
ARTICLE OPEN

Translational Therapeutics

Integrative immune transcriptomic classification improves
patient selection for precision immunotherapy in advanced
gastro-oesophageal adenocarcinoma
Manuel Cabeza-Segura1,13, Valentina Gambardella1,2,13, Francisco Gimeno-Valiente1,3, Juan Antonio Carbonell-Asins4,
Lorena Alarcón-Molero5, Arturo González-Vilanova4, Sheila Zuñiga-Trejos4, Pilar Rentero-Garrido6, Rosana Villagrasa7, Mireia Gil8,
Ana Durá9, Paula Richart10, Noelia Alonso11, Marisol Huerta1, Susana Roselló1,2, Desamparados Roda1,2, Noelia Tarazona1,2,
Carolina Martínez-Ciarpaglini2,5, Josefa Castillo1,2,12, Andrés Cervantes 1,2,14 and Tania Fleitas 1,2,14✉

© The Author(s) 2022

BACKGROUND: Advanced gastro-oesophageal cancer (GEA) treatment has been improved by the introduction of immune
checkpoint inhibitors (CPIs), yet identifying predictive biomarkers remains a priority, particularly in patients with a combined
positive score (CPS) < 5, where the benefit is less clear. Our study assesses certain immune microenvironment features related to
sensitivity or resistance to CPIs with the aim of implementing a personalised approach across CPS < 5 GEA.
DESIGN: Through integrative transcriptomic and clinicopathological analyses, we studied in both a retrospective and a prospective
cohort, the immune tumour microenvironment features. We analysed the cell types composing the immune infiltrate highlighting
their functional activity.
RESULTS: This integrative study allowed the identification of four different groups across our patients. Among them, we identified
a cluster whose tumours expressed the most gene signatures related to immunomodulatory pathways and immunotherapy
response. These tumours presented an enriched immune infiltrate showing high immune function activity that could potentially
achieve the best benefit from CPIs. Finally, our findings were proven in an external CPI-exposed population, where the use of our
transcriptomic results combined with CPS helped better identify those patients who could benefit from immunotherapy than using
CPS alone (p= 0.043).
CONCLUSIONS: This transcriptomic classification could improve precision immunotherapy for GEA.

British Journal of Cancer (2022) 127:2198–2206; https://doi.org/10.1038/s41416-022-02005-z

BACKGROUND
Gastro-oesophageal adenocarcinoma (GEA) represents the fourth
leading cause of cancer death worldwide [1]. Despite significant
advances in multimodal approaches and efforts to personalise
treatment, overall survival for metastatic patients is still poor [2]. In
the field of immunotherapy, patients with microsatellite instability
(MSI-H) have shown greater response to immune checkpoint
inhibitors (CPIs) across different lines [3]. Recently, the combination
of platinum-based chemotherapy and immunotherapy as first line
strategy has demonstrated a clear improvement in both
progression-free survival (PFS) and overall survival (OS) across GEA
[4–6]. Furthermore, a randomised trial has also demonstrated the

potential role of nivolumab (anti-PD1) as an adjuvant maintenance
strategy in improving PFS in patients with resected stage II or III
oesophageal or gastro-oesophageal junction cancer with prior
neoadjuvant chemoradiotherapy and residual pathological disease
[7]. Overall, it was demonstrated that GEA patients presenting a
combined positive score (CPS) > 5 benefit the most from CPIs.
However, a lower benefit was seen in the CPS ≥ 1 subgroup [6, 8].
There is therefore a pressing need to identify biomarkers predictive
of response in patients presenting with a CPS > 1 and <5, as
resistance is a frequent event in this group [9, 10]. An important
factor in determining resistance to immunotherapy is the complexity
of the tumour immune microenvironment, which influences tumour
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response to therapies. Conventionally, so-called “cold tumours” are
characterised by an immune desert or immunosuppressive profile
which contribute to immune tolerance and progression; in contrast,
the presence of infiltrating immune cells indicates strong immune
system activity against tumours [11, 12]. Beyond the ability to
determine the presence or lack of immune-infiltrate, therefore,
improved understanding the function of immune cells composing
the tumour microenvironment, as well as of cell–cell interactions is
required to move precision immunotherapy forward. For this reason,
there is a growing interest in identifying both immune microenvir-
onment and tumour components that could serve as biomarkers
able to predict response to standard chemotherapy and CPIs. In the
present study, our aim was to investigate the cellular and functional
immune characteristics of the tumour microenvironment, moving to
a precision immunotherapy approach. By performing in-depth
transcriptomic study, we propose a novel immune classification for
advanced GEA patients, which in combination with CPS could
potentially improve the prediction of response to CPIs.

