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BACKGROUND: Recently, we showed a >60% difference in 5-year survival for patients with tubo-ovarian high-grade serous
carcinoma (HGSC) when stratified by a 101-gene mRNA expression prognostic signature. Given the varied patient outcomes, this
study aimed to translate prognostic mRNA markers into protein expression assays by immunohistochemistry and validate their
survival association in HGSC.
METHODS: Two prognostic genes, FOXJ1 and GMNN, were selected based on high-quality antibodies, correlation with protein
expression and variation in immunohistochemical scores in a preliminary cohort (n= 134 and n= 80, respectively). Six thousand
four hundred and thirty-four (FOXJ1) and 5470 (GMNN) formalin-fixed, paraffin-embedded ovarian neoplasms (4634 and 4185
HGSC, respectively) represented on tissue microarrays from the Ovarian Tumor Tissue Analysis consortium underwent
immunohistochemical staining and scoring, then univariate and multivariate survival analysis.
RESULTS: Consistent with mRNA, FOXJ1 protein expression exhibited a linear, increasing association with improved overall survival
in HGSC patients. Women with >50% expression had the most favourable outcomes (HR= 0.78, 95% CI 0.67–0.91, p < 0.0001).
GMNN protein expression was not significantly associated with overall HSGC patient survival. However, HGSCs with >35% GMNN
expression showed a trend for better outcomes, though this was not significant.
CONCLUSION: We provide foundational evidence for the prognostic value of FOXJ1 in HGSC, validating the prior mRNA-based
prognostic association by immunohistochemistry.
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BACKGROUND
Ovarian carcinoma (OC) is a heterogenous disease that can be
better understood through its five main histotypes being tubo-
ovarian high-grade serous (HGSC), low-grade serous (LGSC),

mucinous (MC), endometrioid (EC) and clear-cell (CCC) carcinoma.
HGSCs are the most commonly diagnosed histotype and are
typically diagnosed at a high stage. Patients diagnosed with this
disease have a 5-year survival of about 40% in most Western
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countries [1]. Based on a prognostic signature of 101 genes, we
have recently shown a dramatic difference (>60%) in median
5-year overall survival when stratified by gene expression score
quintiles [2]. While the median survival time for the most
favourable quintile reached 9.5 years, it was only 2.3 years in
the least favourable quintile. This effect size outperforms any
individual validated prognostic marker to date and further
supports a remarkable biological heterogeneity within HGSC [3–6].
Historically, a blanket approach was applied to the treatment of

women diagnosed with HGSC, though it is now undergoing a
dramatic shift due to high response rates to poly (ADP-ribose)
polymerase (PARP) inhibitors in BRCA1/2-deficient cases, allowing
them to be added as maintenance to the first line of therapy [7, 8].
However, this targeted therapy does not show the same efficacy
across all patients with HGSC, and resistance may occur[9].
Therefore, other biomarkers related to prognosis may help to
further delineate the biology of this aggressive disease. Candidate
biomarkers that were discovered by mRNA expression profiling
could be validated by immunohistochemistry (IHC). IHC is utilised
routinely in clinical diagnostics across the globe, thus supporting
its use as a tool for fast-tracked, statistically powered biological
validation, particularly if large existing cohorts of tissue micro-
arrays (TMAs) are also employed [10, 11].
The purpose of this study was to translate previously identified

prognostic mRNA targets into clinically applicable IHC assays and
to validate their prognostic association at the protein level in
HGSC and the other main OC histotypes.

METHODS
IHC of candidate markers
Five candidate markers: geminin (GMNN), small nuclear ribonucleoprotein
polypeptide A (SNRPA1), flap structure-specific endonuclease 1 (FEN1),
histone cluster 1 H2B family member D (HIST1H2BD) and forkhead box J1
(FOXJ1), were assessed by IHC in a training cohort (n= 80 (GMNN, SNRPA1,
FEN1 and HIST12BD) or 134 (FOXJ1). IHC was automated on the DAKO
Omnis platform (Agilent, Santa Clara, CA, USA) and performed centrally at
the Department of Pathology and Laboratory Medicine of the University of
Calgary, Canada. TMA sections were subjected to heat-induced epitope
retrieval. (Supplementary Table 1). Slides were scanned using an Aperio
CS2 up to ×400 magnification (Leica Biosystems, Wetzlar, Hessen,
Germany), and viewed using ImageScope v12.2.2.5015.

