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Tumour-infiltrating lymphocytes (TILs) are considered crucial in anti-tumour immunity. Accordingly, the presence of TILs contains
prognostic and predictive value. In 2011, we performed a systematic review and meta-analysis on the prognostic value of TILs
across cancer types. Since then, the advent of immune checkpoint blockade (ICB) has renewed interest in the analysis of TILs. In this
review, we first describe how our understanding of the prognostic value of TIL has changed over the last decade. New insights on
novel TIL subsets are discussed and give a broader view on the prognostic effect of TILs in cancer. Apart from prognostic value,
evidence on the predictive significance of TILs in the immune therapy era are discussed, as well as new techniques, such as
machine learning that strive to incorporate these predictive capacities within clinical trials.
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INTRODUCTION
The interaction between cancer and immune cells in the tumour
microenvironment (TME) is thought to be crucial for the control of
the development and progression of malignant tumours. Accord-
ingly, tumour-infiltrating lymphocytes (TILs) have been identified in
primary tumour tissue, tumour-bearing lymph nodes and metas-
tases of numerous cancer types. TILs are defined as lymphocytes
within and around cancer cells and have been associated with a
survival benefit [1–5]. However, the prognostic role of TILs still
remains controversial within different types of tumours. In the 2011
issue of the British Journal of Cancer, we performed a systematic
review and meta-analysis on the prognostic value of subtypes of
TILs in a variety of solid cancer types, including ovarian, colorectal,
lung, hepatocellular, and renal cell cancer [4]. In this review, the
prognostic significance of intratumoral CD3+, CD8+, and CD4+ T
lymphocytes, and intratumoral FoxP3+ T regulatory T lymphocytes
(Tregs) was assessed. In the systematic review, Gooden et al.
identified a positive association of intratumoral CD3+ and CD8+ TILs
on overall and progression-free survival [4]. In contrast, intratumoral
CD4+ TILs were associated with a slightly improved overall survival
(OS) and FoxP3+ regulatory TILs were not associated with overall
survival [4]. Over the past decade, TILs have not only continued to
be proven of prognostic value but evidence is also starting to
emerge of their predictive significance in the immunotherapy era
[6, 7]. Hence, in this review, we discuss the follow-up work of our
original publication in 2011. In addition, we will give insight into the
prognostic value of T-lymphocyte subsets beyond CD3+, CD8+ and
CD4+ T lymphocytes and discuss how these data can be applied in
clinical trials as well as a biomarker for immunotherapy.

Search strategy
The Pubmed database was searched without limits to identify all
relevant studies to the subject. Diverse search terms were used,
including, but not limited to “tumour-infiltrating lymphocytes”,
“TILs”, “T cells”, “T lymphocytes”, “CD3 T cells, “CD8 T cells”, “CD4
T cells”, “FoxP3 T cells”, “regulatory T cells”, “B cells”, “PD-1”,
“Programmed Cell-death 1”, “CD103”, “CD39”, “TIGIT”, “TIM-3”,
“LAG-3”, “CTLA-4” “Prognosis”, “Survival”, “Cancer”, “Outcome”,
“Tertiary Lymphoid Structures”, “Machine-learning”, “Deep-learn-
ing”, “Immunohistochemistry”, “Immunotherapy”, “Checkpoint
Inhibition”, “Prediction”, “Predictive Value”, “Biomarker”.
When available, studies were included starting from 2012, when

not available older literature was used.

Prognostic value of ‘classical’ TILs. In 2011, we reported on a
systematic review and meta-analysis of survival associated with
the presence of CD3+ tumour-infiltrating lymphocytes (TILs).
Briefly summarised, CD3+ TIL infiltration was associated with both
progression-free survival (PFS) (HR 0.53; 95% CI 0.39–0.73) and
overall survival (OS) (HR 0.58; 95% CI 0.43–0.78) across malig-
nancies [4]. Since publication in 2011, the advent of high-
dimensional cytometric, mass spectrometry, and RNA-based
single-cell analysis of CD3+ TILs has significantly improved our
understanding of this heterogenous T cell population, discussed in
more detail below. Nevertheless, as a single marker for the
prognostic benefit of T cells in tumours, high CD3+ TIL infiltration
has proven highly reliable in follow-up studies and has been
associated with an improved OS in almost all cancer types,
including melanoma and breast, colorectal, gastric, hepatocellular,
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and head and neck cancer [8–15].
Apart from the frequently used parameters of presence and

