Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular and Molecular

Transcriptomic and functional analyses reveal a tumour-promoting role for the IL-36 receptor in colon cancer and crosstalk between IL-36 signalling and the IL-17/ IL-23 axis

Abstract

Background

The interleukin (IL)-36 cytokines are a sub-family of the IL-1 family which are becoming increasingly implicated in the pathogenesis of inflammatory diseases and malignancies. Initial studies of IL-36 signalling in tumorigenesis identified an immune-mediated anti-tumorigenic function for these cytokines. However, more recent studies have shown IL-36 cytokines also contribute to the pathogenesis of lung and colorectal cancer (CRC).

Methods

The aim of this study was to investigate IL-36 expression in CRC using transcriptomic datasets and software such as several R packages, Cytoscape, GEO2R and AnalyzeR. Validation of results was completed by qRT-PCR on both cell lines and a patient cohort. Cellular proliferation was assessed by flow cytometry and resazurin reduction.

Results

We demonstrate that IL-36 gene expression increases with CRC development. Decreased tumoral IL-36 receptor expression was shown to be associated with improved patient outcome. Our differential gene expression analysis revealed a novel role for the IL-36/IL-17/IL-23 axis, with these findings validated using patient-derived samples and cell lines. IL-36γ, together with either IL-17a or IL-22, was able to synergistically induce different genes involved in the IL-17/IL-23 axis in CRC cells and additively induce colon cancer cell proliferation.

Conclusions

Collectively, this data support a pro-tumorigenic role for IL-36 signalling in colon cancer, with the IL-17/IL-23 axis influential in IL-36-mediated colon tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Expression of IL-36R is increased in multiple malignant tissues relative to normal adjacent tissue.
Fig. 2: IL-36 family member expression is altered in CRC disease development with expression of the IL-36R increased in neoplastic tissue relative to normal tissue in multiple anatomical sites across the intestine.
Fig. 3: High expression of IL-36R is associated with a poorer patient 5-year survival rate in CRC.
Fig. 4: High expression of IL-36R in CRC is associated with IL-17 signalling pathway genes.
Fig. 5: IL-36 and IL-17 signalling genes are associated in vitro and ex vivo.
Fig. 6: IL-36 cytokines, in combination with IL-17 or IL-22, can synergistically induce chemokine expression in CRC cells.

Data availability

The datasets analysed during the current study are available publically, as outlined in Table 1. The data underlying this article will be shared on a reasonable request to the corresponding author.

References

  1. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14:101174.

    Article  Google Scholar 

  2. Loomans-Kropp HA, Umar A. Increasing incidence of colorectal cancer in young adults. J Cancer Epidemiol. 2019;2019:9841295.

    Article  Google Scholar 

  3. Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.

    Article  CAS  Google Scholar 

  4. Zaborowski AM, Winter DC, Lynch L. The therapeutic and prognostic implications of immunobiology in colorectal cancer: a review. Br J Cancer. 2021;125:1341–9.

    Article  Google Scholar 

  5. Carlsen L, Huntington KE, El-Deiry WS. Immunotherapy for colorectal cancer: mechanisms and predictive biomarkers. Cancers. 2022;14:1028.

    Article  CAS  Google Scholar 

  6. Hanahan D, Weinberg, Robert A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  7. Van Der Kraak L, Gros P, Beauchemin N. Colitis-associated colon cancer: is it in your genes? World J Gastroenterol. 2015;21:11688–99.

    Article  Google Scholar 

  8. Müller MF, Ibrahim AE, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch: Int J Pathol. 2016;469:125–34.

    Article  Google Scholar 

  9. Friis S, Riis AH, Erichsen R, Baron JA, Sørensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case-control study. Ann Intern Med. 2015;163:347–55.

    Article  Google Scholar 

  10. Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E, et al. Immunotherapy of colorectal cancer: challenges for therapeutic efficacy. Cancer Treat Rev. 2019;76:22–32.