Study design and participants
Sections of archival ovarian tumour tissue microarrays (TMA) were
submitted by 21 studies from the Ovarian Tumor Tissue Analysis (OTTA)
consortium (Supplementary Table 2) for analysis of GMNN and FOXJ1.
Ethics approval was obtained for this project (University of New South
Wales Human Research Ethics Advisory panel, #HC16299) and for
participants through written informed consent or an Institutional Review
Board ethics approval waiver (Supplementary Table 2). A retrospective
cohort of 8798 and 7662 patient samples represented by individual or
replicate TMA cores with a primary diagnosis of OC was assembled for
FOXJ1 and GMNN staining, respectively. Contributing studies provided
clinical covariates, including patient age at diagnosis, the time from
diagnosis to OTTA study admission, histotype, stage of disease (FIGO
(International Federation of Gynecology and Obstetrics) Stage I-IV, or
localised/regional/distant), final vital status and overall survival (OS),
defined as the time from diagnosis to death or last follow-up.

Immunohistochemistry of FOXJ1 and GMNN
Positive and negative on-slide controls for FOXJ1 and GMNN protein
expression were used to assess stain specificity (Supplementary Table 3).
Healthy pre-menopausal and peri-menopausal fallopian tube samples
(n= 1 case each), were also examined through haematoxylin and eosin
staining, and IHC for FOXJ1 and GMNN (Supplementary Fig. 1).
IHC scoring was performed by two observers (AW and EYK). Observers

were blinded to the clinicopathological data; one observer scored cases for
FOXJ1 using a Nikon Eclipse 80i microscope (Nikon Inc., Chicago, IL, USA) at
×200 and another observer scored cases for GMNN using ImageScope

v12.2.2.5015. Nuclear staining in each tumour core was semi-quantified by
scores representing the percentage of immunopositive tumour cells in the
core, in 5% intervals. Where cores were absent or tumour cells represented
<25% of the core, no score was given. The maximum score was taken in
cases with multiple cores on the TMAs. Intratumoural heterogeneity was
assessed by a comparison of duplicate cores in n= 3401 (FOXJ1) and
n= 3057 (GMNN) HGSC cases. Interobserver variability in FOXJ1 and
GMNN expression scoring was evaluated in n= 221 and n= 311 cases,
respectively.

FOXJ1 and GMNN expression score stratification
IHC scores were visualised through frequency distributions of FOXJ1and
GMNN scores in OC, and by histotype. Score stratification models
simplified IHC scores. Thresholds used in stratification were selected to
preserve the shape of distribution in the frequency histogram of HGSC
scores. As FOXJ1 and GMNN expression differed in the distribution of their
IHC scores, different score stratification models were applied to each data
set, being FOXJ1 0%, 5%, 10–15%, 20–45% and 50–100%, and GMNN 0%,
5%, 10–15%, 20–25%, 30% and 35–100%. Score stratification was required
to assess the association between expression and OS.

Correlation analysis of mRNA and protein expression
The correlation between mRNA expression data [2] and IHC protein
expression score was assessed. To ensure score stratification models would
not alter this relationship, the correlation between mRNA and stratified
FOXJ1 and GMNN protein was also assessed.

FOXJ1 and GMNN protein expression in only chemotherapy-
naive samples
Sensitivity univariate and multivariate survival analyses in HGSC patient
where treatment by primary debulking surgery was confirmed (n= 4440
(FOXJ1) and n= 4009 (GMNN)) were performed. This was to ensure the
effects of neoadjuvant chemotherapy (NACT) did not impact the trends
detected in the main survival analysis. Paired tissue samples taken before
and after NACT were also assessed for FOXJ1 and GMNN protein
expression (n= 23 and n= 21 respectively) to determine whether there
were changes in expression in the tissue following exposure to
chemotherapy.