density of TILs, recent studies also show that the location of TILs
and their spatial organization may carry additional prognostic
value. Accordingly, a meta-analysis of Mei et al. showed that a
high CD3+ TIL infiltrate in the invasive tumour margin had a
positive correlation with OS (HR 0.63; 95% CI, 0.42–0.93) and
disease-free survival (DFS) (HR 0.63; 95% CI, 0.35–0.68) in patients
with colorectal cancer [11]. Conversely, a high CD3+ TIL infiltrate in
the tumour centre or tumour stroma had no association with OS
or DFS. Elomaa et al. recently made similar observations and found
that high proximity and density scores of T lymphocytes were
associated with better cancer-specific (CSS) and OS and they
suggest that there are stronger survival associations based on the
invasive margins as compared to the tumour centre [16]. Thus,
CD3 has remained a reliable and consistent marker for the
identification of tumour-infiltrating T cells with prognostic benefit
across cancer types.
In addition to CD3+ T cells, our original work also made a crude

distinction between the prognostic value of different T cell
subsets. Perhaps the most obvious, although arguably least
exciting, division in T cell subsets at the time was the classic
differentiation of cytotoxic CD8 vs helper CD4 T cells. As described
by Gooden and others, the presence of CD8+ TILs is associated
with prognostic benefits for all tested survival endpoints (OS, DSS,
PFS) [4] and across solid cancers. For CD8 in particular, large
cohort studies have demonstrated robust prognostic benefit. For
instance, a meta-analysis of 14 studies with 2015 patients in
hepatocellular carcinoma found a positive correlation between
high levels of CD8+ T lymphocytes and OS (HR 0.71; 95% CI
0.51–0.99; P= 0.04) and DFS (HR 0.66; 95% CI 0.47–0.92; P= 0.01)
[17]. In ovarian cancer, a large cohort study of 1815 patients
demonstrated that the presence of epithelial CD8+ T lymphocytes
was concomitant with improved OS (HR 0.45; 95% CI 0.34–0.58;
P= 0.001) and PFS (HR 0.46; 95% CI 0.25–0.67), independent of
clinicopathological variables. In most studies, the presence of
CD8+ TILs had a larger magnitude of effect than the presence of
CD3+ TILs [18, 19]. However, even though CD8+ TILs are
associated with prognostic benefits, the diverse functional profiles
and markers of CD8+ TILs in the TME makes the interpretation
complex [19]. Maibach et al. have proposed to label activation
markers and/or effector molecules when it comes to the
prognostic value of CD8+ TILs [3], a suggestion in-line with
functional studies discriminating bystander from cancer cell-
reactive CD8+ T cells.
In contrast to the above-described CD8+ counterparts, CD4+

TILs have received less overall attention in the field of tumour
immunology. However, recent work on e.g., follicular helper cells
and class I-negative tumours are steadily shifting this paradigm
[20, 21]. In part, the difference in contribution may stem from the
complexity in CD4+ T-cell differentiation. CD4+ T cells can broadly
differentiate into immune-promoting T helper (Th) subsets, as well
as the highly immune suppressive CD4+ regulatory cells (Tregs)
with counteracting roles in anti-tumour immunity. Although their
functions differ, we originally concluded that high CD4+ TILs were
associated with a slightly improved OS in oesophageal, gastric,
hepatocellular, renal cell and ovarian carcinoma. However, we did
not show an association between high CD4+ TILs PFS and disease-
specific survival (DSS). Yet, data on the prognostic value of CD4+

