatant samples were concentrated using the Agilent spin
concentrator (4 mil 30 K MWCO concentrator, Agilent UK). Using the same
spin, buffer exchange with 25mM ammonium bicarbonate (ABC) was
performed. Protein concentration was measured using the Bradford assay
(Bio-rad laboratories, Watford, UK). Appropriate volumes of urine contain-
ing 50 µg of protein were transferred into clean Eppendorf vials. Disulfide
bonds were reduced by the addition of 5 mM of dithiothreitol and 1%
sodium deoxycholate to the fluid and incubation in a heating block at 60
degrees for 30min. Alkylation was performed using 50mM iodoacetamide
in the dark at room temperature for 30min and digestion completed with
trypsin (Promega, Southampton, UK) at a 10:1 protein: trypsin ratio and
incubated overnight at 37 °C. 1% Formic acid was then added to the
sample for a final concentration of 0.5%. Deoxycholate was then pelleted
by centrifugation at 12,000 × g for 10 min at 10 °C and the supernatant
transferred to fresh microfuge tubes. Digested peptides were purified
using SepPak C18 columns (Waters, Wilmslow, UK). Samples were then
dried using the MiVac Quattro Concentrator for 3 h.

SWATH-MS data acquisition
We carried out mass spectrometric analysis of the urine samples using a
6600 Triple TOF instrument (Sciex, Warrington, UK). The liquid chromato-
graphic method was based on a 120-min gradient between a buffer A of
98% Water, 2% (v/v) Acetonitrile and 0.1% (w/v) Formic Acid and a buffer B
of 80% Acetonitrile, 20% Water, 0.1% Formic Acid. Dried sample peptides
were vigorously re-suspended in a buffer of 4% v/v Acetonitrile and 0.1%
Formic Acid and injected in duplicate. We used an Eksigent system
comprising of a nanoLC 400 autosampler along with a 425 pump module
with YMC-Triart C18 trap column and a YMC-Triart C18 analytical column.
We acquired mass spectra in SWATH mode and utilising the 100 variable
window method with optimised collision energy equations. The spectral
data files obtained were converted using wiffconverter (Sciex, Warrington,
UK) and searched against an in-house plasma library (for systemic proteins
with potential for excretion in urine) and our already published bespoke
consensus spectral library for cervico-vaginal fluid proteins with potential
to contaminate urine flow [17] using OpenSwath (version 2.0.0). We scored
peptide matches using pyProphet (version 0.18.3) within the TransPro-
teomic Pipeline (TPP) and subsequently aligned this using the TRIC tool
from the OpenSWATH pipeline. The median coefficients of variation across
technical replicates were <20 and were similar between cancers and
controls. Researchers were blinded to clinical data and histological results
during sample preparation and mass-spectrometric analyses. We per-
formed downstream statistical analysis using the Bioconductor (release 3.5)
packages SWATH2Stats and MSstats within the R language (version 3.4.1).
We excluded all potential contaminants and decoy sequences prior to
statistical analyses. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE [18] partner
repository with the data set identifier PXD038860.

Data analysis
R version 4.1.1 (R Development Core Team, Vienna, Austria), STATA version
16, andMetaboAnalyst 4.0 were used for data analysis. Our power calculation
confirmed that a sample size of 100 women, including n= 50 cases and
n= 50 controls is needed to identify a (true) biomarker or biomarker panel
that can detect endometrial cancer with an expected AUC of 0.90 (84, 96) at a
95% confidence level. We assessed data normality using the Shapiro–Wilk
test and summarised continuous data using means (±standard deviation) or
medians (IQR) as appropriate. Categorical data were summarised using
counts (%). We assessed for differences between study groups using
Student’s t test/Mann–Whitney U test for continuous variables and the chi-
square test for categorical variables as indicated. Correction for multiple
testing was performed using the Benjamini–Hochberg correction method
(q= 0.05). The degree and direction of fold change between cases and
controls was computed based on the ratio of protein concentrations, thus
allowing for the identification of proteins with unidirectional alterations. We
used principal component analysis (PCA) for dimensionality reduction and to
visualise the degree of separation between study groups. Hierarchical
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clustering (heat maps) was performed using the Euclidean distance measure
and the Ward algorithm. Random Forest (RF) machine learning technique
was used to identify themost important discriminatory classifiers which were
subsequently ranked according to the mean decrease accuracy metric and
themean decrease in Gini index. The discriminatory biomarkers were used to
create nested logistic regression models based on parsimony and predictive
accuracy. We used the forward stepwise regression approach to develop
models of increasing complexity by the sequential addition of discriminatory
proteins. The order of protein inclusion was based on their ranking in the RF
accuracy metric. We made an a priori decision to limit the maximum number
of proteins included in the final model to 10, thus ensuring simplicity of the
parsimonious model. The performance of this model was assessed by the
area under the receiver characteristic curve (AUC) and the 95% confidence
intervals (CIs). Likelihood ratio tests were used to compare nested model
performance. Interactions were tested within the regression framework by
the introduction of first-order interaction terms.