Statistical analysis
The correlation between mRNA and protein expression was measured for
each marker by Pearson correlation coefficients; the explainable variance
was examined through the coefficient of determination. Clinical variables
in FOXJ1 and GMNN cohorts were assessed through Chi-square testing of
proportions. Kruskal–Wallis testing assessed IHC score differences by
histotype. Squared-weighted Cohen’s kappa statistics and frequency count
matrices were used to assess intratumoural heterogeneity across duplicate
TMA cores from the same case. Squared-weighted Cohen’s kappa statistics
were used to estimate concordance between multiple observers. A two-
tailed Wilcoxon–Pratt matched-pairs signed rank test was used to assess
protein expression differences in matched pairs of HGSC tumour samples
taken before and after NACT.
Histotype-specific univariate and multivariate analysis of the survival

associations of stratified FOXJ1 and GMNN expression were performed,
with death by any cause being the primary end point. Right censoring at
10 years was applied to account for deaths not related to OC. Left
truncation mitigated against survival bias introduced by time between
diagnosis and enrolment into a study. Kaplan–Meier curves with
corresponding log-rank testing and calculation of year-specific survival,
were used to compare prognosis between strata of the score stratification
model. Multivariate Cox proportional hazards regression modelling
estimated hazard ratios (HRs) and corresponding 95% confidence intervals
(CIs). Models were adjusted for age, stage and strata of score and stratified
by OTTA study site. Assumptions of proportional hazards were tested. In
cases of non-proportional covariate hazards or large sample sizes, scaled
Schoenfeld residuals were plotted to assess the violation. Adjusted HRs for
each strata of the score model were visualised through forest plots, and
used to identify a linear relationship between expression and the hazard of
death. All statistical analyses were carried out using RStudio v1.1.463 or
GraphPad Prism v7.02. R packages “survival” (version 3.3-1) and
“survminer” (version 0.4.9) were employed in univariate and multivariate
survival analysis. Statistical significance was defined by p < 0.05.
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RESULTS
Selection of FOXJ1 and GMNN for analysis by IHC
mRNA expression analysis by NanoString was previously per-
formed on 3769 HGSC cases from the Ovarian Tumor Tissue
Analysis (OTTA) consortium and 276 genes significantly associated
with patient survival were identified [2]. The 90 genes of the
greatest significance were examined for suitability for IHC analysis
(Supplementary Table 4). We focussed on nuclear markers
(avoiding stromal or immune markers due to challenges in
interpretation of staining) with high-quality antibodies suitable for
IHC in formalin-fixed paraffin-embedded tissues. Five genes met
these criteria: GMNN, SNRPA1, FEN1, HIST1H2BD and FOXJ1. The
previously identified HRs for one standard deviation change in
gene expression, 95% CIs and adjusted q-values for these genes
were: GMNN: 0.85 (95% CI 0.82–0.89) q= 1.89 × 10−11, SNRPA1:
0.87 (95% CI 0.83–0.91) q= 1.84×10−10, FEN1: 0.89 (95% CI
0.85–0.92) q= 1.44 × 10−7, HIST1H2BD: 0.89 (95% CI 0.85–0.93)
q= 1.44 × 10−7, FOXJ1: 0.90 (95% CI 0.86–0.94) q= 2.56 × 10−6 [2].
Protein expression of these markers was assessed by IHC in a small
cohort of 80–134 cases. The distribution of IHC scores were
examined; FOXJ1 and GMNN expression showed the greatest
variation in scores (Supplementary Fig. 2). Expression of these
markers was positively skewed with median expression scores of 5
and 20%, respectively. The correlation between mRNA expression
data from NanoString analysis and protein expression was
determined (Supplementary Fig. 2). A significant correlation
between mRNA and protein expression was identified for FEN1,
FOXJ1 and GMNN (Supplementary Fig. 3). The levels of mRNA were
able to explain some variance in FOXJ1 r2= 0.283 and GMNN
r2= 0.23 protein expression. Both FOXJ1 and GMNN were selected
for further analysis as they showed prognostic significance at the
mRNA level, demonstrated a significant correlation between
mRNA and protein, and had variation in IHC scores, suggesting
they could be suitable for prognostic stratification of patients.
As a marker of ciliogenesis, FOXJ1 protein expression was

observed specifically in ciliated cells in pre- and peri-menopausal
fallopian tube epithelium (Supplementary Fig. 1). Both pre- and
peri-menopausal fallopian tube epithelium did not express GMNN
(Supplementary Fig. 1). The interobserver concordance of the
stratified IHC scoring systems (FOXJ1 0%, 5%, 10–15%, 20–45%
and 50–100%, and GMNN 0%, 5%, 10–15%, 20–25%, 30% and
35–100%) for both FOXJ1 and GMNN expression, between 2
observers, was evaluated in a subset of 221 and 311 cases,

respectively, and achieved a weighted Cohen’s kappa of 0.957 and
0.673, respectively.

