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Many efforts are underway to develop novel therapies against the aggressive high-grade serous ovarian cancers (HGSOCs), while
our understanding of treatment options for low-grade (LGSOC) or mucinous (MUCOC) of ovarian malignancies is not developing as
well. We describe here a functional precision oncology (fPO) strategy in epithelial ovarian cancers (EOC), which involves high-
throughput drug testing of patient-derived ovarian cancer cells (PDCs) with a library of 526 oncology drugs, combined with
genomic and transcriptomic profiling. HGSOC, LGSOC and MUCOC PDCs had statistically different overall drug response profiles,
with LGSOCs responding better to targeted inhibitors than HGSOCs. We identified several subtype-specific drug responses, such as
LGSOC PDCs showing high sensitivity to MDM2, ERBB2/EGFR inhibitors, MUCOC PDCs to MEK inhibitors, whereas HGSOCs showed
strongest effects with CHK1 inhibitors and SMAC mimetics. We also explored several drug combinations and found that the dual
inhibition of MEK and SHP2 was synergistic in MAPK-driven EOCs. We describe a clinical case study, where real-time fPO analysis of
samples from a patient with metastatic, chemorefractory LGSOC with a CLU-NRG1 fusion guided clinical therapy selection. fPO-
tailored therapy with afatinib, followed by trastuzumab and pertuzumab, successfully reduced tumour burden and blocked disease
progression over a five-year period. In summary, fPO is a powerful approach for the identification of systematic drug response
differences across EOC subtypes, as well as to highlight patient-specific drug regimens that could help to optimise therapies to
individual patients in the future.

British Journal of Cancer (2023) 128:678–690; https://doi.org/10.1038/s41416-022-02067-z

INTRODUCTION
Epithelial ovarian cancer (EOC) is the most lethal gynaecological
cancer, with a 5-year overall survival rate of about 30–40%, which
have not improved much over the last 30 years, despite advances
in surgery, imaging technologies, and introduction of new
targeted therapies, such as PARP inhibitors and anti-angiogenic
drugs such as bevacizumab [1–4]. Current standard-of-care for
patients with EOC involves debulking and platinum-based
chemotherapy, usually in combination with a taxane, with some
patients receiving PARP inhibitors. However, many patients will

ultimately relapse and develop chemotherapy-resistant advanced
disease, at which point treatment options are mostly palliative.
EOC is classified into several histological subtypes. For instance,

low-grade serous ovarian cancer (LGSOC), endometrioid, muci-
nous (MUCOC) and clear cell, are often detected at an early stage
(FIGO I–II) and have more stable genomes, and are characterised
by specific somatic mutations: LGSOC with KRAS and BRAF,
endometrioid with PTEN and PI3KCA, MUCOC with TP53 and KRAS,
and clear cell with PI3KCA and ARID1A. LGSOCs are often resistant
to platinum-based chemotherapy [5]. On the other hand, high-
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grade serous ovarian cancer (HGSOC), high-grade endometrioid,
undifferentiated cancers and carcinosarcomas often have high
genomic instability, mutant TP53, defects in homologous recom-
bination (HR) repair, mutations or impairment in BRCA1/2, and
extensive copy number aberrations [6]. Although these EOC
subtypes are initially more responsive to platinum-based che-
motherapy, they tend to progress to therapy resistance. The
majority of deaths from EOC are caused by the HGSOCs. HR
deficiency is a key determinant of sensitivity to platinum as well as
to poly(adenosine diphosphate–ribose) polymerase (PARP) inhibi-
tors such as olaparib [7, 8].
Most precision oncology programmes to date are based on

tailoring treatments based on genome sequencing data, and
hence they often focus on blocking activated driver oncogenes
and their signalling [9, 10]. While this has been successful in some
cases, there are many cancers where druggable oncogenic drivers
are seldom found. Furthermore, not all tumours that are
genetically predicted to respond to targeted treatments actually
show responses, as illustrated by the results from the National
Cancer Institute Molecular Analysis for Therapy Choice (NCI-
MATCH) trial [11]. Functional drug testing of patient-derived
cancer cells (PDCs), or patient-derived organoids, provides a
unique opportunity to directly identify effective drugs and drug
combinations, even for tumours that lack actionable driver
mutations [12, 13]. Personalising cancer therapy based on
functional testing of PDCs has shown great promise in identifying
clinically translatable treatments in haematological malignancies
[14–17] as well as in some solid tumours [13, 18, 19]. This is
particularly exciting for solid tumours, where it is more challen-
ging to establish representative ex vivo models for functional
precision oncology purposes.
Here, we introduce a functional precision oncology approach

for the real-time identification of potential therapeutics for EOC
patients in a clinically actionable time frame, based on the
establishment and functional drug sensitivity testing of 16
representative PDCs derived from 13 HGSOC, LGSOC and MUCOC
patients. We first studied to what extent do these three tumour
types differ from each other, not only in terms of genomic and
transcriptomic profiles, but also based on their global drug
response profile. The second aim was to functionally identify novel
therapeutic opportunities for individual EOC patients. The 16 PDCs
were tested with a library of up to 526 approved drugs and
emerging oncology compounds. Based on integrated data from
molecular profiling and drug sensitivity testing, we identified (i)
distinct subtype-specific drug response differences, (ii) functional
evidence of dependency of EOC on specific pathways, (iii)
previously undescribed drug repositioning opportunities, and (iv)
EOC cases where specific drug combinations were effective. A
patient with a metastatic LGSOC was treated according to
predictions from the integrated analyses, resulting in tumour
reduction and disease control over a 5-year period. Overall, this
study demonstrates the potential of functional precision oncology
to tailor therapeutic opportunities for EOC.

MATERIALS AND METHODS
Patient samples and establishment of patient-derived cancer
cell cultures
All patient material and clinical data were obtained upon informed consent,
under Institutional Ethical Review Board-approved protocol and in
accordance with the Declaration of Helsinki. Patients’ clinical characteristics
are summarised in Table 1 and Supplementary Table S1A. Patients received
treatment either at the Helsinki University Central Hospital, Finland or at the
Tartu University Hospital, Estonia. All except one patient (FMOC25) had
received either neoadjuvant treatment or standard chemotherapy before
the sample collection. From two LGSOC cases, multiple samples were
obtained to establish PDCs at different stages of tumour progression.
Biopsies were minced into smaller pieces using a sterile scalpel and
underwent enzymatic digestion using a Tumour Dissociation kit (Miltenyi

Biotec) and gentle MACS Dissociator (Miltenyi Biotec) to obtain single-cell
suspension. After centrifugation at 300 × g, both tumour-derived cells and
ascites underwent red blood cell removal using Red Blood Cell Lysis Solution
according to the manufacturer’s protocol (Miltenyi Biotec). All HGSOC and
MUCOC PDCs, except FMOC04, were established using the protocol
described by Liu et al. [20, 21]. Briefly, patients’ cancer cells were co-
cultured with irradiated mouse 3T3 fibroblast feeder cells in a culture
medium supplemented with Rho-kinase (ROCK) inhibitor Y-27632 (Enzo Life
Science). FMOC04 and LGSOC PDCs were established in a serum-free stem
cell media DMEM-F12 supplemented with 20 ng/ml EGF (Corning), 10 ng/ml
FGF (Invitrogen), B27 (Thermo Fisher Scientific) and primocin (Invivogen).
One of the biggest challenges we faced was the presence of fast dividing
stromal cells during the development of the models. Cancer-associated
fibroblasts that would have otherwise overgrown the epithelial cancer cells
were removed by double trypsination or by selection with anti-fibroblast
microbeads andmagnetic MACS Separator (Miltenyi Biotec). Our success rate
was 53% with both culturing protocols and across all three OC subtypes
(50% for HGSOC, 60% for LGSOC and 50% for MUCOC, respectively). The
proliferation rate of individual PDCs and time between the surgery and drug
testing experiment are presented in the Supplementary Table S1B. The OC
cell line Kuramochi was obtained from JCRB Cell Bank and cultured in the
recommended media. Primary PDCs and OC cell line were maintained at
37 °C with 5% CO2 and passaged weekly. All experiments were performed
with early passage cells (under passage 10).