METHODS
Patient characteristics and study design
Eligible patients were selected according to the following inclusion and
exclusion criteria: male and female patient aged ≥18 years, chemotherapy
naive, metastatic, with histologically confirmed GEA, with a CPS < 5
(Supplementary Fig. 1) and no comorbidities that could potentially impair
the analyses. This study was designed with two cohorts: a retrospective
one collecting 31 paraffin-embedded samples available for molecular
analyses from January 2004 to January 2019, and a second prospectively
collected cohort in which fresh frozen tissues from 23 patients were
obtained from January 2020 until September 2021. In both cohorts,
chromosomal instability (CIN) cases were defined as MSS/EBV-negative
gastric adenocarcinomas, and genomic stable (GS) cases were defined as
MSS/EBV-negative diffuse-type gastric cancers [13]. Blood samples in the
second cohort were collected prior to any oncological treatment. All
participants provided written informed consent. The study protocol was
approved by our Institutional Review Board. Samples were stored at the
Incliva biobank. An external third cohort was used to validate our findings
[14]. This study included 45 patients who after progressing to at least a
first-line platinum-based regimen were treated with a checkpoint-inhibitor
as a second or third line.

Sample preparation and transcriptomic analyses
To perform the nCounter analysis, RNA was isolated from five 10-µm-thick
FFPE slides using the RNeasy FFPE Kit (cat. no. 73504, Qiagen) following the
manufacturer’s instructions. Its integrity and concentration were evaluated
by RNA ScreenTape (Agilent). Appropriate input was used according to the
NanoString protocol, and we conducted the nCounter® PanCancer
Immune Profiling panel v1.1 which included 770 genes covering both
the adaptive and innate immune response (NanoString Technologies, Inc.,
Seattle, WA).
To perform RNA-sequencing analysis, RNA from fresh-frozen tissues was

extracted by RNeasy micro kit (cat. no. 74004, Qiagen). Qualities of total
RNA samples were determined using an RNA ScreenTape (Agilent
technologies). Polyadenylated (poly(A)) RNA was purified using the
NEBNext Poly(A) messenger RNA (mRNA) Magnetic Isolation Module
(E7490L, NEB). First-strand and second-strand cDNA was synthesised
following the NEBNext Ultra II RNA Library Prep Kit (E7770). The library
quality was assessed using the HSD1000 ScreenTape (Agilent technologies)
and quantification was performed using a QuantiFluor dsDNA Kit
(Promega) on a Glomax Discovery fluorometer (Promega). Libraries were
then pooled and size-selected to adjust the final library molar concentra-
tion for sequencing. Finally, paired-end sequencing was performed in a
NextSeq 550 platform (Illumina) using v2.5 chemistry to a length of 150×2.

Pathological analysis and tumour microenvironment
evaluation by immunohistochemistry (IHC)
IHC staining was performed on the formalin-fixed paraffin-embedded
tissue of 54 GEA using the automated Autostainer Link 48 system (Dako,
Glostrup, Denmark). The following antibodies were used: MLH1 (mono-
clonal mouse, ES05, prediluted, Dako), MSH2 (monoclonal mouse, FE11,

prediluted, Dako), MSH6 (monoclonal rabbit, EP49, prediluted, Dako), PMS2
(monoclonal rabbit, EP51, prediluted, Dako), CD3 (polyclonal, rabbit anti-
human prediluted, Dako), CD8 (monoclonal mouse, C8/144B, prediluted,
Dako), CD163 (monoclonal mouse, diluted 1/100, BioCare Medical), HER2
(4B5, prediluted, Ventana-Roche), FOXP3 (D6O8R, 1/100, Cell signaling),
and PD-L1 (monoclonal mouse anti-PD-L1, 22C3, prediluted, Dako) [15, 16].
For MSS/MSI, only complete loss of nuclear staining with positive internal
control was considered loss of mismatch repair (MMR) protein expression.
For PD-L1, the combined positive score (CPS) was assessed, as previously
described [17]. The percentage of expression in neoplastic and inflamma-
tory cells was also recorded independently. For CD163, the number and
percentage of positive cells in one hotspot 40× field was assessed. The
number and percentage of CD3, CD8 and FOXP3 positive cells were
studied in an area of 600 µm by applying the automated artificial
intelligence algorithm for “positive cell count” developed by the Qupath
software application (https://qupath.github.io). For EBER evaluation, ISH
was performed and interpreted as described in our previous work [18].
HER2 was assessed following consensus recommendations for gastro-
oesophageal neoplasms [16]. All results were confirmed by two dedicated
pathologists.