Protein expression of GMNN and FOXJ1 across OC histotypes,
and the relationship with mRNA expression
Of the 8798 (FOXJ1) and 7662 (GMNN) cases, 2364 and 2192 cases
respectively were excluded due to diagnosis with a histotype
other than HGSC, LGSC, MC, EC or CCC, no survival data,
uninterpretable or insufficient tumour tissue (<25% of the tumour
core), overlapping cases between TMAs or withdrawn consent.
The clinicopathological parameters by histotype for 6434 FOXJ1
and 5470 GMNN cases that met the inclusion criteria were
evaluated (Table 1 and Supplementary Table 5). Subsets of HGSC
cases had 80% power to detect a HR of 1.3, with a type-1 error rate
of 0.001. OC histotypes had significantly different FOXJ1 and
GMNN expression patterns (Fig. 1). FOXJ1 protein expression
varied more than GMNN expression across histotypes with greater
interquartile ranges of expression scores in all histotypes (apart
from MC). Intratumoural heterogeneity was assessed by weighted
Cohen’s kappa statistics in duplicate HGSC TMA cores when FOXJ1
and GMNN expression were given as 5% intervals (Cohen’s kappa
0.41 and 0.40 respectively) and stratified IHC scores (Cohen’s
kappa 0.74 and 0.72 respectively; Supplementary Fig. 4). 3111
FOXJ1 and 2900 GMNN HGSC cases also had mRNA expression
data collected through NanoString nCounter analysis [2]. The
correlation between mRNA and protein expression was preserved
in a HGSC subset of the final cohort to undergo survival analysis
(Fig. 1). Stratification of FOXJ1 and GMNN protein expression did
not appear to alter this correlation (Fig. 1).

Association of stratified GMNN and FOXJ1 protein expression
and OS, by histotype
Stratified FOXJ1 protein expression was significantly associated
with OS in univariate (p < 0.0001) and multivariate (p= 0.0002)
analysis of HGSC survival (Fig. 2 and Table 2). Higher FOXJ1
expression was significantly associated with a higher probability of
survival, relative to cases with absent or lower expression (Table 2).
Prognosis was most favourable in tumours with >50% of cells
expressing FOXJ1 (HR 0.78, 95% CI 0.67–0.91, p < 0.05), with the
5-year survival being >10% higher than those without expression.
Univariate and multivariate analysis of stratified FOXJ1 protein

expression in CCC indicated a significant association with
improved survival (p= 0.0096 and p= 0.02, respectively;

Table 1. Clinicopathological characteristics by histotype of the 6434 OC patients, with complete survival data, analysed for FOXJ1 protein expression.

Characteristic HGSC LGSC MC EC CCC

Number of cases, n (%)a 4634 (72.0) 178 (2.8) 256 (4.0) 746 (11.6) 620 (9.6)

Age at diagnosis, years

Mean ± SD 60.6 ± 10.7 54.9 ± 12.5 53.2 ± 14.8 55.1 ± 11.7 56.2 ± 11.5

Median 61 55 53 54 56

Range 21–93 23–88 23–95 22–88 27–91

Stage, n (%)b

FIGO I, II (localised) 846 (18.3) 54 (30.3) 216 (84.4) 625 (83.8) 473 (76.3)

FIGO III, IV (distant) 3788 (81.7) 124 (69.7) 40 (15.6) 121 (16.2) 147 (23.7)

Outcomec

Alive, n (%)b 1361 (29.4) 78 (43.8) 167 (65.2) 536 (71.9) 345 (55.7)

Dead, n (%)b 3273 (70.6) 100 (56.2) 89 (34.8) 210 (28.2) 275 (44.4)

5-year survival, % ± SE 39.0 ± 0.75 59.8 ± 4.1 67.0 ± 3.2 81.3 ± 1.6 61.5 ± 2.1

CCC clear cell ovarian carcinoma, EC endometroid ovarian carcinoma, HGSC high-grade serous ovarian carcinoma, FIGO International Federation of Gynecology
and Obstetrics, LGSC low-grade serous ovarian carcinoma, MC mucinous ovarian carcinoma, SD standard deviation, SE standard error.
aThe proportion of cases in each histotypes is given as a percentage of the total patients examined.
bThe proportion of cases is given as a percentage of the total cases within each histotypes.
cFinal status of the patient, being alive or dead, at 10 years, following enrollment in an OTTA study.
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Supplementary Fig. 5 and Table 2). Multivariate analysis indicated
that 10–15% (HR 0.50, 95% CI 0.30–0.83, p < 0.05) and >50%
expression (HR 0.64, 95% CI 0.44–0.93, p < 0.05) had a significant
survival association. However, review of the Kaplan–Meier curve
(Supplementary Fig. 5) did not indicate a linear relationship
between FOXJ1 expression and CCC survival, whereby the
probability of survival increased alongside increasing FOXJ1
expression. Similarly, no threshold effects were observed, such
as any expression of FOXJ1 conferring better outcomes in
comparison to tumours having no expression of the protein. No
survival associations with stratified FOXJ1 expression were
observed in univariate or adjusted multivariate models of LGSC,
MC and EC cases (Table 2).
Stratified GMNN protein expression was not significantly