RESULTS
Participant demographics
In total, 104 women participated in this study, including 50 (48.1%)
with a histologically confirmed diagnosis of endometrial cancer
and 54 (51.9%) with no evidence of cancer (Table 1). Their median
age and BMI were 57 years (interquartile range (IQR) 52, 68) and
29 kg/m2 (IQR 24, 34), respectively, and they were mostly of White
British ethnicity (86.5% White, 10.7% Asian and 2.9% Afro-
Caribbean). Women with endometrial cancer were older (median
age 65 years (IQR 57, 73) vs 53 years (IQR 51, 58), p < 0.001) and with
higher BMI (median 30 kg/m2 (IQR 26, 37) vs 27 kg/m2 (IQR 23, 33),
p= 0.020), than their control counterparts (Table 1). Most of the
cases had low-grade (64% grade I/II), early-stage (86% FIGO stage
I/II) endometrial cancer of endometrioid histological subtype (82%).
Twenty tumours (40.0% of cases) showed lymphovascular space
invasion and 21 (42.0%) ≥50% myometrial invasion. The controls
were mostly symptomatic from vulvovaginal atrophy (20.4%),
benign endometrial or endocervical polyps (30.6%). However, in
almost 50% of cases, no underlying pathology was found.

Renally excreted systemic biomarkers
Self-collected voided urine samples were processed as described and
the resulting data searched against the human plasma library to

identify renally excreted endometrial cancer-related systemic biomar-
kers. A total of 798 urinary proteins were quantified across all samples.
An exploratory analysis based on differential expression is summarised
in Fig. 1a. PCAs using the top 10 discriminatory proteins by the RF
model showed minimal separation between the cancers and controls
(Fig. 1b). A total of 49 proteins were observed to have a log2 fold
change >1.2 when comparing cancers to controls. Of these, 39 were
statistically significant (p< 0.05) and 11 proteins were significant
following multiple testing corrections (adjusted p< 0.05) (Fig. 1c). The
most significant of the differential proteins was Cystatin A (CSTA)
(Fig. 1c). The proteins exhibiting the greatest log2 fold change and their
adjusted p values are summarised in Fig. 1e. Cell division cycle 5-like
protein (CDC5L) and Filaggrin (FLG) exhibited the largest fold changes,
being sevenfold higher and lower in endometrial cancer compared to
controls, respectively. Tumour protein D54 (TPD52L2) had a threefold
higher concentration in endometrial cancer compared to controls
while the molecular chaperone endoplasmin (HSP90B1) had a
threefold lower concentration (Fig. 1d). Gene ontology analyses of
the differential proteins (Log FC> 1.2) confirmed these proteins to have
metabolic and biological regulatory functions and to originate from the
extracellular space/vesicles and with protein and ion binding activities
(Fig. 1e). The top 20 discriminatory proteins identified by RF machine
learning were subsequently ranked by their contribution to the
classification accuracy based on the mean decrease accuracy metric
(Fig. 2a) and the mean decrease Gini index (Fig. 2b). Hierarchical
clustering confirmed the moderate ability of identified proteins to
discriminate between cancers and controls (Fig. 2c).
Classical univariate ROC curve analyses of important discrimina-

tory biomarkers was subsequently carried out to assess their ability
to separate endometrial cancer from controls. In this analysis,
Calcium Binding Protein A7 (S100A7) and Cystatin-A (CSTA) were
found to predict cancer with AUC values of 0.77 (95% CI 0.67–0.85)
and 0.77 (95% CI 0.66–0.86), respectively (Fig. S1). Other discrimi-
natory biomarkers included Fatty acid-binding protein 5 (FABP5),
Thioredoxin (TXN) and Cell adhesion molecule 1 precursor (CADM1)
with AUC values of 0.73 (95% CI 0.64–0.82), 0.73 (0.63–0.83) and 0.72
(95% CI 0.62–0.80), respectively. An adjusted (Turkey) box-plot
analyses of important proteins is presented in Fig. S2.
Next, we used forward stepwise logistic regression modelling to

create nested models of increasing complexity. The sequential

Table 1. Clinico-pathological characteristics of the study cohort.

