Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Mutation of the proline P81 into a serine modifies the tumour suppressor function of the von Hippel–Lindau gene in the ccRCC

Abstract

Background

The von Hippel–Lindau disease is an autosomal dominant syndrome associated with tumour formation in various tissues, such as retina, central nervous system, kidney, and adrenal glands. VHL gene deletion or mutations support the development of various cancers. Unclassified VHL variants also referred as “of unknown significance” result from gene mutations that have an unknown or unclear effect on protein functions. The P81S mutation has been linked to low penetrance Type 1 disease but its pathogenic function was not clearly determined.

Methods

We established a stable cell line expressing the pVHL213 (c.241C>T, P81S) mutant. Using biochemical and physiological approaches, we herein analysed pVHL folding, stability and function in the context of this VHL single missense mutation.

Results

The P81S mutation mostly affects the non-canonical function of the pVHL protein. The cells expressing the pVHL213P81S acquire invasive properties in relation with modified architecture network.

Conclusion

We demonstrated the pathogenic role of this mutation in tumour development in vhl patients and confirm a medical follow up of family carrying the c.241C>T, P81S.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Description of the pedigree of the family that is affected by the P81S mutation.
Fig. 2: Representation of the pVHL213 protein structure.
Fig. 3: Characterisation of the stable cell lines expressing the pVHL213-P81S.
Fig. 4: pVHL213-P81S is part of the E3 ligase complex.
Fig. 5: Expression of pVHL213-P81S promotes cell migration.
Fig. 6: Tumourigenic effect of pVHL213-P81S in 786-O cells.

Similar content being viewed by others

Stylianos E. Antonarakis, Brian G. Skotko, … Roger H. Reeves

Data availability

The data that support the findings of this article are available upon request from the corresponding author.

References

  1. Lewis MD, Roberts BJ. Role of the C-terminal α-helical domain of the von Hippel–Lindau protein in its E3 ubiquitin ligase activity. Oncogene. 2004;23:2315–23.

    Article  CAS  PubMed  Google Scholar 

  2. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell. 2002;1:247–55.

    Article  CAS  PubMed  Google Scholar 

  3. Nordstrom-O’Brien M, van der Luijt RB, van Rooijen E, van den Ouweland AM, Majoor-Krakauer DF, Lolkema MP, et al. Genetic analysis of von Hippel-Lindau disease. Hum Mutat. 2010;31:521–37.

    PubMed  Google Scholar 

  4. Zbar B, Kishida T, Chen F, Schmidt L, Maher ER, Richards FM, et al. Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat. 1996;8:348–57.

    Article  CAS  PubMed  Google Scholar 

  5. Lenglet M, Robriquet F, Schwarz K, Camps C, Couturier A, Hoogewijs D, et al. Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease. Blood. 2018;132:469–83.

    Article  CAS  PubMed  Google Scholar 

  6. Leonardi E, Murgia A, Tosatto SCE. Adding structural information to the von Hippel-Lindau (VHL) tumor suppressor interaction network. FEBS Lett. 2009;583:3704–10.

    Article  CAS  PubMed  Google Scholar 

  7. Minervini G, Quaglia F, Tabaro F, Tosatto SCE. Genotype-phenotype relations of the von Hippel-Lindau tumor suppressor inferred from a large-scale analysis of disease mutations and interactors. PLoS Comput Biol. 2019;15:e1006478.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ivan M, Kaelin WG. The von Hippel–Lindau tumor suppressor protein. Curr Opin Genet Dev. 2001;11:27–34.

    Article  CAS  PubMed  Google Scholar 

  9. Hes FJ. Cryptic von Hippel-Lindau disease: germline mutations in patients with haemangioblastoma only. J Med Genet. 2000;37:939–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alosi D, Bisgaard M, Hemmingsen S, Krogh L, Mikkelsen H, Binderup M. Management of gene variants of unknown significance: analysis method and risk assessment of the VHL mutation p.P81S (c.241C>T). Curr Genomics. 2016;18:93–103.

    Article  Google Scholar 

  11. Knauth K, Cartwright E, Freund S, Bycroft M, Buchberger A. VHL mutations linked to Type 2C von Hippel-Lindau disease cause extensive structural perturbations in pVHL. J Biol Chem. 2009;284:10514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DeSimone MC, Rathmell WK, Threadgill DW. Pleiotropic effects of the trichloroethylene-associated P81S VHL mutation on metabolism, apoptosis, and ATM-mediated DNA damage response. J Natl Cancer Inst. 2013;105:1355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weirich G, Klein B, Wöhl T, Engelhardt D, Brauch H. VHL2C phenotype in a German von Hippel-Lindau family with concurrent VHL germline mutations P81S and L188V. J Clin Endocrinol Metab. 2002;87:5241–6.