    Article  CAS  Google Scholar 

  11. Byrne J, Baker K, Houston A, Brint E. IL-36 cytokines in inflammatory and malignant diseases: not the new kid on the block anymore. Cell Mol Life Sci: CMLS. 2021;78:6215–27.

    Article  CAS  Google Scholar 

  12. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1833–42.

    Article  CAS  Google Scholar 

  13. Bent R, Moll L, Grabbe S, Bros M. Interleukin-1 beta-A friend or foe in malignancies? Int J Mol Sci. 2018;19:2155.

  14. Uppala R, Tsoi LC, Harms PW, Wang B, Billi AC, Maverakis E, et al. “Autoinflammatory psoriasis”—genetics and biology of pustular psoriasis. Cell Mol Immunol. 2021;18:307–17.

    Article  CAS  Google Scholar 

  15. Gabay C, Towne JE. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol. 2015;97:645–52.

    Article  CAS  Google Scholar 

  16. Russell SE, Horan RM, Stefanska AM, Carey A, Leon G, Aguilera M, et al. IL-36α expression is elevated in ulcerative colitis and promotes colonic inflammation. Mucosal Immunol. 2016;9:1193–204.

    Article  CAS  Google Scholar 

  17. Leon G, Hussey S, Walsh PT. The diverse roles of the IL-36 family in gastrointestinal inflammation and resolution. Inflamm Bowel Dis. 2021;27:440–50.

    Article  Google Scholar 

  18. McCombs JE, Kolls JK. Walking down the “IL”: the newfound marriage between IL-36 and chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2021;64:153–4.

    Article  CAS  Google Scholar 

  19. Baker KJ, Houston A, Brint E. IL-1 family members in cancer; two sides to every story. Front Immunol. 2019;10:1197.

    Article  CAS  Google Scholar 

  20. Li D, Huang Y, Yu Z, Zhang J, Hu C, Bai Y, et al. IL-36β promotes anti-tumor effects in CD8 + T cells by downregulating micro-RNA let-7c-5p. Annal Transl Med. 2021;9:1734.

  21. Wang X, Zhao X, Feng C, Weinstein A, Xia R, Wen W, et al. IL-36γ transforms the tumor microenvironment and promotes type 1 lymphocyte-mediated antitumor immune responses. Cancer Cell. 2015;28:296–306.

    Article  CAS  Google Scholar 

  22. Zhao X, Chen X, Shen X, Tang P, Chen C, Zhu Q, et al. IL-36β promotes CD8(+) T cell activation and antitumor immune responses by activating mTORC1. Front Immunol. 2019;10:1803.

    Article  CAS  Google Scholar 

  23. Weinstein AM, Chen L, Brzana EA, Patil PR, Taylor JL, Fabian KL, et al. Tbet and IL-36γ cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. Oncoimmunology. 2017;6:e1322238.

    Article  Google Scholar 

  24. Weinstein AM, Giraldo NA, Petitprez F, Julie C, Lacroix L, Peschaud F, et al. Association of IL-36gamma with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer. Cancer Immunol, immunotherapy: CII. 2019;68:109–20.

    Article  CAS  Google Scholar 

  25. Mao D, Hu C, Zhang J, Feng C, Zhang Z, Wang J, et al. Long noncoding RNA GM16343 promotes IL-36β to regulate tumor microenvironment by CD8(+)T cells. Technol Cancer Res Treat. 2019;18:1533033819883633.

    Article  CAS  Google Scholar 

  26. Huang L, Zhang H, Zhao D, Hu H, Lu Z. Interleukin-38 suppresses cell migration and proliferation and promotes apoptosis of colorectal cancer cell through negatively regulating extracellular signal-regulated kinases signaling. J Interferon Cytokine Res. 2021;41:375–84.

    Article  CAS  Google Scholar 

  27. Baker K, O’Donnell C, Bendix M, Keogh S, Byrne J, O’Riordain M, et al. IL-36 signalling enhances a pro-tumorigenic phenotype in colon cancer cells with cancer cell growth restricted by administration of the IL-36R antagonist. Oncogene. 2022;41:2672–84.