associated with OS in HGSC (p= 0.14), though tumours with

>35% GMNN expression appeared to be associated with an
improved OS (Fig. 2). This trend was not supported by multivariate
survival analysis adjusting for age and stage, although the overall
p value for GMNN was significant (p= 0.001) (Table 3). Univariate
analysis of stratified GMNN expression in EC and CCC indicated a
significant association with survival (Supplementary Fig. 6), where
higher expression in both cases conferred improved outcomes.
However, adjusted analysis indicated that stratified GMNN
expression was not significantly associated with EC or CCC patient
survival (p= 0.09 and p= 0.65, respectively; Table 3). Adjusted
analysis of GMNN expression in the two LGSC cases with >30%
expression in tumours had significantly poorer outcomes (HR 8.28,
95% CI 1.36–50.43, p < 0.05; Table 3).
The proportional hazards assumption of Cox regression

modelling was not violated by age, stage or OTTA site, in any
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histotypes, for both markers. To account for age and stage
artefacts in these results, induced by the large sample sizes of
HGSC-specific analyses, Schoenfeld residuals were plotted and
assessed (Supplementary Fig. 7). No significant deviations from
the line of best fit were detected.
The univariate and multivariate survival analysis results were

replicated in a sensitivity analysis of a subset of the HGSC cohort,
using only known chemotherapy naïve tissue, from patients where

primary debulking surgery was the confirmed first line of therapy
(Supplementary Fig. 8 and Supplementary Table 6).

GMNN and not FOXJ1 protein expression was significantly
different before and after NACT
FOXJ1 and GMNN protein expression in pairs of HGSC samples
taken before and after NACT was assessed (Supplementary Fig. 9).
While FOXJ1 expression was not significantly different in these

p < 0.0001
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matched pairs (n= 23, p= 0.93), GMNN expression did differ
significantly after NACT (n= 21, p= 0.04).

Internal validation of further stratified FOXJ1 protein
expression in HGSC
Forest plots were used to visualise the relationship between
patient survival and FOXJ1 and GMNN score stratification models
(Fig. 3). A linear relationship between FOXJ1 protein expression
and the risk of death was observed in HGSC patients (Fig. 3). As
FOXJ1 expression increased the probability of HGSC patient
survival also increased. The HR for GMNN expression was not
linear but was suggestive of a threshold-effect (Fig. 3). Cases with
>35% of tumour cells expressing GMNN were less likely to
succumb to disease, than those with lower expression.

DISCUSSION
Our study validates the linear, increasing prognostic association of
FOXJ1 protein expression in HGSC in a large, international cohort.
While our analysis of FOXJ1 exemplifies the power of IHC for rapid
biological validation of prognostic biomarkers that were originally
discovered as mRNA candidates, the lack of translation of other
markers also illustrates the challenges.
As FOXJ1 protein expression increased, the probability of

survival in HGSC increased, implying expression has a linear
association with outcome. Patients with tumours with >50% of

cells expressing FOXJ1 had the longest survival. Sui and colleagues
have already suggested that high FOXJ1 expression is associated
with favourable OC prognosis [12]. The present analysis uses a
statistically powered, histotype-specific approach to differentiate
that FOXJ1 is only associated with prognosis in HGSC and does
not indicate the prognosis of other histotypes, perhaps except for
CCC. High expressing CCC were associated with favourable
survival as were cases with lower expression, contrasting the
observed linear association with survival in HGSC. Sui and
colleagues proposed that the stem cell-related transcription factor
NANOG is a negative regulator of FOXJ1-mediated OC migration
and invasion [12]. This suggests that NANOG high/FOXJ1 low are
more akin to cancer stem cells, which may be more likely chemo-
resistant and thereby less susceptible to chemotherapy, leading to
poor prognosis. However, we were unable to address the response
to chemotherapy in the current data set due to lack of data, e.g.
the Response Evaluation Criteria in Solid Tumors (RECIST) data. Yet
this generates an interesting hypothesis for future studies.
The biological significance and prognostic association of FOXJ1

in cancer is varied [13, 14]. Survival associations consistent with
our HGSC results have been observed in gastric cancer, as well as
ependymomas and choroid plexus tumours, where high expres-
sion of FOXJ1 is thought to be a marker of better tumour
differentiation and a more favourable prognosis [15, 16]. It may be
appealing to conclude that FOXJ1 is a marker for well-
differentiated HGSCs. FOXJ1’s characteristic role is in motile