TILs in more recent meta-analysis is conflicting. In hepatocellular,
gastric, and colorectal carcinoma, no significant correlation was
found between high CD4+ TILs and OS [15, 17, 22]. Nonetheless, in
most cancers, including melanoma and head and neck, ovarian,
cervical, and cholangiocarcinoma, a positive association was
reported between high CD4+ TILs and OS and/or PFS
[8, 13, 14, 23–27]. As these results did not all distinguish different
CD4 T cell subsets, it remains at present impossible to determine
whether the prognostic value of CD4+ TILs is dependent on

cancer type or heterogeneity in CD4 subsets, or both. Never-
theless, in studies where a (partial) discrimination was made, the
CD4+ subtype, Th1, seemed to be a more consistent prognostic
factor. For example, in breast cancer and primary melanoma, the
expression of Th1-associated genes predicted an improved OS
[3, 23]. Unfortunately, no recent meta-analyses reported the effect
of CD4+ TILs on DSS in solid cancers.
The same conflicting reports on survival exist for FoxP3+ CD4

Tregs. In 2011, we concluded that Tregs did not have an impact on
OS, DSS and PFS in most solid cancer, including ovarian,
endometrial, cervix, breast, hepatocellular, renal cell, gastric and
colorectal carcinoma. Studies from 2012 until 2022 report great
discrepancy in the prognostic value of FoxP3+ TILs within variable
tumour types [9, 11, 14, 15, 17, 28–36]. Contrary to the findings of
Gooden et al., FoxP3+ TIL infiltration has been associated with
poor prognosis for OS and relapse-free survival (RFS) in most
cancers, such as breast, hepatocellular, gastric, ovarian, cervix, and
cholangiocarcinoma [17, 26, 28, 29, 32, 35–37]. However, Asahi
et al. [34] found no statistically significant correlation between
high density intratumorally FoxP3+ TILs and OS in gastric cancer
and cholangiocarcinoma. In addition, in melanoma FoxP3+ TILs
were not a negative nor positive prognostic factor. Interestingly, in
colorectal and head and neck cancer high levels of intratumorally
FoxP3+ were associated with a good prognosis [14, 28, 29, 31].
Based on these diverse findings, biological properties within
different microenvironments of specific tumour (sub)types
seemed to play an important role. In fact, an hypoxic and acidic
TME has been associated with the upregulation of chemokines
that enhance recruitment of Tregs to the tumour and increase
activity of these Tregs in the tumour, which highlights the
importance of the TME [38–42]. Furthermore, Saito et al. [30]
proposed that the discrepancies in prognostic value of FoxP3+

TILs could be attributed to different subtypes of FoxP3+ TILs,
namely suppression-competent FoxP3hi Tregs and non-
suppressive FoxP3low Tregs. Hence, attention is shifting towards
analyses of subtypes of CD8+, CD4+ and FoxP3+ TILs instead of
the population as a whole.
Finally, an analysis strategy that may generate more predictive

data for survival than scoring individual TILs is to determine the
ratios between T lymphocyte subsets. At the time of our original
work, there were limited studies incorporating T lymphocyte
ratios. As a consequence, we were only able to perform a pooled
analysis on the CD8+/FoxP3+ ratio and concluded that a high
CD8+/FoxP3+ ratio has a strong positive relation with OS. In the
last decade, this association was validated in different studies in
which a positive relation between a high CD8+/FoxP3+ ratio
and better survival outcomes was observed [17, 43]. In
addition, several studies have reported on the association
between CD4+/FoxP3+ ratio and OS. Like the CD8+/FoxP3+ ratio,
high CD4+/FoxP3+ ratios correlated with improved OS
[17, 27, 33, 44].

Prognostic value of ‘novel’ TIL subsets. In 2011, our review
primarily focused on the prognostic value of the classic subsets
of TILs which was limited to CD3+, CD4+, CD8+ and ratios
between these subtypes. However, in the last decade, substantial
developments have taken place with respect to the identification
and prognostic value of TILs beyond these classic T cell subsets,
including subsets defined by markers CD103, CD39 and PD-1.
CD103, also known as integrin αEβ7 (ITGAE), is a heterodimeric