Antibodies and reagents
The following antibodies EGFR (#4267), p-EGFR (#3777), ERBB2 (#2242),
p-ERBB2 (#2243), ERBB3 (#4754), p-ERBB3 (#4791), ERK1/2 (#4696), p-ERK1/
2 (T202/Y204, #9101), AKT (#9272) and p-AKT (#6942) were purchased from
Cell Signaling Technology. β-tubulin antibody (#sc-166729) was purchased
from Santa Cruz Biotech and actin antibody (#A2066) from Sigma-Aldrich.
Afatinib was purchased from Selleck Chemicals LLC; erlotinib, selumetinib
and SHP099 from MedChem Express; and trametinib from ChemieTek.
Therapeutic antibodies trastuzumab and pertuzumab were obtained from
Roche, Finland.

Drug sensitivity and resistance testing (DSRT)
DSRT was performed with PDCs with drug libraries containing up to 526
approved drugs and investigational compounds as described previously
[22]. In addition, available drug testing data obtained with the healthy
bone marrow derived mononuclear cells were used as controls [16]. Bone
marrow aspirates from healthy donors (n= 2) were obtained after an
informed consent and were collected at the Helsinki University Hospital
following protocols approved by a local ethics committee and in
accordance with the Declaration of Helsinki. The drug library was updated
one time during the study and the list of compounds in both libraries and
list of samples screened with individual libraries is presented in
Supplementary Tables S1C–S1E. Briefly, the drugs were dissolved in
100% dimethyl sulfoxide (DMSO) or water and plated in five concentra-
tions covering a 10,000-fold range on 384-well flat clear bottom tissue
culture treated microplates (Corning) using an Echo 550 acoustic dispenser
(Labcyte). Cells were dispensed on pre-drugged plates with the Multidrop
dispenser (Thermo Fisher Scientific) and incubated for 72 h at 37 °C and 5%
CO2. Cell viability was measured with CellTiter-Glo Cell Viability Assay
(Promega). The assay was carried out similarly for measuring the drug
responses in 3D culture conditions, except PDCs were seeded on ultra-low
attachment 384-well round bottom cell culture plates (Corning) pre-plated
with drugs in nine increasing concentrations. Drug synergy testing was
performed using 7 × 7 drug concentration matrix (including negative
(DMSO) and positive (benzethonium chloride) controls and 7 concentra-
tions per drug and combination), where cell viability was assessed with
CellTiter-Glo Cell Viability Assay (Promega), similarly as before [23].

Drug sensitivity scoring (DSS)
To quantify the compound responses, drug sensitivity score (DSS) was
calculated for each PDC and compound separately [24]. DSS calculates a
partial area under the dose-response curve (AUC), using an activity window
from 10 to 100% and a dose-window either from the minimum
concentration tested or from the concentration where the %inhibition
reaches 10%. DSS3 metric was used, which divides the partial AUC by the
logarithm of the upper asymptote of the logistic curve. Higher levels of
DSS indicate higher sensitivity to the compound. DSS has been shown to
provide a reproducible drug response metric across multiple screening

A. Murumägi et al.

679

British Journal of Cancer (2023) 128:678 – 690



Ta
bl
e
1.

EO
C
p
at
ie
n
t
ca
se
s
an

d
re
sp
ec
ti
ve

PD
C
s
in
cl
u
d
ed

in
th
e
st
u
d
y.

Pa
ti
en

t
ID

H
is
to
lo
g
ic
al

O
C

su
b
ty
p
e

D
is
ea

se
st
ag

e
Sa

m
p
le

ty
p
e

K
ey

on
co

g
en

ic
ab

er
ra
ti
on

s
Se

le
ct
ed

d
ru
g
ef
fi
ca
ci
es

se
en

in
PD

C
s

FM
O
C
04

H
G
SO

C
R
ec
u
rr
en

t
(p
er
it
o
n
ea
l

m
et
as
ta
se
s)

A
sc
it
es

TP
53

p
.R
17

5H
,C

C
N
E1

A
m
p
,M

EC
O
M

A
m
p
,

PI
K
3C

A
g
ai
n

A
Z
D
17

75
(W

ee
1i
),
p
re
xa
se
rt
ib

(C
h
ki
)

FM
O
C
09

H
G
SO

C
Pr
im

ar
y

Ti
ss
u
e

TP
53

p
.R
28

3P
,C

C
N
E1

A
m
p
,M

EC
O
M

A
m
p
,

PI
K
3C

A
A
m
p
,F

N
B
P4

-P
TP

M
T1

fu
si
o
n

A
n
ag

re
lid

e
(P
D
E-
3i
),
d
as
at
in
ib

(m
u
lt
ik
in
as
ei
),
af
at
in
ib

(E
R
B
B
2/
EG

FR
i),

p
re
xa
se
rt
ib

(C
h
ki
)

FM
O
C
11

H
G
SO

C
Pr
im

ar
y

Ti
ss
u
e

TP
53

fr
am

es
h
ift
,
M
YC

A
m
p
,K

R
A
S
A
m
p
,

PI
K
3C

A
g
ai
n
,I
N
G
5-
TH

A
P4

fu
si
o
n
,R

O
C
K
1-

SS
18

fu
si
o
n

A
Z
D
17

75
(W

ee
1i
),
p
re
xa
se
rt
ib

(C
h
ki
),
p
o
zi
o
ti
n
ib

(p
an

-E
RB

B
i),

d
as
at
in
ib

(m
u
lt
ik
in
as
ei
)

FM
O
C
14

H
G
SO

C
Pe

ri
to
n
ea
l

m
et
as
ta
se
s

A
sc
it
es

TP
53

p
.A
16

1T
,b

ro
ad

C
N
V
ch

an
g
es

in
cl
.

PI
K
3C

A
g
ai
n

A
Z
D
17

75
(W

ee
1i
),
p
re
xa
se
rt
ib

(C
h
ki
),
o
m
ip
al
is
ib

(P
I3
K
/m

TO
R
i),

A
Z
D
80

55
(m

TO
R
i)

FM
O
C
24

H
G
SO

C
Pr
im

ar
y,
p
ro
g
re
ss
iv
e

A
sc
it
es

TP
53

p
.R
27

3C
,C

C
N
E1

an
d
K
R
A
S
A
m
p
,

PI
K
3C

A
g
ai
n
,R

C
C
1-
U
B
E2

D
2
fu
si
o
n

N
V
P-
LC

L1
61

&
b
ir
in
ap

an
t
(S
M
A
C
m
im

et
ic
),

p
re
xa
se
ri
b
(C
h
ki
),
n
av
it
o
cl
ax

(B
C
L-
2i
)

FM
O
C
02

(F
M
O
C
02

_1
FM

O
C
02

_2
FM

O
C
02

_3
)

LG
SO

C
R
ec
u
rr
en

t
(p
er
it
o
n
ea
l

m
et
as
ta
se
s)

(1
)
A
sc
it
es

(F
M
O
C
02

_1
)

(2
)
N
ee

d
le

b
io
p
sy

(F
M
O
C
02

_2
)

(3
)
A
sc
it
es

(F
M
O
C
02

_3
)