Transcriptomic bioinformatic analyses
NanoString gene expression data was log2-transformed and normalised
using the housekeeping genes as control. Tumour immune infiltrate was
assessed by immune cell scores defined by NanoString using nSolver v3.0
analysis software (NanoString Technologies, Inc.). Each functional signa-
ture, also predefined by NanoString, was studied by an unsupervised
hierarchical clustering heatmap and patients were classified as high
function or low function according to the cluster corresponding to each
patient. Heatmaps were performed using Heatmap.plus R package.
For RNA-sequencing analyses, raw RNA expression data of the external

CPI-exposed cohort (PRJEB25780) were downloaded from Tumour Immune
Dysfunction and Exclusion (http://tide.dfci.harvard.edu/). The same proce-
dure was conducted for both this external dataset and our prospective
cohort. Raw RNAseq reads were processed with fastp v0.20.1 [19] to
remove low quality bases and adaptor sequences. Transcript abundance
was calculated with kallisto 0.46.1 [20]. Gene count matrices were built
with tximport v1.22 [21]. ComBat-seq [22] was used on the raw counts in
order to correct for batch effects. The corrected counts per gene were then
normalised by the variance stabilising transformation (VST) method
included in the DESeq2 v1.34.0 package [23]. To identify the presence of
infiltration of immune cells, the Immune score from the ESTIMATE package
was calculated [24] using the TPM values obtained with ComBat-Seq.
Differential expression analysis was conducted with the DESeq2 v1.34.0
[23] package, using an adjusted p value cutoff of 0.05 and an absolute log2
fold change over 1. Functional enrichment analysis on differentially
expressed genes was done with clusterProfiler v4.2.2 [25], using a
hypergeometric (one sided) test with a Benjamini–Hochberg adjusted p
value of 0.05. Unsupervised clustering heatmaps were performed using
Heatmap.plus R package.

Blood cytokine profile by Luminex Technology
Blood was drawn by peripheral venipuncture into an EDTA tube and
processed to obtain plasma as previously described [26]. Samples were
tested as duplicate. Detection of cytokine levels was performed using
MILLIPLEX® MAP Human Cytokine/Chemokine/Growth Factor Panel A
(HCYTA-60K, Merck Millipore), following the manufacturer’s instructions.

Statistical data analysis
All analyses were carried out using the R software version 4.0.1 [27].
Continuous variables were described using mean and standard deviation if
normality assumptions hold true, median and interquartile range was used
otherwise. Qualitative variables are presented in frequencies and
percentages. The effect of IIL-FL, IIL-FH, IIH-FL and IIH-FH in transcriptomic
data was studied using Kruskal–Wallis test and p value was adjusted for
multiple comparisons using the false discovery rate proposed by Benjamini
and Hochberg [28].
To explore association between tumour immune microenvironment and

PFS across platinum-exposed patients, LASSO-Cox regression was carried
out using glmnet package [29]. Tenfold cross-validation was used to
estimate lambda value with minimum mean cross-validated error. Selected
variables were then dichotomised into “High” and “Low” using maximally
selected rank statistics [30] from the maxstat package [31].
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The association of our signature with response to immunotherapy was
calculated using Fisher’s exact test and model comparison between PD-L1
alone and PD-L1 plus our signature was evaluated using Chi-square
approximation. p Values were considered significant if p < 0.05 based on
two-sided testing.