transmembrane protein expressed primarily on epithelial-
associated lymphocytes that is involved in cell adhesion,
migration and lymphocyte homing of cells through binding to
E-cadherin [45, 46]. Since E-cadherin is expressed in epithelial cells,
CD103 TILs have been associated with immunity against cancers
of epithelial origin. As a result, CD8+CD103+ TILS were strongly
associated with increased OS, DSS and/or RFS in most cancer
types, including urothelial cell carcinoma and ovarian, cervical,
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endometrial, breast, colorectal, gastric, and head and neck cancer
[13, 47–61]. Importantly, the favourable prognostic value of CD103
was only found for intratumoral CD103+ TILs and for CD8+ TILs
expressing CD103+. In fact, stromal CD103+ TILs were not
associated with prolonged DFS and OS, and CD4+CD103+ TILs
were associated with poor OS in gastric cancer [61, 62]. Contrary
to other cancer types, CD8+CD103+ TIL frequencies in cutaneous
squamous cell carcinoma were significantly associated with the
development of metastasis and worse prognosis [63]. The same
was found in clear cell renal cell carcinoma (ccRCC) in which high
density of CD8+CD103+ predicted worse OS [64]. Interestingly,
Duhen et al. [65] investigated the prognostic role of co-expression
of CD39 and CD103 on CD8+ TILs and concluded that dual
expression of both CD103 and CD39 was consistently better at
predicting survival than CD103 alone. Altogether, these data show
that CD103+ TILs have a positive prognostic value in most solid
cancers and that co-expression of CD39 may improve the
prognostic value of CD103 alone.
CD39, encoded by the gene ENTPD1, is an ectoenzyme that is

responsible, together with CD73, for the generation of an
immunosuppressive form of adenosine by converting adenosine
triphosphate (ATP) into adenosine diphosphate (ADP) and cyclic
adenosine monophosphate (cAMP) [66]. In the context of cancer,
only limited and conflicting literature is available on the
prognostic value of CD39+ TILs. In hepatocellular carcinoma
(HCC) and rectal adenoma carcinoma, a higher frequency of
CD8+CD39+ TILs was positively associated with improved OS
[67, 68]. In contrast, CD39 expression was significantly associated
with advanced tumour stage and worse survival rate in ccRCC, and
bladder and small cell lung cancer [69–71]. Interestingly, in lung
cancer and ccRCC, high expression of CD39 was correlated with
abundance of immune suppressive factors, such as FOXP3+ and
PD-1+ TILs [69, 72]. In fact, ccRCC patients who received immune
checkpoint blockade (ICB) with high CD39 expression exhibited
favourable OS compared to ccRCC patients with low CD39
expression [69].
Finally, the TIL marker that has received arguably the most

attention in recent years is Programmed cell death protein 1 (PD-
1). PD-1 is an inhibitor of both adaptive and innate immune
responses and a marker of exhaustion in TILs displayed on the
surface of both activated CD4+ and CD8+ T lymphocytes [73].
While several studies report on the prognostic effect of PD-1-
ligand 1 (PD-L1), the prognostic effect of PD-1 expression on TILs
is less frequently examined. Nevertheless, studies reporting on this
topic present a varying view on the matter. Studies performed in
patients with intrahepatic cholangiocarcinoma and nasopharyn-
geal carcinoma reported lower overall survival and a higher
recurrence rate [27, 74], while studies performed in patients with
HGSOC and NSCLC reported a positive correlation between the
presence of PD-1+ TILs and disease-specific survival and OS
respectively [75, 76]. This might suggest that the prognostic effect
of PD-1 depends not only on its presence but also on tumour type.
Interestingly, recent research by Thommen et al. looked into a
transcriptionally and functionally distinct PD-1+ CD8+ T cell pool.
They reported that high expression of PD-1 is also associated with
overexpression of other inhibitory receptors such as TIM-3, LAG-3,
TIGIT, 2B4 (CD244) and BTLA, where the first two were almost
exclusively found on TILs with high PD-1 expression [77]. Even
though upregulation of PD-1 has a detrimental effect on classic
CD8+ T cell functions such as cytotoxic activity and cytokine
production and secretion, the study shows that TILs with high
expression of PD-1 also acquire novel effector functions.
Specifically, the production and secretion of the effector
chemokine CXCL13. As a single-receptor chemokine, CXCL13
binds only to CXCR5, which is expressed on B cells and certain
types of CD4+ T cells. This suggests that the secretion of CXCL13
by PD-1+ TILs attracts B cells and CD4 cells to the TME. This is
substantiated by the fact that most of the CD8+ T cells with high