TP
53

w
t,
C
LU

-N
R
G
1
fu
si
o
n
,

C
D
K
N
2A

h
o
m
o
zy
g
o
u
s
lo
ss

Po
zi
o
ti
n
ib

&
d
ac
o
m
it
in
ib

(p
an

-E
R
B
B
i),

af
at
in
ib

(E
R
B
B
2/
EG

FR
i),
A
Z
D
80

55
(m

TO
R
i),
SC

H
77

29
84

(E
R
K
1/

2i
),
A
M
G
-2
32

(M
D
M
2i
)

FM
O
C
17

LG
SO

C
Pr
im

ar
y

Ti
ss
u
e

TP
53

w
t,
C
D
K
N
2A

h
o
m
o
zy
g
o
u
s
lo
ss

Po
zi
o
ti
n
ib

(p
an

-E
RB

B
i),

d
as
at
in
ib

(m
u
lt
ik
in
as
ei
),

SC
H
77

29
84

(E
R
K
1/
2i
),
A
M
G
-2
32

(M
D
M
2i
)

FM
O
C
25

(F
M
O
C
25

_1
FM

O
C
25

_2
)

LG
SO

C
Pr
im

ar
y,
p
ro
g
re
ss
iv
e

(1
)
Ti
ss
u
e

(F
M
O
C
25

_1
)

(2
)
Ti
ss
u
e

(F
M
O
C
25

_2
)

TP
53

w
t,
TA

C
ST

D
2-
O
M
A
1
fu
si
o
n
,C

D
K
N
2A

h
o
m
o
zy
g
o
u
s
lo
ss

(F
M
O
C
25

_2
)

A
Z
D
80

55
(m

TO
R
i),

N
V
P-
B
G
T2

26
&
o
m
ip
al
is
ib

(P
I3
K
/

m
TO

R
i),

SC
H
77

29
84

(E
R
K
1/
2i
),
A
M
G
-2
32

(M
D
M
2i
)

FM
O
C
27

LG
SO

C
Pr
im

ar
y

Ti
ss
u
e

TP
53

w
t,
C
D
K
N
2A

h
o
m
o
zy
g
o
u
s
lo
ss

Po
zi
o
ti
n
ib

&
d
ac
o
m
it
in
ib

(p
an

-E
R
B
B
i),

af
at
in
ib

(E
R
B
B
2/
EG

FR
i),

SC
H
77

29
84

(E
R
K
1/
2i
),
A
M
G
-2
32

(M
D
M
2i
)

FM
O
C
28

LG
SO

C
Pr
im

ar
y

Ti
ss
u
e

TP
53

w
t,
C
D
K
N
2A

h
o
m
o
zy
g
o
u
s
lo
ss

A
Z
D
80

55
(m

TO
R
i),

p
o
zi
o
ti
n
ib

(p
an

-E
RB

B
i),

N
V
P-

B
G
T2

26
(P
I3
K
/m

TO
R
i),

A
M
G
-2
32

(M
D
M
2i
)

FM
O
C
03

M
U
C
O
C

Pr
im

ar
y

Ti
ss
u
e

TP
53

p
.G
24

4V
,W

T1
p
.H
46

9Y
,E

R
B
B
2
A
m
p
.

Po
zi
o
ti
n
ib

(p
an

-E
R
B
Bi
),
SC

H
77

29
84

(E
R
K
1/
2i
),
af
at
in
ib

(E
R
B
B
2/
EG

FR
i)

FM
O
C
06

M
U
C
O
C

R
ec
u
rr
en

t
A
sc
it
es

TP
53

p
.S
21

5N
,
K
R
A
S
p
.G
12

D
,

C
D
K
N
2A

&
M
TA

P
h
o
m
oz
yg

o
u
s
lo
ss

O
m
ip
al
is
ib

(P
I3
K
/m

TO
R
i),

A
Z
D
80

55
(m

TO
R
i),

SC
H
77

29
84

(E
R
K
1/
2i
),
se
lu
m
et
in
ib

&
tr
am

et
in
ib

(M
EK

i)

FM
O
C
22

M
U
C
O
C

Pr
im

ar
y

A
sc
it
es

TP
53

p
.D
28

1H
,K

R
A
S
p
.G
12

V,
C
D
K
N
2A

&
M
TA

P
h
o
m
oz

yg
o
u
s
lo
ss

Pr
ex
as
er
ti
b
(C
h
ki
),
A
Z
D
80

55
(m

TO
R
i),

SC
H
77

29
84

(E
R
K
1/
2i
)

In
ad

d
it
io
n
to

h
is
to
lo
g
ic
al
EO

C
su
b
ty
p
e
an

d
d
is
ea
se

st
ag

e,
th
e
ke
y
o
n
co

g
en

ic
ab

er
ra
ti
o
n
s
ar
e
p
re
se
n
te
d
fo
r
ea
ch

p
at
ie
n
t
ca
se

al
o
n
g
w
it
h
th
e
se
le
ct
iv
e
ef
fe
ct
iv
e
ta
rg
et
ed

d
ru
g
s
b
as
ed

o
n
th
e
D
SR

T
p
la
tf
o
rm

.M
o
re

d
et
ai
le
d
cl
in
ic
al

ch
ar
ac
te
ri
st
ic
s
fo
r
p
at
ie
n
t
ca
se
s
ar
e
p
re
se
n
te
d
in

th
e
Su

p
p
le
m
en

ta
ry

Ta
b
le

S1
A
.
H
G
SO

C
h
ig
h
-g
ra
d
e
se
ro
u
s
o
va
ri
an

ca
rc
in
o
m
a,

LG
SO

C
lo
w
-g
ra
d
e
se
ro
u
s
o
va
ri
an

ca
rc
in
o
m
a,

M
U
CO

C
m
u
ci
n
o
u
s

o
va
ri
an

ca
n
ce
r.

A. Murumägi et al.

680

British Journal of Cancer (2023) 128:678 – 690



sites in pan-cancer cell line analyses, when compared to other drug
response metrics, such as activity area or IC50 [25].

Colony forming assay (CFA)
Cells (5 × 103) were seeded in triplicates in 12-well plate. After 24 h, the
cells were treated with vehicle (DMSO) or the indicated single drugs or
drug combinations. Medium and drugs were refreshed every 3 days for
14 days. Colonies were fixed with methanol/glacial acetic acid (7:1) and
stained with 0.5% of crystal violet. After washing with PBS, plates were air
dried overnight and scanned. Representative images of confluency where
taken with the IncuCyte HD (Essen Bioscience) and colonies were
quantified with ImageJ using the ColonyArea plugin [26].

Immunohistochemistry (IHC)
For IHC analysis, formalin-fixed paraffin-embedded (FFPE) blocks were cut
as 3.5 μm sections and stained for antibodies against pan-cytokeratin
(Sigma-Aldrich, C-11, #C2931), PAX8 (ProteinTech, #10336-1-AP), TP53 (Cell
Signaling Technology, #48818), WT1 (Cell Signaling Technology, #83535),
p-ERBB2 (Cell Signaling Technology, #2243), p-EGFR (Cell Signaling
Technology, #3777), and p-ERBB3 (Cell Signaling Technology, #4791)
according to standard procedures. The stained sections were scanned with
a high-resolution whole-slide scanner (Pannoramic 250 Flash III, 3DHIS-
TECH) with a ×20 objective.