  28. Yang W, Dong H-P, Wang P, Xu Z-G, Xian J, Chen J, et al. IL-36γ and IL-36Ra reciprocally regulate colon inflammation and tumorigenesis by modulating the cell–matrix adhesion network and Wnt signaling. Adv Sci. 2022;9:2103035.

  29. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–w14.

    Article  CAS  Google Scholar 

  30. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991–D5.

    Article  CAS  Google Scholar 

  31. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–d12.

    Article  CAS  Google Scholar 

  32. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  Google Scholar 

  33. Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma. 2003;4:2.

    Article  Google Scholar 

  34. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    Article  CAS  Google Scholar 

  35. Miller HE, Bishop AJR. Correlation AnalyzeR: functional predictions from gene co-expression correlations. BMC Bioinforma. 2021;22:206.

    Article  Google Scholar 

  36. Yang W, Dong HP, Wang P, Xu ZG, Xian J, Chen J, et al. IL-36γ and IL-36Ra reciprocally regulate colon inflammation and tumorigenesis by modulating the cell-matrix adhesion network and Wnt signaling. Adv Sci. 2022;9:e2103035.

    Article  Google Scholar 

  37. Rohr M, Beardsley J, Nakkina SP, Zhu X, Aljabban J, Hadley D, et al. A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression. Sci Data. 2021;8:214.

    Article  CAS  Google Scholar 

  38. Wong R. Proximal tumors are associated with greater mortality in colon cancer. J Gen Intern Med. 2010;25:1157–63.

    Article  Google Scholar 

  39. le Rolle A-F, Chiu TK, Fara M, Shia J, Zeng Z, Weiser MR, et al. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J Transl Med. 2015;13:199

    Article  Google Scholar 

  40. Wang D, Sun H, Wei J, Cen B, DuBois RN. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 2017;77:3655–65.

    Article  CAS  Google Scholar 

  41. Scheibe K, Backert I, Wirtz S, Hueber A, Schett G, Vieth M, et al. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut. 2017;66:823–38.

    Article  CAS  Google Scholar 

  42. Eyerich S, Traidl-Hoffmann C, Behrendt H, Cavani A, Schmidt-Weber CB, Ring J, et al. Novel key cytokines in allergy: IL-17, IL-22. Allergol Sel. 2017;1:71–6.

    Article  CAS  Google Scholar 

  43. Hu M, Tong Y, Fang H, Tang J, Liu L, Hu Y, et al. IL36 indicating good prognosis in human hepatocellular carcinoma. J Cancer. 2020;11:6248–55.

    Article  CAS  Google Scholar 

  44. Pan Q-Z, Pan K, Zhao J-J, Chen J-G, Li J-J, Lv L, et al. Decreased expression of interleukin-36α correlates with poor prognosis in hepatocellular carcinoma. Cancer Immunol Immunother. 2013;62:1675–85.

    Article  CAS  Google Scholar 

  45. Chang L, Guo R, Yuan Z. IL-36α suppresses proliferation of ovarian cancer cells. Tumor Biol. 2017;39:1010428317706918.

    Article  Google Scholar 

  46. Chen F, Qu M, Zhang F, Tan Z, Xia Q, Hambly BD, et al. IL-36 s in the colorectal cancer: is interleukin 36 good or bad for the development of colorectal cancer? BMC Cancer. 2020;20:92.

    Article  Google Scholar 

  47. Chelvanambi M, Weinstein AM, Storkus WJ. IL-36 signaling in the tumor microenvironment. Adv Exp Med Biol. 2020;1240:95–110.

    Article  CAS  Google Scholar 

  48. Manzanares-Meza LD, Valle-Rios R, Medina-Contreras O. Interleukin-1 receptor-like 2: one receptor, three agonists, and many implications. J Interferon Cytokine Res. 2022;42:49–61.

    Article  CAS  Google Scholar 

  49. Kovach MA, Che K, Brundin B, Andersson A, Asgeirsdottir H, Padra M, et al. IL-36 cytokines promote inflammation in the lungs of long-term smokers. Am J Respir Cell Mol Biol. 2021;64:173–82.