PD-1 expression are colocalized with—among others—B cells in
tertiary lymphoid structures (TLS). This new acquired effector
function of exhausted PD-1 expressing T cells make them a
possible predictor for response to PD-1 targeting therapies
[77, 78]. Finally, although not studied extensively in meta-analyses,
the presence of exhaustion markers TIGIT, TIM-3, LAG-3, CTLA-4
alone have been alternately correlated with OS and recurrence
rate in isolated studies [79–83].

The prognostic value of TIL heterogeneity. Most studies evaluating
the prognostic value of ‘classical’ and ‘novel’ TILs in solid tumours
have been limited to the assessment of individual TIL markers by
immunohistochemistry or mRNA expression. As density-based
analyses of TILs are performed on biopsy slides that capture only a
small part of the tumour, these assessments do not entirely
explore the characteristics (and therefore prognosis) of tumours,
including the spatial heterogeneity of TILs in the TME [84, 85]. In
addition, immunohistochemistry on H&E slides is interpreted by
pathologists, resulting in a highly subjective prognostic tool with a
restricted reproducibility [86]. Recently, new technological break-
throughs in pathology and radiochemistry, such as machine
learning and immune-positron emission tomography (immune-
PET), have been developed that hold great promise in refining the
prognostic value of TILs.
In 2012, Krizhevsky et al. [87] introduced convolutional neural

networks, followed by the appearance of machine-learning (ML)
models in pathology. In immune-oncology, ML, and in particularly
deep learning (DL), has proven an unbiased and reproducible tool
to identify histopathological patterns based on fully automated
computer-aided image analysis of routinely generated H&E-
stained slides. This is done by a.o. assessing consistency in the
expression of immunohistochemical markers, tumour morphol-
ogy, molecular alterations, and spatial distribution of TILs and
cancer cells [85]. ML models have already been trained in a variety
of cancers [84, 88–97].
Image-based DL algorithm to quantify TIL densities and to

assess spatial heterogeneity of TILs might therefore augment the
prognostic value of TILs significantly [88–90]. Heindl et al. [88]
developed an image-based DL tool to score lymphocytic
infiltration based on spatial heterogeneity of TILs in breast cancers
and concluded that these scores were highly prognostic,
particularly for late recurrences. Moreover, Horeweg et al. [89]
confirmed that the integration of image-based quantification of
intraepithelial CD8+ cells superseded the prognostic utility of the
standard molecular endometrial cancer classification in early-stage
endometrial cancer. Accordingly, prognostic image-based DL
models have the advantage that they can potentially take into
account the spatial interaction among TILs and cancer cells which
has proven to have a predictive value in tumour progression and
recurrence.
Altogether, these studies show that the prognostic value of TILs

in clinical practice could be further enhanced by the utilisation of
ML models.

TILs as a biomarker for immunotherapy. Blocking the above-
mentioned PD-1-PD-L1 axis with monoclonal antibodies (MAbs)
has increased therapeutic options in solid tumours. However, a
significant group of patients do not benefit from PD-1/PD-L1
blockade, but are exposed to (the risk of) treatment-related
toxicity. Because of this, there is a clinical need for prognostic and
predictive biomarkers that can help reduce possible overtreat-
ment. A logical biomarker of interest are TILs. A recently
performed systematic review by Presti et al. gives a thorough
overview of current research on TILs as a predictive biomarker
[98]. A high baseline TIL density is associated with improved
outcome (ORR in metastatic and pathological complete responses
(pCR) in early disease) in several solid tumours treated with
immune checkpoint inhibitors including melanoma, breast cancer,
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endometrial cancer, CRC, and NSCLC [7, 28, 99–111]. Furthermore,
trials that evaluated on-treatment histological samples showed
that the dynamics in TIL density during treatment was associated
with improved outcome, even when there was no association with
baseline TILs observed [100, 112]. Next to the density and
variation of TILs in the TME, spatial distribution also influences the
response to ICB. The ratio between the invasive margin and the
tumour centre might be of special interest as it has been shown to
provide additional information on early changes after administra-
tion of ICB in and around the tumour and might be an early
predictive biomarker for treatment effects
[101, 102, 107, 113–115]. Findings like these show that the TME
is a dynamic system that constantly levitates on changes in the
tumour-host interaction and that the dynamics in TILs, especially
during and after treatment with ICB, can be of prognostic and
predictive value in patients treated with ICB.
The importance of the TME on TIL dynamics is further proven by