Demographic characteristics of study population

Total cohort (104) Cases (50, 48.1%) Controls (54, 51.9%) p value

Patient characteristics

Age (years) median (IQR) 57 (52, 68) 65 (57, 73) 53 (51, 58) <0.001

BMI (kg/m2) median (IQR) 29 (24, 34) 30 (26, 37) 27 (23, 33) 0.020

White ethnicity 90 (86.5%) 43 (86.0%) 47 (87.0%) 0.877

History of diabetes mellitus 15 (14.4%) 12 (24.0%) 3 (5.6%) 0.002

Tumour characteristics

FIGO grade (2009)

Grade 1/2 – 32 (64.0%) –

Grade 3 – 18 (36.0%) –

FIGO stage (2009)

Stage 1/2 – 43 (86%) –

Stage 3/4 – 7 (14%) –

Histological phenotype

Endometrioid – 41 (82.0%) –

Non-endometrioid – 9 (18.0%) –

Myometrial invasion ≥50% – 21 (42.0%) –

Presence of LVSI – 20 (40.0%) –
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addition of discriminatory proteins improved predictive accuracy.
A four-marker panel comprising CSTA, S100A7, MMP9 and
SERPINA10 predicted endometrial cancer with an AUC of 0.84
(0.77–0.92), sensitivity of 72.2%, specificity of 87.8%, NPV of 86.7%
and PPV of 74.1% (Fig. 3a). The incorporation of RTN4, LAMP2,
WDR1, KRT13, ALDH2 and ILF3 gave rise to a ten-marker
biomarker panel, which predicted endometrial cancer with an
AUC of 0.91 (0.86–0.96), and was the best performing diagnostic
model (Fig. 3a). This model was adjudicated to be the parsimo-
nious model and demonstrated a sensitivity, specificity, NPV and
PPV of 79.6, 83.7, 84.3 and 78.9%, respectively (Table S1).
It is crucial that urine protein biomarkers for use in clinical

practice are able to detect early-stage (FIGO stage I/II)

endometrial cancer and not just advanced stage disease. We
therefore sought to identify urine proteins that can discriminate
early-stage (FIGO stage I/II) endometrial cancer from controls.
Based on this analysis, CSTA and S100A7 were confirmed to
discriminate early-stage endometrial cancer from controls with
AUC values of 0.75 (0.64–0.85) and 0.73 (0.63–0.83), respectively.
Other important discriminatory proteins were Proteasome
subunit beta type-7 (PSMB7) and TXN, with AUC values of 0.73
(0.63–0.83) and 0.72 (0.61–0.82), respectively. The four-
biomarker panel comprising S100A7, CSTA, MMP9 and SERPINA
10 predicted early-stage cancer with AUC 0.83 (0.74–0.92)
(Fig. 3b) while the equivalent ten-marker panel additionally
incorporating RTN4, LAMP2, WDR1, KRT13, ALDH2 and ILF3
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Fig. 1 Exploratory differential and gene ontological analyses of renally excreted urinary protein biomarkers for endometrial cancer
detection. a Volcano plot showing protein distribution by log fold change and degree of significance, b PCA showing pattern of separation based
on the top 10 discriminatory proteins identified by Random Forest machine learning technique, c histogram showing discriminatory proteins with
a statistically significant adjusted p (Benjamini correction) and their the associated degree of fold change, d histogram showing the discriminatory
proteins with the largest range of fold change and their associated adjusted p values, e gene ontology analyses of the discriminatory proteins
showing a log2 fold change of at least 1.2 mapped using the WebGestalt Webserver. Biological processes (Red), cellular processes (Blue) and
molecular functions (Green) are shown. The height of each bar represents the number of mapped proteins per category.
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predicted early-stage endometrial cancer with AUC of 0.90
(0.84–0.96) (Fig. 3b and Table S2).