Table 2. Association of stratified FOXJ1 expression and OS by histotype (n= 6434).

Histotype Expression na 5-year survival (% ± SE) HR (95% CI)b p value

HGSC 0% 1336 36.0 ± 1.4 Ref. 0.0002*

5% 987 34.1 ± 1.6 1.03 (0.94–1.14)

10–15% 916 40.6 ± 1.7 0.92 (0.83–1.02)

20–45% 1062 43.0 ± 1.6 0.86 (0.77–0.95)*

50–100% 358 48.0 ± 2.8 0.78 (0.67–0.91)*

LGSC 0% 32 48.8 ± 10.36 Ref. 0.3229

5% 24 45.9 ± 10.9 1.45 (0.63–3.35)

10–15% 37 59.4 ± 8.7 0.81 (0.39–1.69)

20–45% 50 67.7 ± 7.3 1.08 (0.53–2.21)

50–100% 35 66.5 ± 9.1 0.65 (0.30–1.40)

MC 0% 216 66.5 ± 3.6 Ref. 0.2185

5% 15 69.4 ± 12.7 9.78 (0.35–2.76)

10–15% 7 69.4 ± 17.9 2.24 (0.63–7.99)

20–45% 13 53.3 ± 15.1 1.15 (0.50–2.67)

50–100% 5 100.0 ± 0.0 N/A

EC 0% 221 76.4 ± 3.1 Ref. 0.707

5% 110 76.7 ± 4.7 0.81 (0.50–1.33)

10–15% 128 83.7 ± 3.8 0.76 (0.47–1.24)

20–45% 187 83.8 ± 2.9 0.78 (0.51–1.19)

50–100% 100 81.7 ± 4.0 0.94 (0.58–1.53)

CCC 0% 174 52.9 ± 4.1 Ref. 0.03*

5% 67 63.2 ± 6.5 0.69 (0.44–1.09)

10–15% 69 72.3 ± 6.1 0.50 (0.30–0.83)*

20–45% 147 57.0 ± 4.3 0.84 (0.60–1.18)

50–100% 163 69.7 ± 3.7 0.64 (0.44–0.93)*

CCC clear cell ovarian carcinoma, CI confidence interval, EC endometroid ovarian carcinoma, HGSC high-grade serous ovarian carcinoma, HR hazard ratio, LGSC
low-grade serous ovarian carcinoma, MC mucinous ovarian carcinoma, OS overall survival.
aThe same cohort was assessed in univariate survival analysis.
bHR adjusted for patient age and stage and stratified by OTTA study; Cox proportional regression modelling was used to calculate p values and define
significance. Statistically significant values are shown in bold; *p < 0.05.
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ciliogenesis, and we confirmed FOXJ1 expression in ciliated, but
not secretory cells of the fallopian tube. However, this would
somewhat contradict the prevailing concept that HGSC arises
from the secretory cells, as opposed to ciliated cells, of the
fallopian tube via precursor serous tubal intraepithelial carcinoma
(STIC) lesions and diffuse PAX8 staining, a marker of secretory
cells, is present in virtually all HGSCs, supporting the STIC
hypothesis [17–21]. As motile cilia are neither a feature of STIC
nor HGSC, the expression of FOXJ1 does not suggest that HGSC
arise from terminally differentiated ciliated cells of the fallopian
tube or that a cell lineage switch occurs [22]. Instead, the
expression of the ciliated marker FOXJ1 in HGSC can be
considered as a marker of enigmatic differentiation, which does
not result in morphologically apparent cilia and is associated with
better outcome; a phenomenon that has been previously
suggested for endometrial cancers [23]. “Aberrant” FOXJ1 expres-
sion in HGSC may reflect epigenetic reprogramming of secretory
cell-derived tumour cells or a unique differentiation state of the
cell of origin. A recent study proposed that HGSC are composed of
a mixture of cancer cell states inherited from its cell of origin in the

fallopian tube including a ciliated state [24]. An enigmatic ciliated
differentiation is further supported by expression of other ciliated
markers (such as Ezrin) in OC confirming that FOXJ1 expression is
not an isolated, aberrantly expressed marker of ciliogenesis, but
represents a more general differentiation programme [25, 26]. In
addition to FOXJ1’s potential in HGSC prognostication, future
studies may use FOXJ1 to gain further insights into HGSC
development.
Contrary to results in FOXJ1, the univariate survival analysis with