Next-generation DNA sequencing
Genomic DNA was isolated from EOC tissue samples, PDC and germline
control blood cells using the DNeasy Blood and Tissue kit (Qiagen)
according to the manufacturer’s protocol. Genomic DNA concentration
and purity was measured with Qubit 2.0 Fluorometer (Thermo Fisher
Scientific). Exome sequencing was performed for samples FMOC03 (both
original tumour tissue and PDC), FMOC04 (PDC), FMOC06_1 (both original
tumour tissue and PDC), FMOC11 (both original tumour tissue and PDC),
FMOC14 (both original tumour tissue and PDC) with 3 μg of genomic DNA
using NimbleGen SeqCap EZ Human Exome v2.0 kit (Roche NimbleGen).
The mutation and copy number analysis were carried out as described
previously [27]. Sequencing reads were aligned and processed through
variant calling pipeline [27]. Whole-genome sequencing was performed for
FMOC09 (both original tumour tissue and PDC) as described earlier [27].
The cancer panel sequencing was performed for FMOC02_1 (PDC),
FMOC02_2 (PDC), FMOC02_3 (PDC), FMOC17 (PDC), FMOC24 (original
ascites and PDC), FMOC25_1 (both original tumour tissue and PDC),
FMOC25_2 (both original tumour tissue and PDC) and FMOC27 (both
original tumour tissue and PDC). For the library preparation, in‐solution
hybridisation–based capture, and sequencing were performed as pre-
viously described [28]. Briefly, an average of 50 ng of DNA was used for
library preparation (ThruPLEX Plasma Seq; Rubicon Genomics). Capture
was performed with a custom pan-cancer panel (Roche NimbleGen) which
enables detection of somatic alterations in coding sequence (289 genes)
and genome‐wide copy number variants (CNVs). The captured libraries
were sequenced in rapid mode on the HiSeq 2500 instrument (Illumina).
Downstream bioinformatics, including basic quality control and identifica-
tion of mutations and CNVs was performed as previously described [28].
Copy number values and segmentation were visualised in the Integrative
Genomics Viewer (Broad Institute, USA).

RNA-sequencing
Total RNA was isolated from PDCs using RNeasy kit (Qiagen). Quantity and
quality of the RNA samples were assessed by Qubit (Thermo Fisher
Scientific) and Bioanalyzer (Agilent Technologies). RNA with an RNA
integrity number (RIN) > 8 was used for subsequent analysis. Libraries were
multiplexed and paired-end sequencing was performed with Illumina
HiSeq system (Illumina). RNA-sequencing data were analysed as previously
described [29]. Using the normalised log-transformed CPM (count per
million) expression values for 19,686 genes, hierarchical clustering was
performed to generate a sample-to-sample cluster map of total gene
expression correlations with the SciPy Python library [30] which was then
visualised using the Seaborn Python library (https://doi.org/10.5281/
zenodo.1313201). Hierarchical clustering was performed for unique sets
of 39 genes linked to the RAS pathway. Distances were calculated with the
Euclidean distance metric and the Ward variance minimisation algorithm
was used to cluster genes and samples, based on log-transformed CPM
expression values in 11 PDCs, with the SciPy Python library [30]. Expression
values were normalised on a zero-to-one scale, and the derived clusters

were then visualised using the Seaborn Python library as described above.
Fusion genes were predicted using the Fusion Catcher tool [31].

RT-PCR and Sanger sequencing
Three micrograms of total RNA was used for the first-strand cDNA
synthesis using the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems). RT-PCR was performed with Phusion Flash High-Fidelity PCR
master mix (Thermo Fisher Scientific). Verification of fusion genes was
carried out at the FIMM Technology Centre Sequencing Unit by capillary
sequencing. Primer sequences are listed in Supplementary Table S1F.

Western blotting
Cells were washed twice in cold PBS and lysed with lysis buffer (50mM
Tris-HCl pH 7.5, 10% glycerol, 150mM NaCl, 1 mM EDTA, 1% Triton-x-100,
50mM NaF) supplemented with protease and phosphatase inhibitor
cocktails (Biotool). Lysates were resolved by SDS–PAGE and transferred to
nitrocellulose membranes. After blocking in 5% BSA, blots were incubated
with the indicated primary antibodies overnight at 4 °C. After primary
antibodies IRDye secondary antibodies IRDye 680RD Donkey anti-Goat IgG,
IRDye 800CW Donkey anti-Mouse IgG or IRDye 680RD Donkey anti-Rabbit
IgG (LI-COR) were used at 1:10,000 dilution and blots were scanned with
Odyssey CLx Imaging System (LI-COR) and images were processed with
Image Studio Lite (LI-COR).

Target addiction scoring (TAS)
Target addiction scoring (TAS) is an experimental-computational target
deconvolution method, which makes use of polypharmacological effects of
compounds to integrate the drug sensitivity and selectivity profiles
through systems-wide interconnection networks between drugs and their
targets, including both primary protein targets as well as potent off-targets
[32, 33]. More specifically, for a given kinase target t, TASt was calculated by
averaging the observed drug response (DSSi) over those nt inhibitors that
target the protein t. Mathematically, TAS defines a transformation between
the spaces spanned by the compounds and their targets, which maps
observed drug responses to the underlying target addictions as

TASt ¼
Xnt

i¼1

DSSi
nt

:

TAS is an individualised approach in the sense that it uses the drug
sensitivity profile from a given PDC cells, screened against a library of drugs
using DSRT, and then transforms the observed functional response profile into
a sample-specific target addiction profile, through the information encoded in
the spectrum of protein targets of the compounds. To curate comprehensive
target information, we extracted the quantitative compound-target interac-
tion profiles from the DTC web-portal (https://drugtargetcommons.fimm.fi/)
[34, 35], using the dose-response bioactivity end-points (Kd, Ki and IC50). The
significance of the kinase targets for each sample was determined using
p-values calculated through the permutation test.

Data analysis and statistics
The DSRT data were processed using the web-based Breeze software [36].
Unsupervised hierarchical clustering of the drug sensitivity profiles was
performed and visualised using the Morpheus (https://software.
broadinstitute.org/morpheus/). Principal component analysis (PCA) was
performed using the ClustVis tool [37]. For synergy assessment, the highest
single agent (HSA) synergy model was applied, using the web-application
SynergyFinder [38]. Statistical analyses were performed with Prism 9
(GraphPad Software). Correlation plots shown in Fig. 3 and Supplementary
Figs. 3A and 9C were made using Spearman’s rank correlation. Limma-
voom [39] was used for differential drug sensitivity analysis, based on DSS
profiles, and further utilised for drawing the volcano plots. The drugs with
DSS ≥ 10 were considered as effective and included in the statistical
analysis (Supplementary Fig. 3).