    Article  CAS  Google Scholar 

  50. Yuan Z-C, Xu W-D, Liu X-Y, Liu X-Y, Huang A-F, Su L-C. Biology of IL-36 signaling and its role in systemic inflammatory diseases. Front Immunol. 2019;10:2532. -

    Article  CAS  Google Scholar 

  51. Chi HH, Hua KF, Lin YC, Chu CL, Hsieh CY, Hsu YJ, et al. IL-36 signaling facilitates activation of the NLRP3 inflammasome and IL-23/IL-17 axis in renal inflammation and fibrosis. J Am Soc Nephrology: JASN. 2017;28:2022–37.

    Article  CAS  Google Scholar 

  52. Razi S, Baradaran Noveiry B, Keshavarz-Fathi M, Rezaei N. IL-17 and colorectal cancer: From carcinogenesis to treatment. Cytokine. 2019;116:7–12.

    Article  CAS  Google Scholar 

  53. Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D, Martin SJ. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 2016;14:708–22.

    Article  CAS  Google Scholar 

  54. Ngo VL, Abo H, Maxim E, Harusato A, Geem D, Medina-Contreras O, et al. A cytokine network involving IL-36γ, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proc Natl Acad Sci USA. 2018;115:E5076–E85.

    Article  CAS  Google Scholar 

  55. Mercurio L, Failla CM, Capriotti L, Scarponi C, Facchiano F, Morelli M, et al. Interleukin (IL)-17/IL-36 axis participates to the crosstalk between endothelial cells and keratinocytes during inflammatory skin responses. PLoS ONE. 2020;15:e0222969.

    Article  CAS  Google Scholar 

  56. Maxwell JR, Zhang Y, Brown WA, Smith CL, Byrne FR, Fiorino M, et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity. 2015;43:739–50.

    Article  CAS  Google Scholar 

  57. Straus DS. TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells. Mol Cancer. 2013;12:78.

    Article  CAS  Google Scholar 

  58. Müller A, Hennig A, Lorscheid S, Grondona P, Schulze-Osthoff K, Hailfinger S, et al. IκBζ is a key transcriptional regulator of IL-36-driven psoriasis-related gene expression in keratinocytes. Proc Natl Acad Sci USA. 2018;115:10088–93.

    Article  Google Scholar 

  59. Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejía PE. Biological functions and therapeutic potential of lipocalin 2 in cancer. Int J Mol Sci. 2020;21:4365.

  60. Kim SL, Shin MW, Seo SY, Kim SW. Lipocalin 2 potentially contributes to tumorigenesis from colitis via IL-6/STAT3/NF-κB signaling pathway. Biosci Rep. 2022;42:BSR20212418.

  61. Kim SL, Lee ST, Min IS, Park YR, Lee JH, Kim DG, et al. Lipocalin 2 negatively regulates cell proliferation and epithelial to mesenchymal transition through changing metabolic gene expression in colorectal cancer. Cancer Sci. 2017;108:2176–86.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by a grant from the Government of Ireland Postgraduate Scholarship Scheme GOIPG/2018/2974.

Author information

Authors and Affiliations

Authors

Contributions

KJB conceived and designed work, performed both transcriptomic analysis and experimental work and was involved in the writing of the manuscript. EB and AH conceived and designed work, undertook the data analysis and writing of the manuscript.

Corresponding author

Correspondence to Elizabeth Brint.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the University College Cork Clinical Research Ethics Committee of the Cork Teaching Hospitals (ECM (3) P 3 September 2013). All samples were obtained during surgery at the Mercy University Hospital Cork following informed consent.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baker, K.J., Brint, E. & Houston, A. Transcriptomic and functional analyses reveal a tumour-promoting role for the IL-36 receptor in colon cancer and crosstalk between IL-36 signalling and the IL-17/ IL-23 axis. Br J Cancer (2022). https://doi.org/10.1038/s41416-022-02083-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-022-02083-z

This article is cited by

Search

Quick links