the effect of hypoxia and acidity on TIL effector functions and
proliferation. It has been suggested that an acidic environment
prevents lymphocyte proliferation by impairing the stimulatory
activity of IL-2 [76, 116, 117]. Furthermore, acidosis in the TME
impairs the cytolytic activity and cytokine secretion of CD8+ T
lymphocytes [76, 118]. Hypoxia, often due to chaotic and
insufficient tumour microcirculation [119], has detrimental effects
on effector functions of both CD4+ and CD8+ T lymphocytes and
supports the proliferation and migration of immunosuppressive
cells. Furthermore, Zandberg et al. showed that the effect of anti-
PD-1 therapy is diminished with increased hypoxia in HNSCC
[120].
Apart from focusing on the predictive and productive value of

TILs as a whole, alternative biomarkers such as TIL subsets (e.g.,
CD4+, Tregs, T-memory, CD8+), the expression of exhaustion (e.g.,
PD-1, TIM-3, LAG-3) and activation (e.g., granzyme B) markers and
their association with clinical outcome after ICB treatment
[108, 109] have also been studied. Even though these studies do
not show a definitive function of one of these markers as a
predictive biomarker, it shows the interaction between TILs and
the TME in response to ICB treatment. Furthermore, the predictive
value of a certain TIL can vary depending on the type of ICB that is
used [109]. Even though these data on TILs in tumours show a
possible predictive role of TILs in association with ICB treatment, a
large number of studies lack an ICB-free arm for comparison
complicating definitive conclusions. Finally, a high infiltration of
TILs and the presence or absence of exhaustion and/or activation
markers is not always correlated to a good response or any
response at all. An example of this is ovarian cancer where several
clinical trials with immune therapy show little-to-no response to
ICB, even in tumours with high densities of TILs [121, 122].
DL may also play a crucial role in the selection of patients for

immunotherapy. Indeed, Saltz et al. [84] used image-based DL to
cluster spatially connected regions of TILs and found differences in
cluster dispersion between melanoma, a cancer type that is highly
response to immunotherapy, and breast cancer, a cancer type that
is generally unresponsive to immunotherapy. Likewise, Chen et al.
[91] identified and validated three distinct immune subtypes
presented with diverse components of tumour-infiltrating
immune cells, molecular features, and clinical characteristics in
gastric cancer by using unsupervised consensus clustering
algorithm. Thus, each cancer subtype may benefit from different
immunotherapy strategies. Next to image-based DL, immune
methylome signatures queried by ML were also shown to be
predictive for immunotherapy response. Duruisseaux et al. found a
correlation between epigenetic features based on DNA methyla-
tion signature (EPIMMUNE) and clinical benefit with PD-1 blockade
in NSCLC. NSCLC tumours of non-responders to immunotherapy
were enriched with cell populations derived from the myeloid
lineage, while responders were enriched with cell populations
derived from the lymphoid lineage [92]. Based on these studies

(mixed), ML models may be a valuable tool to select patients for
immunotherapy.
Image-based (TIL) DL has also gained attention for predicting

the status of molecular pathways, including microsatellite
instability (MSI) and mismatch repair deficiency (MMRd) status.
In colorectal cancer, variable image-based DL models have been
designed that exceeded the performance of experienced gastro-
intestinal pathologist at predicting MSI on H&E-stained slides
[93–95]. Within these models, the presence of TILs and their
spatial orientation in the tumour had important predictive value
[94–97]. For instance, Lee et al. [96] confirmed that their image-
based DL-model discriminated MSI-high and microsatellite stabi-
lity (MSS) largely based on high TIL and peritumoral lymphocy-
tosis. In addition, Schrammen et al. [94], Bilal et al. [95] and Kather
et al. [97] found that lymphocyte-rich tumour regions, high
proportions of TILs and necrotic tumour cells were most predictive
for MSI in their image-based DL models. Since, MSI/MMRd status
of a patient has therapeutic consequence, a cost-efficient image-
based DL model using, e.g., TILs may prove to be an efficient tool
to triage patients for confirmatory MSI/MMRd testing.