RESULTS
Identification of two principal immune transcriptomic and IHC
profiles in advanced GEA
To evaluate GEA microenvironment features, we performed a
transcriptomic analysis of the primary tumour of 31 consecutive
retrospective patients. Clinicopathological characteristics are
provided in Supplementary Table 1. First, an unsupervised
hierarchical clustering heatmap considering tumour immune
microenvironment features defined by both the immune infiltrate
and its immune cells subsets led us to identify two different
immune subtypes of GEA: the first, characterised by a low immune
infiltrate (IIL, low immune infiltrate) and the second, with a high
immune infiltrate (IIH, high immune infiltrate) (Fig. 1a). A specific
population analysis of several immune cells detected by the
transcriptomic panel was then performed. As expected, the IIH
group showed a higher representation of the immune cells
(p < 0.05) (Fig. 1b). To validate our findings, we carried out IHC
staining of all the primary tumour samples using a customised in
house immune panel to evaluate the presence of CD3+, CD8+,
CD163+, FOXP3+ and PD-L1+ cells. The IHC confirmed an
increase in the immune infiltrate in those tumours belonging to
the transcriptomic IIH subgroup. We observed that the IHC
positivity for lymphocytes CD8+ (p= 0.03) and macrophages
CD163+ (p= 0.03) was associated with the IIH subgroup (Fig. 1c, d).

The relevance of CD8+ and CD163+ cells independently from the
other markers in determining the IIH group was also remarked by
our transcriptomic results (Fig. 1b). In contrast, no statistical
differences were found in IIH versus IIL groups when CD3 and
FOXP3 were studied by IHC (data not shown), which is also in line
with what we saw at the gene expression level (Fig. 1b).

Immune functional differences across GEA transcriptomic
subtypes
As tumour microenvironment represents a dynamic and complex
system, beyond identifying two groups based on the amount of
immune infiltrate (IIL and IIH), our patients were also classified by
the immune function of the cells composing the immune
microenvironment. We performed an unsupervised hierarchical
clustering heatmap to study T, NK, macrophages, leucocytes, and
B cell functions, as well as functional signatures for cytokines,
complement, chemokines, and interleukins, which clustered GEA
tumours into a high or low function group for every single
signature (Supplementary Fig. 2). When all the functional
signatures were integrated, our cohort could be divided into
two major groups: one presenting high function of cells belonging
to the tumour infiltrate (high function, FH) and another
characterised by the lack of these functions (low function, FL).
(Fig. 2a). To better characterise these two groups, a differential
gene expression analysis with a Volcano plot was performed
(Fig. 2b), showing that FL tumours expressed the most prolif-
erative genes, such as MAPK and E3 ubiquitin ligase (Supplemen-
tary Table 2), which suggested a more aggressive tumoural
phenotype. As expected, low expression of immune response-
related genes was found within this subgroup. On the other hand,
FH tumours were enriched in immune-related genes pathways,
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Fig. 1 Immune transcriptomic and IHC profiles in advanced GEA. a Unsupervised hierarchical clustering heatmap of NanoString cell-type
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mostly suggesting a pro-inflammatory profile. These tumours
showed hyper-expression of genes related to immune cell
recruitment, adaptive and innate immunity, antigen presentation,
immune suppression, and inflammation (Supplementary Table 2).

Infiltrate and functional transcriptomic integration to identify
four distinct tumour immune microenvironment profiles
By using integrative bioinformatics assessment of both the
tumour infiltrate (IIL, IIH) and the function of its component cells
(FL, FH), we were able to identify 4 different tumour immune
microenvironment profiles in our cohort, namely, IIL-FL, IIL-FH, IIH-
FL and IIH-FH (Fig. 3a). We observed that CIN tumours mostly
belonged to groups with FH while the GS subgroup presented
with FL. As expected, MSI-H patients had a IIH and FH profile
(Fig. 3a). Next, studying gene expression of the major check-point
molecules (PD1, PD-L1, CTLA4) across the identified 4 subgroups,
we found that PD1 and PDL1 were significantly more expressed in
IIH-FH tumours than in those defined as IIL-FL, while no
differences in CTLA-4 were detectable (Fig. 3b). In addition, we
studied a list of relevant immunomodulatory genes such as
HAVCR2, IDO-1, LAG3, TIGIT and TNFRSF4, observing that they were
again overexpressed in the IIH-FH subgroup (Fig. 3c). Intriguingly,
another target commonly associated with immune cells, Bruton’s
tyrosine kinase (BTK), which is associated with lymphocyte
activation, was highly expressed among the IIH-FH group (Fig. 3d).
These results suggest that patients belonging to the IIH-FH group
could potentially benefit from treatment with a CPI. In addition,
several studies have focused on the relationship between
epithelial–mesenchymal transition (EMT) and tumour microenvir-
onment features [32, 33], prompting us to explore the correlation
of the EMT with immune infiltrate and function in our cohort. In
this context, IIH-FH tumours presented reduced CDH1 expression,
suggesting an involvement of the EMT in determining this
phenotype (Fig. 3e). Moreover, expression of TGF-β, which also
plays an important role in the EMT process [34], was higher in the
IIH-FH group, supporting this hypothesis (Fig. 3c).