Uterine-derived protein biomarkers
To identify uterine-derived biomarkers contaminating urine, we
searched the obtained urine proteomic data sets against our
previously published endometrial cancer cervico-vaginal fluid
spectral library [17]. A total of 316 proteins were quantified across
all study samples using the bespoke cervico-vaginal fluid (CVF)
library. An exploratory analysis based on differential expression is
summarised in Fig. 4a. Principal components analyses using the
top 10 discriminatory proteins by the RF model is presented in
Fig. 4b. A total of 21 proteins were observed to have a log2 fold
change greater than 1.2 when comparing cancers to controls. Of
these, 18 were statistically significant (unadjusted p < 0.05) and
eight remained significant following multiple testing corrections
(adjusted p < 0.05). The most significant of the differentially
expressed proteins following multiple testing corrections was
Thioredoxin (TXN) (Fig. 4c). The proteins exhibiting the greatest
log2 fold change and their adjusted p values are summarised in
Fig. 4d. Complement component C9 (CO9) exhibited the largest
fold change, being fourfold higher in endometrial cancer

compared to controls. SerpinB3 and transmembrane protease
serine 11D (TM11D) were almost threefold higher in endometrial
cancer respectively (Fig. 4d). Gene ontological analyses of the 21
differential proteins (Log FC > 1.2) confirmed these proteins to
have biological regulatory and metabolic functions and to
originate from the extracellular space and with protein and ion
binding activities (Fig. 4e). The top 20 discriminatory proteins
identified by RF machine learning were subsequently ranked by
their contribution to the classification accuracy based on the
mean decrease accuracy metric (Fig. 5a) and the mean decrease
Gini index (Fig. 5b). Hierarchical clustering confirmed the
moderate ability of identified proteins to discriminate between
cancers and controls (Fig. 5c).
Classical univariate ROC curve analyses some of the important

discriminatory biomarkers selected by the mean decrease accuracy
metric of the RF model is as presented in Fig. S3 and Fig. 5. SPRR1B
was the best performing biomarker with an AUC of 0.79 (0.69–0.88).
CRNN, CALML3 and TXN predicted endometrial cancer with AUC
values of 0.75 (0.64–0.84), 0.75 (0.65–0.84) and 0.75 (0.66–0.85)
respectively. An adjusted (Tukey) box-plot analyses showed
evidence of lower concentrations of SPRR1B, CRNN, TXN and FABP5
in cancers compared to controls (Fig. S4).
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Next, we used multiple logistic regression analysis in a forward
stepwise approach to assess the performance of combinations of
the top discriminatory biomarkers. A four-marker panel comprising
of SPRR1B, CRNN, CALML3 and TXN predicted endometrial cancer
with an AUC of 0.80 (0.71–0.88) (Fig. 3c). The sensitivity and
specificity of this panel was 89.8% and 64.3%, respectively, while the
PPV and NPV was 88.0% and 69.0%, respectively. The best
performing multi-marker signature combined the four biomarker
panel with FABP5, C1RL, MMP9, ECM1, S100A7 and CF1. This
signature predicted endometrial cancer with an AUC of 0.92
(0.86–0.97), sensitivity of 83.7% and specificity of 83.9% and was
adjudicated to be the parsimonious model (Fig. 3c and Table S1).
The PPV and NPV for this panel were 85.5% and 82.0%, respectively.
Next, we sought to identify uterine-derived urinary biomarkers for

the detection of early-stage endometrial cancer. In this analysis,
SPR1B and TXN were important discriminators with AUC values of
0.78 (0.68–0.87) and 0.77 (0.67–0.86), respectively. Other important
biomarkers for the detection of early-stage disease were CRNN and
CALM-3, with AUC values of 0.75 (0.66–0.84) and 0.75 (0.67–0.83),
respectively. The four-marker panel comprising SPR1B, TXN, CRNN
and CALM3 predicted endometrial cancer with an AUC of 0.78
(0.69–0.88). The 10-biomarker signature in this category additionally
incorporating FABP5, C1RL, MMP9, ECM1, S100A7 and CF1,
discriminated early-stage cancers from controls with an AUC of
0.92 (0.86–0.97) (Fig. 3d and Table S2).