RESULTS
Establishment of a functional precision oncology (fPO)
pipeline for EOC
We developed a fPO approach that uses ascites or fresh ovarian
tumour tissue as a starting material from patients with primary or
metastatic EOCs for (i) establishment of patient-derived cancer
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cells (PDCs), (ii) analysis of their genomic and transcriptomic
representability, and (iii) integration of genomic, transcriptomic
and functional drug sensitivity data (Fig. 1). Five represented
LGSOC subtype (FMOC02, FMOC17, FMOC25, FMOC27 and
FMOC28), three MUCOC subtype (FMOC03, FMOC06 and FMOC22)
and five HGSOC subtype (FMOC04, FMOC09, FMOC11, FMOC14
and FMOC24). Detailed clinical characteristics for each patient case
are summarised in the Table 1 and Supplementary Table 1A. Of
the HGSOC patient cases, three (FMOC04, FMOC14 and FMOC24)
had progressive disease and were resistant to platinum treatment,
whereas two other ones (FMOC09 and FMOC11) were sensitive to
the neoadjuvant treatment. Four LGSOC and all MUCOC cases
were resistant to standard chemotherapy treatments. The PDCs
were established from tumour tissue or ascites samples from
thirteen patients using culturing protocols that have proven to be
effective for development of PDCs for epithelial cancers
[18, 21, 40, 41]. We performed genomic and molecular profiling
to confirm the representability of each PDC with its original
tumour samples (Supplementary Table 1A and Supplementary
Fig. 1A–C). PDCs stained positive for pan-cytokeratin, Müllerian
marker paired box-protein 8 (PAX8), Tumour protein p53 (TP53)
and Wilm’s tumour protein 1 (WT1), which are all known to be
commonly expressed in EOC (Supplementary Fig. 1A). Genomic
aberrations identified in HGSOC original sample and PDCs
included TP53 mutations, PIK3CA copy number gain or amplifica-
tion, CCNE1 amplification in three (FMOC04, FMOC09 and
FMOC24), MYC amplification in one (FMOC11) and KRAS amplifica-
tion in two (FMOC11 and FMOC24) (Supplementary Table S1A and
Supplementary Fig. 1B, C). In contrast, all LGSOC PDCs had wild-
type TP53 and less aberrant genomes, with CDKN2A/B loss
detected in all FMOC2 PDCs, in one out of two FMOC25 PDCs
and in OC27 PDC (Supplementary Fig. 1B). For MUCOC, we
identified TP53 mutations (in all three), KRAS G12 mutation in
FMOC06 and FMOC22, as well as ERBB2 amplification in FMOC03.
Novel fusion genes were identified in FMOC09 (FNBP4-PTPMT1)
and FMOC11 (ING5-THAP4 and ROCK1-SS18), whereas previously
reported oncogenic fusion genes were found in FMOC02 (CLU-
NRG1), FMOC24 (RCC1-UBE2D2) and FMOC25 (TACSTD2-OMA1)
(Supplementary Table S1G). Fusion genes were further confirmed
by RT-PCR and Sanger sequencing (Supplementary Fig. 2A–C).
Hierarchical clustering of RNA-sequencing data grouped the PDCs
according to EOC subtypes (Supplementary Fig. 2D). LGSOC and
MUCOC models exhibited high MAPK pathway gene expression,
although no somatic mutations were seen anywhere in this
signalling pathway in LGSOC PDCs, whereas MUCOC PDCs

FMOC03 had ERBB2 amplification and both FMOC06 and FMOC22
had KRAS G12 hotspot mutation (Supplementary Fig. 2E).

Distinct drug efficacies between HGSOC, LGSOC and MUCOC
PDCs
We carried out drug sensitivity testing of sixteen PDCs with a panel
of up to 526 approved drugs and investigational oncology
compounds (Supplementary Tables S1H and S1I). The drug testing
assay was reproducible as validated by the replicate screens
(Supplementary Fig. 3A). The same drug library has been used in
several other studies to identify novel drug vulnerabilities in
leukaemias and solid tumour PDCs and established cell lines
[14, 22, 42–44]. The library includes among other drug classes 255
small-molecule kinase inhibitors covering both receptor tyrosine
(e.g., ERBB2 and EGFR) and non-receptor tyrosine (e.g., PI3K/mTOR)
kinase inhibitors. We defined a drug moderately to strongly
effective if its drug sensitivity score (DSS) value exceeded the 85%
quantile (DSS ≥ 10) of the overall DSS distribution (Supplementary
Fig. 3B). Of the 526 tested compounds, 20.7% had DSS ≥ 10 in
LGSOC (on average 109 drugs), 13.5% in HGSOC (on average 71
drugs) and 13.2% in MUCOC PDCs (on average 70 drugs), implying
that LGSOC PDCs were overall more sensitive to all drug classes
(Fig. 2a). This significant sensitivity difference was due to responses
to the targeted drugs (21.6% had DSS ≥ 10 in LGSOC, 9.8% in
HGSOC and 10.7% in MUCOC PDCs), whereas there was a modest
change in sensitivity to chemotherapeutics among the three types
of EOC PDCs (31.4% in LGSOC, 27.9% in HGSOC and 26,2% in
MUCOC PDCs) (Fig. 2a). The variability in the drug response profiles
was further visualised by principal component analysis (PCA), which
showed that LGSOC PDCs formed their own cluster, separate from
the HGSOCs and MUCOCs (Fig. 2b).
Average DSSs in HGSOCs and LGSOC models showed higher

sensitivities to drugs targeting MDM2, ERBB2/EGFR and MEK/ERK,
whereas comparison of the average DSSs between HGSOC and
MUCOC PDCs showed higher sensitivity to MEK/ERK inhibitors
(Fig. 2c). For example, afatinib, a dual irreversible ERBB2/EGFR
inhibitor showed significantly higher efficacy in LGSOC PDCs (DSS
≥ 10), compared to HGSOC (p= 0.0305) and MUCOC (p= 0.0462)
(Fig. 2d). The potential importance of ERBB2 and EGFR signalling in
the LGSOC was further supported by the target addiction scoring
(TAS), which makes use of multi-target drug polypharmacology to
map the complex interconnections between drug responses and
their target interaction profiles (Supplementary Fig. 4). TAS
integrates both primary protein targets as well as potent off-
targets of drugs to provide a ranking of potential therapeutic

Tumour tissue
& Ascites

Comparison of
low-grade,

high-grade serous &
mucinous EOC PDCs

Drug sensitivity and resistance testing with
526 oncology drugs in 5 doses

Comprehensive molecular profiling of tumour and
representativity of the PDCs

Before and after treatment

Clinical translationPatient-specific drugs

Response to
personalized treatment

Functional precision oncology (fPO) pipeline for EOC

Kinase inhibitor (255)

0 10
DSS

20 30

Vinorelbine

250

200

150

C
A

12
5 

U
/m

l

100

3.09.2018

100 μm

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

X
Y

100 μm

3.01.2019

50

0

Bortezomib
Cabazitaxel
Carfilzomib

Omacetaxine
Dactinomycin

Neratinib
Afatinib

Docetaxel
Paclitaxel

Mepacrine
Vinblastine

Gefitinib
Topotecan
Vincristine

Erlotinib
Dasatinib

Gemcitabine
Clofarabine
Trametinib

Conventional chemotheraohy (59)
Rapalog (5)
Immunomodulatory (18)
Epigenetic modifier (74)
Hormone therapy (22)
Apoptotic modulator (23)
Metabolic modifier (18)
Kinesin inhibitor (4)

HSP inhibitor (6)
Other (42)

NSAID (1)

Fig. 1 The principle of the functional precision oncology (fPO) pipeline. Patient-derived cancer cells (PDCs) established from HGSOC,
LGSOC and MUCOC tumour or ascites samples were subjected to molecular characterisation and functional drug testing platform covering up
to 526 drugs to identify patient-selective drug vulnerabilities that can be translated back to the clinics in real-time. Figure was created with
BioRender.com.

A. Murumägi et al.

682

British Journal of Cancer (2023) 128:678 – 690



targets according to their functional importance in each cancer
sample [32, 33]. MEK inhibitor trametinib showed higher
sensitivity in LGSOC (p= 0.0004) and MUCOC PDCs (p= 0.0008),
when compared to HGSOC PDC (Fig. 2d). Chk1 inhibitor
prexasertib showed higher sensitivity in HGSOC, compared to

LGSOC (p= 0.0286) and MUCOC (p= 0.0098). This compound is
undergoing a phase 2 clinical trial (NCT03414047) in HGSOC
lacking BRCA1/2 mutations (Fig. 2d).
We identified potential actionable compounds that are either

clinically approved for patient treatment or are undergoing clinical
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trial for each subset of EOCs, using selective DSS, where the drug
responses of the PDCs were compared with the average responses
of healthy bone marrow derived mononuclear cells to exclude
drugs that showed cytotoxicity in the healthy cells (Table 1 and
Supplementary Figs. 5 and 6). For example, Wee1 inhibitor
AZD1775 and Chk1 inhibitor prexasertib were among the top
selective drugs for the FMOC04 PDC, which harbours CCNE1
amplification. It has been shown that combination of AZD1775 and
gemcitabine improves the progression-free survival in platinum-
resistant recurrent HGSOC patients in phase 2 clinical trial [45].