Tumour immune microenvironment influence on platinum-
based chemotherapy resistance
We also studied the potential role of the immune microenviron-
ment in determining chemotherapy response. As platinum-based
chemotherapy represents the gold standard for these patients, we
analysed the PFS of all our patients treated with this therapy
(81%). Log-rank test stratifying the population by immune
infiltrate and immune function showed no differences in survival
curves between the four groups (Supplementary Fig. 3A). To
explore the potential relationship between any tumour immune

microenvironment component and PFS across platinum-exposed
patients, we performed a multivariable LASSO–Cox analysis with
tenfold cross-validation, yielding a lambda value of 0.33. Variables
were then dichotomised using maximally selected rank statistics.
We observed that HLA-DQA1 expression was related to worse
prognosis (p= 0.00059) (Supplementary Fig. 3B). Conversely, high
expression of DUSP4, IRF4, and CCRL2 was associated with better
response to platinum-based CT (Supplementary Fig. 3C).

Validation of nCounter results across a prospectively collected
cohort combining RNAseq and plasma cytokine profile
To validate the nCounter results, we studied immune microenvir-
onment features of 23 consecutive patients belonging to another
GEA cohort, using wider RNA sequencing analysis to overcome the
limitations of the predefined panel. Clinicopathological character-
istics are provided in Supplementary Table 3. The gene expression
profile of the immune cells present in the tumour infiltrate
dichotomises our patients into two groups, IIH (cluster 1 and
cluster 2.2) and IIL (cluster 2.1) (Fig. 4a), as previously obtained
with the nCounter analysis. As expected, evaluation of the
immune cell scores underlined that the IIH group, has the highest
total immune infiltrate (Fig. 4b). To complete the analysis, we next
used a computational algorithm (the immune score of ESTIMATE)
[24] for each tumour sample. Finally, it was confirmed that IIH
tumours presented a high immune population (p= 0.028) (Fig. 4c).
Furthermore, to overcome the limitation of a descriptive-only
evaluation of cellular infiltrate, we added assessment of immune
cell function to our study, and were subsequently able to classify
our cohort into FH and FL groups (Fig. 4d). Interestingly, patients
belonged to different clusters within the IIH group, suggesting a
different functional profile between them. Patients belonging to
Cluster 1 (Fig. 4a) were FH while FL tumours belonged to Cluster
2.2 (Fig. 4a). These results support our hypothesis that cellular
function has an importance beyond infiltrate component evalua-
tion. In this context, to explore whether tumour microenvironment
function could be related to cytokine plasma levels, we also
studied the plasma samples of our prospective cohort with a
multi-cytokine panel. We found that patients belonging to the FH
group presented higher levels of IL-18 (p= 0.042), a pro-
inflammatory cytokine involved in Th1 response as well as in
inducing IFN-γ production (Fig. 4e). This result suggests that IL-18
plasma analysis could be useful for monitoring the systemic
immune response. No differences in other cytokines were
detectable in our cohort.
Finally, considering the immune infiltrate and its function, we

were able to classify our patients into the same four groups as
previously described in our retrospective cohort. However, due to
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the limited sample size, only one patient belonged to the IIL-FH,
thus limiting the value of the results in this group.

IIH-FH immune microenvironment profile and immunotherapy
benefit
As previously proposed in our nCounter cohort, patients belong-
ing to the IIH-FH group could potentially benefit from immu-
notherapy. Using our second cohort as validation, RNA-seq
technology was performed to evaluate immune gene sets that
have been associated with CPIs response, such as the HLA and IFN
signatures, and the gene expression of the major checkpoint
molecules, overcoming the limitations of the nCounter panel. As
expected, all the previously mentioned signatures were highly
expressed in the IIH-FH group (Fig. 5a and Supplementary
Fig. 4A–C). Immunomodulatory genes and BTK expression was
also studied, and it was possible to confirm their higher expression
in the IIH-FH versus the IIL-FL group (Supplementary Fig. 4D, E). A
further analysis of the CXCR5+CD8+ T signature, which has been
proposed as a possible biomarker of immunotherapy response in
gastric cancer [35], showed high expression in IIH-FH tumours,
while tumours belonging to the IIL-FL presented reduced
expression (Fig. 5a and Supplementary Fig. 4F).
To analyse further differences between the IIH-FH and IIL-FL