Perspectives. It is evident that TILs are associated with improved
long-term survival across malignancies. A major challenge is to
now translate these associations into clinically relevant or clinically
actionable information. Indeed, while TIL ’scores’ may help
supplement molecular information and improve patient counsel-
ling on the likelihood of recurrence, validated systems that can be
implemented into routine clinical practice are scarce. This is true
for both standardised scoring systems for pathologists, but also
machine-learning algorithms. Arguably the most substantial
obstacle that has hampered this clinical translation is the
heterogeneity in spatiotemporal distribution of immune cells,
and the underlying intra-immune cell heterogeneity. These
problems are compounded by the apparent incongruity between
the prognostic value of TILs in malignancies, and the potential
likelihood of response of a malignancy to TIL-targeted immu-
notherapy, such as immune checkpoint inhibitors. A prototypical
example of this paradox, ovarian cancer, has long been known to
harbour tumour-reactive TILs with prognostic value, but only
marginal responses to immune checkpoint inhibitors have been
observed so far. Furthermore, as the prognostic value of TIL
infiltrate in ovarian cancer appears to be restricted to a subgroup
of primary patients with complete cytoreduction, it will be
interesting to determine whether this subset also responds to
ex vivo immune checkpoint inhibitor treatment in e.g., patient-
derived tissue fragment (PDTF) models, or whether the prognostic
and predictive value of TILs are uncoupled in these patients. As
recent work points to tissue-resident memory-driven immune
responses in ovarian cancer, and the therapeutic benefit of ICB is
more and more linked to the involvement of (secondary)
lymphoid organs, a more complex view on prognostic tissue-
resident and predictive systemic immune responses may develop
in the coming years.
An exciting development herein, both from patient and

translational perspective, is the advent of neo-adjuvant ICB. Most
successfully applied in MMRd CRC, neo-adjuvant ICB is associated
with remarkable rates of pathologic complete responses. While a
general trend is observed in these studies for higher levels of
baseline CD8+ TILs in responding patients, the same trend does
not hold for CD3+ TILs, and responses on the individual patient
level are more heterogenous. With studies using radiolabeled
immune imaging agents (e.g., CD8 and PD-1) now underway to
tackle the problem of sampling heterogeneity, it will be
interesting to see these modalities applied within the neo-
adjuvant setting. Ideally, these whole-body immune monitoring
agents will be applied in combination with an in-depth assess-
ment of TLS and tumour-draining lymph nodes (TDLNs). Both TLS
and TDLNs have been proposed as reservoirs for precursor-
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exhausted T cells that maintain long-term immunity against
chronic stimulation by cancer cells, and have been linked to
response to ICB, in many instances with superior predictive power
to TIL status. However, major outstanding questions on the
relationship between TILs, TLS and TDLNs remain to be addressed,
most notably whether T-/B cell clones are shared across these
sites, whether unique phenotypes exist across these sites, and
how these cells dynamically respond to treatment with ICB.
Technological developments on machine learning combined with
high-dimensional techniques such as imaging mass cytometry
and spatial transcriptomics are now starting to shed light on these
questions, and it will be exciting to see this field develop over the
coming years.
Overall, the analysis of the prognostic value of TILs combined

with the clinical success of ICB-therapy has sparked an amazing
development in our understanding of local and systemic tumour/
immune cell interactions. Ever advancing high-dimensional
assessment of immune cell control of tumours will need to be
paired with an effective practical translation of this information
into understandable, relevant and actionable information for use
in clinical practice.
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