DISCUSSION
Main findings
In this study, we explored the potential of urine-based protein
biomarkers to detect endometrial cancer in a cohort of

symptomatic women. Using a novel approach, we identified
systemic cancer biomarkers that are excreted by the kidneys as
well as those potentially originating from the tumour and shed
down the lower genital tract, contaminating urine. The top
discriminatory biomarkers individually showed moderate accuracy
(AUC > 0.70) for endometrial cancer detection overall. However,
algorithms combining the most discriminatory proteins were
more successful, with AUCs > 0.90. The best performing diagnostic
model was a 10-marker panel combining SPRR1B, CRNN, CALML3,
TXN, FABP5, C1RL, MMP9, ECM1, S100A7 and CF1 and predicted
endometrial cancer with an AUC of 0.92, sensitivity of 83.7% and
specificity of 83.9%. These data suggest that a urine-based test
could offer a minimally invasive endometrial cancer triage tool in
symptomatic women and confirmation in a larger independent
cohort is warranted.

Strengths and limitations
To our knowledge, this is the first study exploring the use of
SWATH-MS-based proteomics for the identification of endometrial
cancer biomarkers in urine. The use of SWATH-MS is a major
strength of our study, as it is a proteomic platform with high
precision, accuracy and reproducibility [16]. The exploitation of
urine, the prototype non-invasive sample, is another strength of
our study as self-collection of voided urine is highly acceptable to
women, offering opportunities for community-based collection
and repeat sampling [12]. The biomarkers identified in this study
showed good accuracy to warrant clinical translation, especially
when combined in a multi-marker panel. Indeed, several of the
identified biomarkers have mechanistic links with the malignant
transformation process. The choice of our control group, i.e.
symptomatic women who do not have endometrial cancer, is yet
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another strength, as these are the women for whom the new
detection tool is intended. All cases were confirmed to have
endometrial cancer based on gold-standard histopathological
evaluation, while the controls were excluded as cancer cases using
standard clinical diagnostic pathways and followed up for
12 months, thus alleviating concerns about misclassification bias.
Our approach of searching the urine proteomic data sets against
the plasma and cervico-vaginal fluid spectral libraries allowed for
the identification of renally excreted systemic biomarkers and
uterine biomarkers shed from the lower genital tract into urine.
This approach is more likely to yield clinically relevant biomarkers
compared with a search of a urine-based library, which would
largely be dominated by nitrogenous waste products and
urothelial proteins. We made an a priori decision to limit the

maximum number of classifiers in the diagnostic models to 10,
thus ensuring future validated assay simplicity. While a more
complex modelling approach with the inclusion of >10 classifiers
may lead to better diagnostic accuracy, it is unlikely to be easily
translated to routine clinical practice. Limitations of our study
include the relatively small numbers of the various endometrial
cancer subtypes and stages, which precluded an assessment of
the performance of the biomarker signatures for the detection of
advanced stage and biologically aggressive endometrial cancer
phenotypes. We do not know how well the identified biomarkers
will perform in pre-menopausal women, or whether they could be
used as a screening tool in asymptomatic women of the general
population or in women with a hereditary predisposition to
endometrial cancer (e.g. Lynch syndrome). Furthermore, the
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exploitation of urine for biomarker discovery may be confounded
by hydration status, medications used, renal function and diet [12].
As such, further work is needed in terms of standardising sample
collection and processing, before urine-based assays can be
introduced for endometrial cancer detection in routine clinical
practice. Finally, the use of SWATH-MS as an analytic tool for
endometrial cancer detection is presently impractical for use in
clinical settings. It is feasible that Selected Reaction Monitoring
mass spectrometry may become sufficiently automated and
sensitive in the future [19], however there is a need for robust,
clinically tractable urine biomarker assays using platforms like
ELISA or lateral flow test technology with validated reproducibility
for translation.

Interpretation
Only a few studies have explored the potential of urine for
endometrial cancer biomarker discovery. Proteins, metabolites,
micro-RNA and cytology have all been explored as endometrial
cancer biomarker targets [12, 14, 20–23]. As yet, there is limited
evidence to enable clinical translation. Most of the previous
studies have been small pilot studies based on analytical platforms
that lack precision and reproducibility [12]. Mu and colleagues

used two-dimensional gel electrophoresis and LC-MS/MS to
characterise urine samples acquired from women with early stage
endometrial cancer (n= 7) and age-matched controls (n= 11) and
found altered levels of zinc alpha-2-glycoprotein, alpha-1-acid
glycoprotein and CD59 in endometrial cancer cases compared to
controls [24] in a study limited by analytical sensitivity and protein
quantification. In another small study by the same group, a
glycopeptide with mass/charge ratio of 1449 of unknown origin
was found to discriminate endometrial cancer from controls based
on proteomic analysis of urine using surface enhanced laser
desorption/ionisation time-of-flight (SELDI-TOF) [25]. Bazzett and
colleagues found no evidence of an association between
endometrial cancer and urinary MMP [26] while Mattila et al.
reported an upregulation of epidermal growth factor (EGF) in the
urine of women with endometrial cancer [27]. A more recent study
by Stockley et al. found urine sediment MCM5 discriminated
endometrial cancer from benign disease with an AUC of 0.83 [28].
This single biomarker test is now being validated in a large
multicentre study across several international sites.
To our knowledge, our study is the largest to investigate urine