groups, we studied the 50-hallmark gene set signature through
the GSEA (Gene Set Enrichment Analysis) [36]. Across the IIH-FH
phenotype, we found 30 upregulated gene sets, 18 of them with
an FDR < 25% (q-value: <0.25) (Supplementary Table 4). Among
them, the inflammatory response signature, the IFN-γ and IFN-α
responses, and IL-2-STAT5 signalling pathway were significantly
enriched (Fig. 5b). Notably, the EMT signature was newly highly
represented among the IIH-FH subgroup, highlighting the
potential relation between microenvironment and tumour
mesenchymal phenotype. Conversely, in the IIL-FL group we
found 20 upregulated gene sets, 18 of which had an FDR < 25%

(q-value: <0.25) (Supplementary Table 5). Among them, the E2F,
MYC and G2M checkpoint targets signatures were enriched,
highlighting a more proliferative phenotype (Fig. 5b). To under-
stand the differences between IIH-FH and IIL-FL tumours we
analysed the differential gene expression profile between these
two groups. 626 genes were found to be differentially expressed
between them (adjusted p value <0.05; |log2FC| > 1; Fig. 5c). A
Gene Ontology biological process enrichment analysis showed
that Cytokine-mediated signalling pathways, T cell activation and
leucocyte migration were differentially expressed among the two
profiles (Fig. 5d), suggesting a potentially key role for the immune
phenotype in determining which group a tumour belongs to.
Interestingly, the chemokine and IL-18 signalling pathways were
significantly enriched in a functional enrichment analysis (Fig. 5e).
This result suggests that IL-18 may contribute to differential
functional states of the tumour immune microenvironment.

Immune transcriptomic profile for prediction of
immunotherapy response beyond CPS in a CPI-exposed
cohort of advanced GEA
Our previous analyses support a role for transcriptomics in
potentially identifying CPI-sensitive tumours. To further evaluate
the predictive value of our immune classification, we tested it by in
silico analysis in an external CPI-exposed cohort [14]. Among the
CPS < 5 population, only 9.7% achieved a response from pembro-
lizumab (anti-PD1), while most patients with CPS ≥ 5 benefitted
from immunotherapy, underlining the importance of additional
biomarkers in the population with CPS < 5. When we tested our
transcriptomic classification in this external cohort, we identified
three immune microenvironment profiles: IIL-FL, IIH-FL and IIH-FH.
In particular, 67% of immunotherapy responders belonged to the
IIH-FH group. Furthermore, our classification was significantly
associated with response to immunotherapy (p= 0.003). A logistic
regression model combining CPS and our immune transcriptomic
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classification increased the model fit compared to CPS alone
(p= 0.043). Beyond PD-L1 expression, therefore, our model was
able to predict response in patients with CPS < 5.

DISCUSSION
Our study describes four distinct immune microenvironment
profiles according to immune infiltrate and its function (IIL-FL, IIL-
FH, IIH-FL and IIH-FH), using multifactorial assessment of
transcriptomic and pathological features in patients with
advanced GEA. This subclassification is of interest to potentially
detect sensitivity or resistance to CPIs. Intriguingly, tumours
belonging to the IIH-FH subgroup expressed the most gene
signatures related to immunomodulatory pathways and immu-
notherapy response. These results were confirmed with an internal
second cohort and finally validated “in silico” in an external CPI-
exposed population, where 67% of immunotherapy responders
belonged to the IIH-FH group. Furthermore, our signature was
associated with response to immunotherapy (p= 0.003) and a
logistic regression model combining CPS and our transcriptomic
analyses showed that using both tools allowed more precise
detection of patients who could benefit from immunotherapy
than using CPS alone (p= 0.043).
Transcriptomic analyses are improving our knowledge of

immune tumour microenvironment [37–39]. Most research has
focused on studying immune infiltrate composition to understand
resistance to CPIs [12, 40, 41], while there is growing evidence that
the functional status of the immune microenvironment marks the
difference in immunotherapy response [42–44]. Analysis of
immune function could therefore help in determining sensitivity