Selective responses of LGSOC PDCs to MDM2 inhibitors
We also observed higher sensitivity of MDM2 inhibitors in LGSOC
PDCs that have wild-type TP53 in comparison to HGSOC and
MUCOC PDCs with mutant TP53 (Fig. 3a). Notably, MDM2 inhibitors
AMG-232, idasanutlin and SAR405838 exhibited strong selective
responses in LGSOC PDCs (p= 0.0003, LGSOC PDCs vs. HGSOC
PDCs, Fig. 3b). AMG-232 has shown encouraging results in phase
1 study in TP53 wild-type solid tumours [46], and it had the highest
sensitivity in LGSOC PDCs among all MDM2 inhibitors (Fig. 3c). The
analysis of MDM2 mRNA expression by RNA-seq across all PDCs
revealed significantly higher MDM2 levels in LGSOC PDCs, when
compared to other samples with mutant TP53 (p < 0.0001, Fig. 3d).
Among the other targeted drugs displaying LGSOC-specific
responses were dual ERBB2/EGFR inhibitor neratinib, AKT inhibitor
ipatasertib and Syk inhibitor tamatinib (Fig. 3a).

SHP2 phosphatase inhibitor SHP099 synergises with MEK
inhibitors in PDCs
Recently, Fedele et al. showed that protein-tyrosine phosphatase
(SHP2) inhibitor SHP099 in combination with MEK inhibitor (either

trametinib or selumetinib) blocked proliferation of multiple cancer
cell lines, including OC, and prevented the development of
adaptive resistance to MEK inhibitors [47]. To explore whether this
combination is also effective in EOC PDCs, we tested its potency in
FMOC11 (HGSOC with amplification and overexpression of wild-
type KRAS) and in three LGSOC models (FMOC02_3, FMOC17 and
FMOC25_2), which all harbour wild-type KRAS but show elevated
expression of RAS-pathway components by RNA-sequencing data
(Supplementary Fig. 2E). Potential synergistic interactions were
tested using 7 × 7 multi-dose combination matrices and the
SynergyFinder was used to score any potential synergy [38].
SHP099 alone had almost no effect on cell viability, whereas MEK
inhibitors selumetinib and trametinib had moderate single-agent
efficacy (Fig. 4a and Supplementary Fig. 7). The combination of
SHP099 with either selumetinib or trametinib showed synergy in
all four tested PDC models and in a control, Kuramochi cell line,
that has KRAS amplification (Fig. 4a and Supplementary Fig. 7).
The combinations of both SHP099 and selumetinib (24 h
treatment) and SHP099 and trametinib (48 h treatment) inhibited
ERK phosphorylation in all the tested PDCs (Fig. 4b). Furthermore,
to examine the long-term combined effects of SHP2 and MEK
inhibition on EOC PDCs, we performed colony formation assay,
where cells were exposed to SHP099 (10 µM), trametinib
(1–10 nM) and selumetinib (0.1–1 µM), either individually or in
combination for up to two weeks. The results showed that the
combination treatment of SHP099 with either trametinib or
selumetinib led to substantially enhanced inhibition in all the
models, thus corroborating our initial drug combination testing
results (Supplementary Fig. 8A, B). These results support the
combinatorial inhibition of SHP2 and MEK as a potential
therapeutic strategy for EOCs with activated MAPK pathway, and

Fig. 2 Drug response profiles of EOC PDCs. a Percentage of all drugs, chemotherapeutics and targeted drugs with DSS ≥ 10 across LGSOC,
HGSOC and MUCOC PDCs. Data are presented as means ± SEMs. p value from two-tailed Welch’s t test is shown. b Clustering of the overall
drug response profiles across EOC PDCs to the panel of up to 526 approved and investigational oncology compounds by principal
component analysis (PCA). c Pairwise correlation between the average DSS levels of LGSOC and HGSOC, LGSOC and MUCOC, and HGSOC and
MUCOC PDCs. Drug families showing highest differences between compared EOC subtypes are highlighted in colours in each subplot. d The
response to the irreversible dual ERBB2/EGFR inhibitor afatinib, MEK inhibitor trametinib and Chk1 inhibitor prexasertib across all the EOC
PDCs presented as waterfall plots and comparisons of average drug efficacies between the EOC subtypes. Data are presented as
means ± SEMs. p values from one-way ANOVA test.
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AMG-232 across EOC PDCs. D) RNA-seq CPM-based normalised expression of MDM2 in 5 LGSOC PDCs and 6 HGSOC and MUCOC PDCs. Data
are presented as means ± SEMs. p value from two-tailed Welch’s t test.
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further illustrate the value of ex vivo PDCs in testing combinations
of existing and emerging drugs.

Clinical application of fPO in an LGSOC patient with a CLU-
NRG1 gene fusion activating ERBB3 signalling
One of the LGSOC patients (FMOC02) experienced a relapse 17
years after diagnosis and primary operation. Standard chemother-
apy had no effect on cancer progression as evidenced by the
continuously rising CA125 serum levels (Fig. 5a). A HIPEC
(hyperthermic intraperitoneal chemotherapy) with doxorubicin
was performed in 2014 and PDC FMOC02_1 was established from
the ascites sample (Fig. 5b). DNA sequencing revealed a loss of the
CDKN2A locus at chromosome 9 and no other driver mutations,
while RNA-sequencing detected a CLU-NRG1 fusion gene, which
resulted in a rearrangement of exons 1 to 2 of clusterin (CLU) gene

with exons 2 to 13 of the neuregulin-1 (NRG1) gene (Fig. 5c and
Supplementary Fig. 2B, C). Therefore, the EGF-like domain of the
NRG-1 was driven by the CLU promoter. The NRG1 ligand induces
the heterodimerization and activation of ERBB2/ERBB3 signalling
[48]. Accordingly, we detected a strong phospho-ERBB2 and
phospho-ERBB3 expression in FMOC02_1 PDC and in the original
peritoneal metastasis sample by IHC (Supplementary Fig. 9A).
Moreover, drug testing of FMOC02_1 PDC identified high
sensitivity to afatinib/neratinib (second-generation irreversible
dual EGFR/ERBB2 inhibitors) and to erlotinib/gefitinib (first-
generation reversible EGFR inhibitors) (Fig. 5d). We further
validated this finding in 3D culture condition (Supplementary
Fig. 9B). Based on the fPO results, the patient was first treated with
a combination of gemcitabine and erlotinib resulting in a
favourable response (Fig. 6). When CA125 level started to increase

p-Erk (T202/Y204)

Erk

β-tubulin

FMOC02_3

Selumetinib (1 μM)

SHP099 (10 μM)

–

–

+

–

–

+

+

+

Trametinib (0.1 μM)

SHP099 (10 μM)

–

–

+

–

–

+

+

+

p-Erk (T202/Y204)