GMNN expression indicated that there was no significant
prognostic association in HGSC. Contrastingly, multivariate survi-
val analysis did indicate that GMNN expression was significantly
associated with HGSC survival, although there were no observable
trends in HRs across protein expression groups that suggested this
association was linear. In a threshold effect, individuals with >35%
of tumour tissue expressing GMNN did demonstrate a trend
towards a more favourable prognosis, although this was not
supported by the 95%CI in the multivariate analysis. As GMNN’s
significant mRNA association with survival did not translate into
protein expression, GMNN is not currently suitable for prognostic

Table 3. Association of stratified GMNN expression and OS, by histotype (n= 5470).

Histotype Expression na 5-year survival (% ± SE) HR (95% CI)b p value

HGSC 0% 276 38.4 ± 3.1 Ref. 0.001*

5% 870 38.6 ± 1.7 1.10 (0.94–1.31)

10–15% 1523 38.3 ± 1.3 1.07 (0.91–1.26)

20–25% 1034 39.7 ± 1.6 0.94 (0.79–1.11)

30% 206 36.5 ± 3.5 1.0 (0.80–1.25)

35–100% 276 46.1 ± 3.2 0.80 (0.65–1.00)

LGSC 0% 46 57.2 ± 8.3 Ref. 0.126

5% 78 61.9 ± 6.0 0.91 (0.50–1.65)

10–15% 27 60.2 ± 10.3 1.23 (0.52–2.88)

20–25% 7 71.4 ± 17.1 2.50 (0.91–6.84)

30% 2 N/A 8.28 (1.36–50.43)*

35–100% N/A N/A N/A

MC 0% 31 77.3 ± 8.9 Ref. 0.89

5% 67 62.8 ± 7.3 1.52 (0.61–3.80)

10–15% 56 74.5 ± 6.4 1.21 (0.47–3.14)

20–25% 18 47.9 ± 12.8 1.68 (0.58–4.86)

30% 1 100.0 ± 0.0 N/A

35–100% 1 100.0 ± 0.0 N/A

EC 0% 80 86.0 ± 5.1 Ref. 0.1

5% 210 87.2 ± 2.6 0.81 (0.44–1.49)

10–15% 162 81.8 ± 3.4 0.89 (0.47–1.68)

20–25% 54 62.3 ± 7.0 1.71 (0.83–3.53)

30% 4 25.0 ± 25.0 3.84 (0.96–15.32)

35–100% 8 57.1 ± 18.7 1.21 (0.24–6.09)

CCC 0% 105 69.1 ± 5.7 Ref. 0.64

5% 176 67.6 ± 3.8 0.94 (0.58–1.53)

10–15% 106 67.6 ± 4.8 0.86 (0.50–1.48)

20–25% 33 51.5 ± 9.2 1.10 (0.55–2.17)

30% 3 66.7 ± 27.2 2.62 (0.61–11.17)

35–100% 10 57.4 ± 16.0 0.62 (0.22–1.73)