or resistance to immunotherapy. In this regard, our gene
expression analysis showed that FH tumours were mostly enriched
in immune-related genes, while FL tumours principally expressed
genes involved in cell proliferation. Further, by examining both
the infiltrate composition and its function we were able to
describe distinct immune microenvironment profiles: IIL-FL, IIL-FH,
IIH-FL and IIH-FH. Of interest, it was confirmed that tumours
belonging to the IIH-FH subgroup expressed the most immuno-
modulatory genes, such as TIM3, IDO-1, LAG3, TIGIT and OX40,
making them potential candidates for classic CPI (anti PD-L1, PD1,
CTLA4) or novel immunotherapy combinations such as anti-LAG3
and anti-TIM3 bispecific antibodies which could overcome primary
or secondary resistance [45]. To complete our study, we also
evaluated intrinsic tumour features, such as EMT. The bilateral
dynamical interaction between EMT and microenvironment in
determining a pro- or anti-inflammatory profile has been recently
described in several tumour models [46]. Our results showed that
IIH-FH tumours presented reduced expression of CDH1 and higher
expression of TGF-β, suggesting a mesenchymal phenotype.
The prognostic role of tumour microenvironment in predicting

response to chemotherapy has been investigated in several
studies [47, 48]. In our cohort, the aim was to assess whether
belonging to any of the four previously identified immune groups
could have a prognostic role with respect to PFS with first line
platinum-based chemotherapy. Cox regression analysis showed
no differences between the 4 groups, although with LASSO-Cox
analysis HLA-DQA1 expression was related to worse prognosis
(p= 0.00059). The association between this HLA and platinum
resistance has already been observed in other relevant research,
even at a single cell level [49].
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The NCounter allowed us to identify the four previously
mentioned immune microenvironment profiles, based on popula-
tion and functional analysis. To validate this immune classification
and overcome the limitation of the number of genes included in
an array panel, we used RNA sequencing to analyse the
transcriptome of a prospective cohort of advanced GEA patients,
who shared the same clinic and pathological characteristics as the
first retrospective cohort. In this case, we were able to divide the
population into the same four subgroups. As proposed, the

function of those cells composing the tumour immune micro-
environment could play a key role in determining sensitivity or
resistance to CPIs. In this regard, we found that patients belonging
to the FH group presented higher plasma levels of IL-18
(p= 0.042) than those defined as FL. IL-18 is a pro-inflammatory
cytokine involved in Th1 response as well as in inducing IFN-γ
production [50]. This result suggests that regardless of immune
infiltrate, FH tumours may exhibit high antitumoural activity and a
systemic pro-inflammatory profile. Furthermore, differential gene
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expression analysis showed that IL-18 signalling pathway was
significantly more enriched in IIH-FH tumours than IIL-FL ones. The
role of IL-18 in relation to immune activity and immunotherapy
warrants further studies in a larger cohort of GEA patients. As
expected, IIH-FH exhibits EMT and an inflamed phenotype, with
high expression of genes related to HLAs, interferon-γ activation
and immune checkpoints. In particular, the inflammatory response
signature, IFN-γ and IFN-α responses and the IL-2-STAT5 signalling
pathways were significantly enriched among the IIH-FH subgroup,
as shown in GSEA analysis. These results confirmed the previous
ones observed in the retrospective nCounter cohort.
Finally, to evaluate whether this transcriptomic classification

could help identify patients who would potentially benefit from
CPI, we studied a cohort of GEA patients treated with
pembrolizumab as second or third line. Interestingly, 67% (8/12)
of immunotherapy responders belonged to the IIH-FH group.
Across this cohort, our signature was associated with response to
immunotherapy (p= 0.003). Moreover, the logistic regression
model combining CPS and our transcriptomic analysis showed
that use of both tools increased the ability to detect patients who
could benefit from immunotherapy versus CPS alone (p= 0.043).
An important finding in our study is that all patients belonging to
the first and second cohorts had CPS < 5, potentially indicating a
marginal benefit of adding immunotherapy. However, CPI
sensitivity was found when an active, highly functional immune
microenvironment was confirmed in our transcriptomic analysis.
This study presents some limitations derived from its explora-

tory design, such as the small sample size for both retrospective
and prospective cohorts without previous exposure to immu-
notherapy, and the validation of our results performed in silico in a
public cohort.
In conclusion, our work allows the identification of an immune-

enriched subtype of advanced GEA, characterised by high
immune cell activation, which could potentially help achieve a
more precise immunotherapy approach beyond CPS. Further
evaluation of the capabilities of this transcriptomic classification
are needed in wider cohorts of CPI-exposed patients.
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