Erk

β-tubulin

FMOC17

–

–

+

–

–

+

+

+

–

–

+

–

–

+

+

+

–

–

+

–

–

+

+

+

FMOC11

–

–

+

–

–

+

+

+

FMOC25_2

–

–

+

–

–

+

+

+

–

–

+

–

–

+

+

+

Kuramochi

–

–

+

–

–

+

+

+

–

–

+

–

–

+

+

+

a

b

FMOC11 Kuramochi FMOC02_3 FMOC17 FMOC25_2
100

75

P
er

ce
nt

ag
e 

su
rv

iv
al

P
er

ce
nt

ag
e 

su
rv

iv
al

50

25

0

10

0.1 0.3 1 3 10 30 100 0.1 0.3 1 3 10 30 100 0.1 0.3 1 3 10 30 100 0.1 0.3 1 3 10 30 100 0.1 0.3 1 3 10 30 100

30 100 300

Selumetinib (nM)

Trametinib (nM) Trametinib (nM) Trametinib (nM) Trametinib (nM) Trametinib (nM)

Selumetinib (nM) Selumetinib (nM) Selumetinib (nM) Selumetinib (nM)

1000 3000 10,000 10 30 100 300 1000 3000 10,000 10 30 100 300 1000 3000 10,000 10 30 100 300 1000 3000 10,000 10 30 100 300 1000

SHP099 (nM)

SHP099 (nM)

10,000
3000
1000
0

10,000
3000
1000
0

3000 10,000

100

75

50

25

0

Fig. 4 Combined SHP2 and MEK inhibition synergistically inhibits EOC PDCs growth. a Dose-response curves of selumetinib and trametinib
alone and in combination with SHP099 (1000 nM, 3000 nM and 10,000 nM) in PDCs (FMOC11, FMOC02_3, FMOC17 and FMOC25_2) and
Kuramochi cell line measured with cell viability assay after 1 week. Shown is one representative experiment of at least three replicates. The
individual 2D synergy plots for each sample are presented in Supplementary Fig. 7. b Immunoblots for phospho-ERK and total ERK levels in
lysates of PDCs and Kuramochi cell line treated with DMSO, selumetinib, trametinib, SHP099 or combinations as indicated. β-tubulin was used
as a loading control.

A. Murumägi et al.

685

British Journal of Cancer (2023) 128:678 – 690



after 12 months of treatment, the patient received afatinib, first in
combination with gemcitabine followed by afatinib monotherapy,
resulting in a marked decrease in CA125 levels (Fig. 6). We also
confirmed better efficacy of afatinib over erlotinib in inhibiting
phospho-AKT levels or colony formation in ex vivo FMOC02_1 PDC
(Fig. 5e, f).
When CA125 levels increased again 12 months later, a needle

biopsy and ascites samples were obtained and used to generate
FMOC02_2 in 2017 and FMOC02_3 in 2018, respectively. The
presence of CLU-NRG1 fusion and the loss of CDKN2A was

detected in both samples (Supplementary Figs. 1B and 2B). The
drug response profiles observed in all three FMOC02 PDCs were
remarkably similar and showed continued dependency of cancer
cells on the ERBB2/EGFR and RAS/ERK signalling (Fig. 5g and
Supplementary Figs. 6 and 9B–D). We therefore next tested
whether anti-ERBB2/ERBB3 monoclonal antibodies trastuzumab
and pertuzumab had any effect on FMOC02 PDCs. Treatment with
either trastuzumab or pertuzumab showed decreased phospho-
AKT and phospho-ERK levels and inhibition of colony formation,
demonstrating the efficacy of these antibodies in blocking NRG1/

pERBB2

ERBB2

pERBB3

ERBB3

pEGFR

EGFR

pPI3K

PI3K

pAKT

AKT

β-actin

Afatinib

– 2 h 24 h 48 h 72 h – 2 h 24 h 48 h 72 h

Erlotinib
e

b

f

i

pERBB3

pERK

ERK

pAKT

AKT

Trastuzumab

β-tubulin

ERBB3

Pertuzumab

– 12 h 24 h – 12 h 24 h

CT L 20 nM 200 nM 20 nM 200 nM

Afatinib Erlotinib

h
CTL  

Pert.

10 µg/ml 10 µg/ml 10 +10 µg/ml

Trast. Trast. + Pert.

FMOC02_1
ascites

FMOC02_1
spheroids

FMOC02_1
PDC

g

CLU-NRG1

d

NRG1CLU

GTCTCAGACAATGAGCTCCAGG*CCTTGCCTCCCCGATTGAAAGA
TCTCAGACAATGAGCTCCAGG*CCTTGCCTCCCCGATTGAAAGAG

CTCAGACAATGAGCTCCAGG*CCTTGCCTCCCCGATTGAAAGAGA
TCAGACAATGAGCTCCAGG*CCTTGCCTCCCCGATTGAAAGAGAT

CAGACAATGAGCTCCAGG*CCTTGCCTCCCCGATTGAAAGAGATG

0 10 20 30

Trametinib
Clofarabine

Gemcitabine
Dasatinib
Erlotinib

Vincristine
Topotecan

Gefitinib
Vinblastine
Mepacrine
Paclitaxel
Docetaxel

Afatinib
Neratinib

Dactinomycin
Omacetaxine

Carfilzomib
Cabazitaxel
Bortezomib
Vinorelbine

DSS

Chemotherapeutics Targeted drugs

Before functional precision oncology
a c

0.1 1 10 100 1000 10000
0

20

40

60

80

100

120

Concentration (nM)

P
er

ce
nt

ag
e 

su
rv

iv
al

FMOC02_2, DSS 16.4

FMOC02_1, DSS 19.3

FMOC02_2, DSS 12.6

FMOC02_1, DSS 14.7

FMOC02_3, DSS 16.4 FMOC02_3, DSS 14.3

Afatinib Erlotinib

CTL

Afa
tin

ib 
20

 n
M

Afa
tin

ib 
20

0 
nM

Erlo
tin

ib 
20

 n
M

Erlo
tin

ib 
20

0 
nM

0

25

50

75

100

125

C
on

flu
en

cy

p < 0.0001

p < 0.0001

p < 0.0001

ns.

CTL

Tra
stu

zu
m

ab
 1

0 
μg

/m
l

Per
tu

zu
m

ab
 1

0 
μg

/m
l

Tra
st.

 +
 P

er
t. 

10
 μg

/m
l

0

25

50

75

100

125

C
on

flu
en

cy

p < 0.0001

p < 0.0001

p < 0.0001

Paclitaxel +
Carboplatin

Topodecan

Carboplatin +
Gemcitabine

Gemcitabine

Feb-2013 Feb-2014

0

50

100

150

200

250

C
A

12
5U

/m
l

A. Murumägi et al.

686

British Journal of Cancer (2023) 128:678 – 690



ERBB3 activation and its downstream signalling (Fig. 5h, i).
Subsequently, the patient received trastuzumab and pertuzumab
in combinatorial therapy, which resulted in stabilised CA125 levels
and disappearance of metastases in the CT (Fig. 6). Notably, all
three FMOC02 PDCs established over a 4-year period showed
excellent responses to ERBB inhibitors and the presence of the
same key genomic events and molecular drivers.