CCC clear cell ovarian carcinoma, CI confidence interval, EC endometroid ovarian carcinoma, HGSC high-grade serous ovarian carcinoma, HR hazard ratio, LGSC
low-grade serous ovarian carcinoma, MC mucinous ovarian carcinoma, OS overall survival.
aThe same cohort was assessed in univariate survival analysis.
bHR adjusted for patient age and stage, and stratified by OTTA study; Cox proportional regression modelling was used to calculate p values and define
significance. Statistically significant values are shown in bold; *p < 0.05.
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assessment through IHC. Various explanations of this result can be
drawn. Large-scale studies have shown the correlation between
mRNA and protein expression is varied and difficult to predict for a
given biomarker [27, 28]. In the final cohort, the correlation
between mRNA and GMNN protein expression was weaker,
relative to FOXJ1 expression. While this difference was slight, it
may have contributed to the result. Dissimilar mRNA and protein
abundances may be reflective of the translation rate, its
modulation, delays in protein synthesis and transport, and the
modulation of the proteins’ turnover-rate [29–31]. As a surrogate
marker of proliferation, GMNN’s expression is highly regulated
during the cell cycle [32]. Protein translation and degradation may
be uncoupled from mRNA transcription and stability, and may
explain the lack of association with survival for GMNN protein
levels. Another explanation might be that the FOXJ1 IHC assay was
superior in quality and therefore easier to interpret as shown by
the better interobserver reproducibility. Perhaps another reason
that GMNN did not translate into a suitable prognostic IHC marker
is the less variable expression within HGSC, when compared to
FOXJ1. While prognostic significance was not shown in LGSC,
multivariate analysis indicated that individuals with >35% of
tumour tissue expressing GMNN were associated with a more
unfavourable prognosis. However, as this group only included two
individuals this should only be considered an interesting
observation highlighting the challenges of biomarker studies in
rare histotypes even in a consortium type approach. No
associations were seen in the other histotypes. GMNN expression
did however differ significantly in samples taken before and after
NACT in small cohort of HGSC cases. This difference can
potentially be attributed to the role of GMNN in cell division
alongside the impact of chemotherapy on this process [33].
However, trends that would suggest GMNN expression increased
or decreased following NACT were not observed. Furthermore, the
potential clinical relevance of this result is limited by the small
sample size, which would not completely capture disease
heterogeneity. HGSC cases known to be chemotherapy naïve
underwent univariate and multivariate survival analysis to confirm
the prognostic associations revealed in this study.
The potential for FOXJ1 and GMNN expression stratification into

broader score-groupings was observed in our HGSC cohort. As 0%
and 5%, as well as 10%-15% and 20%-45% exhibited consistently
similar survival associations in the cohort, analysis of FOXJ1
expression by 0%-5%, 10-45% and 50%-100% IHC score groupings
may prove more-appropriate for clinical assessment. Similarly, the
trend observed in tumours with high GMNN expression suggested
that stratification into 0%-35% and 40%-100% may clarify the
relationship with survival, though the lack of significant results in this
study, does render the value of further GMNN investigation dubious.

We acknowledge that the translational potential of our findings is
limited by heterogeneity within HGSC. Future work may take
important molecular alterations within HGSC, such BRCA1/2mutation
or homologous repair deficiency status, into account. Further, we
recognise that the immediate translational potential of FOXJ1 as an
individual prognostic biomarker is limited given the observed
survival increase of ~10% in a small subset (less than 10%) of HGSC
patients. Yet we believe that due to robust prognostic associations
FOXJ1 should be evaluated in prognostic multimarker models.
Several variables can interfere with the translation of mRNA

targets into IHC biomarkers. Our marker selection was severely
limited by the number of genes with available high-quality
monoclonal antibodies, which were necessary as they ensured
increased stain reproducibility across FFPE TMA sections. We
avoided proteins of the microenvironment and focussed on those
with nuclear expression as they are often the most robust markers
for established clinical tests. When selecting markers, we observed
only moderate correlations between mRNA and protein expres-
sion for the five initially selected markers. While gene expression
or protein stability can influence these correlations, we believe
that a main factor is the use of conventional IHC, which is not
quantitative in nature [34–37]. Modern IHC detection systems
greatly amplify the signal leading to a quick saturation. This might
explain why some of the initial markers showed ubiquitous
expression by IHC in comparison to variable mRNA expression
levels. In addition, markers were assessed on TMAs with an
intrinsic limitation in assessing for intratumoural heterogeneity.
However, our assessment of intratumoural heterogeneity in cases
with duplicate TMA cores demonstrated strong agreement in
FOXJ1 and GMNN protein expression scores. While this may not
capture all variation in protein expression across each tumour, it
does support that the scores used in our analysis were
representative of the tumour profile.
Overall, our study has provided foundational evidence that the

prognostic mRNA signature of FOXJ1 can be translated into an IHC
biomarker, to stratify prognosis in HGSC. Survival improved with
stratified, increasing FOXJ1 protein expression. It indicated this
relationship could be further stratified, to improve clinical utility,
which is intriguing regarding its unexpected expression in HGSC.
We also demonstrate the challenges of validating prognostic IHC
markers. The careful study design and power has ensured these
results provide much-needed insights into the likely outcomes of
HGSC patients.
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