    Article  CAS  PubMed  Google Scholar 

  14. Hascoet P, Chesnel F, Jouan F, Goff CL, Couturier A, Darrigrand E, et al. The pVHL172 isoform is not a tumor suppressor and up-regulates a subset of pro-tumorigenic genes including TGFB1 and MMP13. Oncotarget. 2017;8:75989–6002.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chesnel F, Hascoet P, Gagne JP, Couturier A, Jouan F, Poirier GG, et al. The von Hippel-Lindau tumour suppressor gene: uncovering the expression of the pVHL172 isoform. Br J Cancer. 2015;113:336–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 2007;17:71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gallou C, Chauveau D, Richard S, Joly D, Giraud S, Olschwang S, et al. Genotype-phenotype correlation in von Hippel-Lindau families with renal lesions. Hum Mutat. 2004;24:215–24.

    Article  CAS  PubMed  Google Scholar 

  18. Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7:85–90.

    Article  CAS  PubMed  Google Scholar 

  19. Brauch H, Weirich G, Klein B, Rabstein S, Bolt HM, Brüning T. VHL mutations in renal cell cancer: does occupational exposure to trichloroethylene make a difference? Toxicol Lett. 2004;151:301–10.

    Article  CAS  PubMed  Google Scholar 

  20. Stebbins CE. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science. 1999;284:455–61.

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen HC, Yang H, Fribourgh JL, Wolfe LS, Xiong Y. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure. 2015;23:441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Minervini G, Pennuto M, Tosatto SCE. The pVHL neglected functions, a tale of hypoxia-dependent and -independent regulations in cancer. Open Biol. 2020;10:200109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grosfeld A, Stolze IP, Cockman ME, Pugh CW, Edelmann M, Kessler B, et al. Interaction of hydroxylated collagen IV with the von Hippel-Lindau tumor suppressor. J Biol Chem. 2007;282:13264–9.

    Article  CAS  PubMed  Google Scholar 

  24. Peruzzi B, Athauda G, Bottaro DP. The von Hippel–Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA. 2006;103:14531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao S, Liu L, Li Z, Pang Y, Shi J, Zhu F. Seven novel genes related to cell proliferation and migration of VHL-mutated pheochromocytoma,. Front Endocrinol. 2021;12:598656.

    Article  Google Scholar 

  26. Chen F, Kishida T, Yao M, Hustad T, Glavac D, Dean M, et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat. 1995;5:66–75.

    Article  CAS  PubMed  Google Scholar 

  27. Ong KR, Woodward ER, Killick P, Lim C, Macdonald F, Maher ER. Genotype-phenotype correlations in von Hippel-Lindau disease. Hum Mutat. 2007;28:143–9.

    Article  CAS  PubMed  Google Scholar 

  28. Esteban MA, Tran MGB, Harten SK, Hill P, Castellanos MC, Chandra A, et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res. 2006;66:3567–75.

    Article  CAS  PubMed  Google Scholar 

  29. Martin B, Chesnel F, Delcros JG, Jouan F, Couturier A, Dugay F, et al. Identification of pVHL as a novel substrate for Aurora-A in clear cell renal cell carcinoma (ccRCC). PLoS ONE. 2013;8:e67071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baux D, Van Goethem C, Ardouin O, Guignard T, Bergougnoux A, Koenig M, et al. MobiDetails: online DNA variants interpretation. Eur J Hum Genet. 2021;29:356–60.

    Article  CAS  PubMed  Google Scholar 

  31. Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat. 2019;40:1030–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the IGDR for all facilities. We would like to acknowledge S. Dreano (IGDR) for his contribution in plasmid sequencing. We acknowledge the ImPAcCell and MRic microscopy platforms at the SFR BIOSIT (CNRS UMS3480 Rennes). We thank L. Schmitt for his contribution to the experiments perfromed for the revison of the manuscript.

Funding

We thank the LNCC for financial support of this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: FC, YA-B. Performed the experiments: FC, AA, AC, EJ, ML, XLG. Analysed the data: FC, XLG, BG, YA-B. Contributed reagents/materials/analysis data from patients: CA, BG. Wrote the paper: YA-B.

Corresponding author

Correspondence to Yannick Arlot-Bonnemains.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnel, F., Jullion, E., Delalande, O. et al. Mutation of the proline P81 into a serine modifies the tumour suppressor function of the von Hippel–Lindau gene in the ccRCC. Br J Cancer 127, 1954–1962 (2022). https://doi.org/10.1038/s41416-022-01985-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01985-2

Search

Quick links