DISCUSSION
Here, we demonstrate how the fPO data from the functional
profiling of EOC PDCs cells provides actionable information about
the dependency of the cancer on key signalling pathways, and on
vulnerability or resistance to drugs or drug combinations. While
the efficacy of targeted agents can sometimes be predicted from
cancer genomics data alone, synthetic lethalities, non-genomic
dependencies, and other complex vulnerabilities to drugs are
much more difficult to predict from genomic profiles alone. This is
also the case for drug combinations. The concept of matching
drugs to patients based on functional testing of patient-derived
cells ex vivo is already being tested in clinical trials in both
haematological malignancies and solid tumours [49]. In solid
tumours, it is more challenging to develop and ascertain
representativity of ex vivo models for functional precision
oncology purposes, with the aim to provide actionable insights
for patient treatment.
Applying PDCs for guiding functional precision medicine

studies in different types of solid tumours has been proposed as
a new strategy for precision medicine, but very little clinical
evidence exists so far [18, 19, 41]. For example, organoid models
are intensively investigated as advanced models, but their
suitability for real-time translational application and for high-
throughput drug screening purposes is limited by the time
needed to establish and expand such models [12, 13].
Previous studies have shown that the genomic and molecular

profiles of LGSOCs, MUCOCs and HGSOCs are quite distinct in
terms of e.g. TP53, KRAS and BRAF mutation status [5]. Therefore,
our aim was to investigate the overall drug response profiles of
representative type I (LGSOC and MUCOC) and type II (HGSOC)
EOC PDCs to a library of 526 drugs and to identify both subtype-
specific and patient-specific drug vulnerabilities. Our results
indicated that while each PDC was unique, the three EOC
subgroups had a distinct overall drug response profile. LGSOC
PDCs exhibited on average strong responses to inhibitors of ERBB-
gene family, MDM2, MEK, and PI3K/mTOR as well as to the multi-
kinase inhibitor dasatinib, MUCOC PDCs were sensitive to MEK and
ERK inhibitors, while all HGSOC PDCs were sensitive to PI3K/mTOR
inhibitors.
Since drug response profiling revealed that HGSOC exhibit

increased resistance to targeted drugs, we sought to identify

possible combination therapies that could effectively kill HGSOC
cancer cells. For this purpose, we focused on drugs targeting
MAPK pathway that play an important role in EOC progression
[50]. According to the TCGA data, 11% of HGSOC cases have
KRAS amplification [50]. Mutations in either KRAS, BRAF or other
components of MAPK pathway are also common in LGSOC [51],
and in MUCOC KRAS mutations are found in up to 40–65% cases
[52]. Recent studies have demonstrated a strong synergy
between SHP2 kinase inhibitor SHP099 and MEK inhibitors
[47, 53]. Consistent with these observations, combination
treatment of SHP099 with either trametinib or selumetinib had
a better inhibitory effect in all of our tested PDCs models, both
in short-term testing and in long-term colony forming assays.
This included the HGSOC patient case FMOC11 with KRAS
amplification, indicating that simultaneous targeting of SHP2
and MEK signalling pathway could improve MEK inhibitor
efficacy in RAS-mutant EOC. In addition, we found similar effects
in EOC cases with high expression of wild-type RAS, suggesting
that the effects of MEK inhibition by itself and the joint effect of
MEK and SHP2 inhibition may not be limited to RAS mutant
cancers.
We were able to establish representative EOC PDCs in a

clinically actionable time-frame for all cases, while translation to
clinical treatment was possible only in one case. We describe a
LGSOC case with an oncogenic fusion gene CLU-NRG1 (FMOC02),
where fPO was applied to tailor treatment for a patient who was
unresponsive to a conventional chemotherapy. NRG1 is the ligand
for ERBB/EGFR receptors, and NRG1/ERBB3 activation loop has
been linked to EOC progression [48]. Moreover, NRG1-fusion genes
are potentially actionable genomic events in other cancers such as
lung cancer [54]. CLU-NRG1 has been detected in EOC, such as in
HGSOC [55]. Based on functional drug responses of FMOC02 PDCs,
the patient was initially treated with a combination of erlotinib
and gemcitabine, followed by EGFR/ERBB2 dual inhibitor afatinib,
and ultimately with a combination of anti-ERBB2 monoclonal
antibodies trastuzumab and pertuzumab. The initiation of each of
these multiple therapies led to positive responses and eventually
kept the disease under control for over 5 years. Therefore, this is
an example of how functional precision medicine could be
applied in the future to tailor patient treatments. A few aspects
make LGSOCs a particularly attractive model for implementing
functional precision oncology in solid tumours. First, LGSOC is
often metastatic, but responds poorly to conventional che-
motherapies. Thus, functional precision medicine can illuminate
targeted therapies that may prove effective. Second, LGSOCs, like
our FMOC02 patient case, often show wild-type TP53 and low level
of genomic instability, and hence resistance to targeted treat-
ments is not as common as in other tumour types. Third, ERBB
inhibition with erlotinib and pertuzumab was shown to result in
clinical responses in two patients with NRG1-rearranged

Fig. 5 CLU-NRG1 fusion gene is targetable by anti ERBB2/ERBB3 pharmacological agents. a Schematic representation of FMOC02 patient’s
CA125 levels, measured after relapse during standard chemotherapy treatments. b Picture of the original FMOC02_1 ascites sample, the
tumour spheroids and established FMOC02_1 PDC. Scale bar, 100 µM. c Schematic representation of CLU-NRG1 rearrangement showing
genomic structure of the fusion gene and some of the fusion-point spanning sequences. d Waterfall plot showing the most effective
approved chemotherapy (grey) and targeted (purple) drugs for FMOC02_1 PDC based on drug sensitivity score (DSS). e Phosphorylation of
ERBB receptors and downstream signalling transducers of FMOC02_1 PDC in dose-response experiments. FMOC02_1 PDCs were treated with
afatinib or erlotinib (200 nM) for different time points as indicated, followed by cell lysing and immunoblotting with indicated antibodies. β-
actin was included as a loading control. f Long-term CFA with FMOC02_1 PDCs cultured for 14 days in the absence or presence of afatinib and
erlotinib (20 or 200 nM). Colonies were counted with Image J using the ColonyArea plugin and shown as percentage inhibition by comparison
with untreated cells. Shown results are representative of at least two independent experiments. Data are presented as means ± SEMs. p values
from one-way ANOVA is shown. g Dose-response curves of afatinib and erlotinib for the three FMOC02 PDCs. h Phosphorylation of ERBB3, ERK
and AKT in FMOC02_3 PDCs treated with trastuzumab and pertuzumab for 12 and 24 h (10 μg/ml), followed by protein extraction and
immunoblotting. β-tubulin was included as a loading control. i Long-term CFA with FMOC02_3 PDCs cultured for 14 days in the absence or
presence of trastuzumab (10 μg/ml), pertuzumab (10 μg/ml) and their combination (both 10 μg/ml). Colonies were counted with Image J using
the ColonyArea plugin and shown as percentage inhibition by comparison with untreated. Shown results are representative of at least two
independent experiments. Data are presented as means ± SEMs. p values from one-way ANOVA.
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pancreatic ductal adenocarcinoma (PDAC) tumours, which is in
line with our results and suggesting therapeutic options for
tumours with aberrant ERBB receptor-mediated signalling arising
from NRG1 activation [56]. Our findings support the use of ERBB-
targeted inhibitors for NRG1-rearranged EOC, although this will
need to be proven in formal clinical trials.
In conclusion, drug response profiling with genotypically and

phenotypically representative PDCs can be utilised to identify and
validate cancer driver signals and to pinpoint clinically actionable
inhibitors and their combinations that could be applied for real-
time patient treatment optimisation and personalisation. We
acknowledge some of the limitations inherent in all ex-vivo culture
technologies, such as the lack of a complex tumour microenvir-
onment or immune cells. These could in the future be addressed
with e.g. complex models and explant tissue cultures, which on
the other hand, are inherently low-throughput technologies.
Functional precision medicine is expected to significantly expand
the actionability of the current, mostly genomics-based persona-
lised medicine approaches, and help in drug repositioning to new
indications. In this study, we have demonstrated the proof-of-
concept implementation of EOC PDCs in guiding treatment
decisions for LGSOC, highlighting promising drug efficacies along
the ERBB family inhibition that may have clinical significance.
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