proteins for endometrial cancer detection. We show evidence that
urine protein biomarkers can identify endometrial cancer with
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sufficient accuracy to warrant clinical translation, especially when
combined in a multi-marker panel. The top discriminatory
biomarkers demonstrating mechanistic links with endometrial
tumourigenesis were CRNN and CSTA. Individually, CRNN and
CSTA predicted endometrial cancer with AUC values of 0.75 and
0.77 respectively. CRNN is pro-proliferative and plays an important
role in the GI/S cell cycle progression by inducing expression of
the cell cycle regulator CCND1 [29]. Importantly, CRNN regulates
malignant cell proliferation induced by pro-inflammatory cytokine
response by activating NFB1 and P13K/AKT signalling pathways,
both of which are implicated in endometrial carcinogenesis [29].
Cystatins, on the other hand, are cysteine protease inhibitors that
play crucial roles in cell proliferation, differentiation, invasion,
angiogenesis and immunomodulation [30]. Mechanistic studies
have been consistent in suggesting the potential role of cystatins
in cancer development and progression [30]. Our finding of lower
levels of cystatin A in the urine of women with endometrial cancer
is consistent with previous work where cystatin A has been
reported to act as a tumour suppressor in oesophageal and lung
cancers [31]. The study by Ma and colleagues concluded that
cystatin A exerts a tumour suppressive effect by inhibiting MAPK
and AKT pathways [31]. In addition, cystatin A gene silencing is
associated with epigenetic regulation while its overexpression
facilitates mesenchymal-to-epithelial transition [31].
Other discriminatory proteins with moderate accuracy (AUC >

0.70) include FABP5, MMP9 and SERPINA10. These biomarkers
have previously been reported to have potential as endometrial
cancer biomarkers in tissue and plasma samples [32]. FABP5 plays
crucial roles in cell signalling and modulates gene expression and
cell differentiation [33]. MMPs degrade extracellular matrix
proteins during tissue growth and turnover. Soini and colleagues,
in an analysis of the messenger RNA of MMP-9, concluded that
MMP-9 was differentially expressed in hyperplastic endometrium
compared to non-neoplastic endometrium [34], thus suggesting a
potential role in endometrial carcinogenesis. SERPINA 10 (protein
Z) is a serine proteinase inhibitor previously reported to be
reduced in endometrial cancer [35]. A previous study from our
group found evidence for its potential utility as a serum biomarker
for ovarian cancer detection [36]. SERPINA 10 is predominantly
expressed in the liver and secreted in plasma. Therefore, its
identification in urine is most likely a result of its excretion by the
kidneys. These biomarkers need to be externally validated and
their roles in endometrial carcinogenesis elucidated prior to
clinical implementation.
Urine SPRR1B, S100A7, CALML3 and TXN were also found to

have potential as endometrial cancer biomarkers. SPRR1B is a
proline-rich molecule that has been associated with cervical
intraepithelial neoplasia [37]. S100A7 plays a crucial role in the
innate immune system and has been linked to bladder squamous
cell carcinoma [38]. CALML3 has calcium binding and enzyme
regulatory functions and plays a role in B cell receptor signalling
pathways [39] while TXN plays crucial roles in redox reactions [40].
The combined biomarker panels in this study showed improved
ability to discriminate endometrial cancer from controls when
compared to single biomarker candidates.

Conclusion
In conclusion, a urine-based assay could offer a patient-friendly
endometrial cancer detection tool that can be used in the
community to triage symptomatic women for definitive
diagnostic testing. Our multi-marker panels demonstrated
sufficient accuracy (AUC > 0.90) to warrant clinical utility and
several of the identified biomarkers have mechanistic links with
the malignant transformation process. Large multi-centre
prospective studies are now needed to confirm these findings
and to fully elucidate the role of the identified biomarkers in
endometrial tumourigenesis.
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