Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

A blood-based circulating microbial metagenomic panel for early diagnosis and prognosis of oesophageal adenocarcinoma

Abstract

Background

Emerging evidence indicates the potential clinical significance of specific microbial signatures as diagnostic and prognostic biomarkers, in multiple cancers. However, to date, no studies have systematically interrogated circulating metagenome profiling in oesophageal adenocarcinoma (EAC) patients, particularly as novel non-invasive, early detection, surveillance and prognostic classifiers.

Methods

Metagenome sequencing was performed on 81 serum specimens collected across EAC spectrum, with sequencing reads classified using Bracken and MetaPhlAn3. Followed by the Linear Discriminant Analysis effect size (LEfSe) method to identify microbial profiles between groups. Logistic regression and Kaplan–Meier analyses were used to build classifiers.

Results

A significant loss of alpha and beta diversity was identified in serum specimens from EAC patients. We observed a shift in microbial taxa between each group—at the phylum, genus, and species level—with Lactobacillus sakei as the most prominent species in gastroesophageal reflux (GERD) vs other patient groups. Interestingly, LEfSe analysis identified a complete loss of Lactobacillus (L. Sakei and L. Curvatus), Collinsella stercoris and Bacteroides stercoris but conversely a significant increase in Escherichia coli in patients with EAC. Finally, we developed a metagenome panel that discriminated EAC from GERD patients with an AUC value of 0.89 (95% CI: 0.78–0.95; P < 0.001) and this panel in conjunction with the TNM stage was a robust predictor of overall survival (≥24 months; AUC = 0.84 (95% CI: 0.66–0.92; P = 0.006)).

Conclusion

This study firstly describes unique blood-based microbial profiles in patients across EAC carcinogenesis, that are further utilised to establish a novel circulating diagnostic and prognostic metagenomic signature for EAC.

Translational relevance

Accumulating data indicates the clinical relevance of specific microbial signatures as diagnostic and prognostic biomarkers, in multiple cancers. However, to date, no studies have systematically interrogated circulating metagenome profiling in patients with oesophageal adenocarcinoma (EAC). Herein, we performed metagenome sequencing in serum specimens from EAC patients 81 collected across EAC spectrum and observed a significant loss of alpha and beta diversity, with a shift in microbial taxa between each group—at the phylum, genus, and species level—with Lactobacillus sakei as the most prominent species in gastroesophageal reflux (GERD) vs other patient groups. Interestingly, LEfSe analysis identified a complete loss of Lactobacillus (L. Sakei and L. Curvatus), Collinsella stercoris and Bacteroides stercoris but conversely a significant increase in Escherichia coli in patients with EAC. Finally, we developed a metagenome panel that discriminated EAC from GERD patients with an AUC value of 0.89 and this panel, in conjunction with the TNM stage, was a robust predictor of overall survival. This study for the first time describes unique blood-based microbial profiles in patients across EAC carcinogenesis, that are further utilised to establish a novel circulating diagnostic and prognostic metagenomic signature for EAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alpha and beta diversity analysis between patients with GERD, BE, dysplasia and EAC.
Fig. 2: Relative abundance of microbial taxa at the phylum, genus and species level.
Fig. 3: Linear Discriminant Analysis (LDA) effect size (LEfSe) and logistic regression analysis showing the potential of metagenome panel as a diagnostic biomarker.
Fig. 4: Metagenome panel as a predictive biomarker of overall survival (OS) in patients with EAC.

Similar content being viewed by others

Data availability

The datasets used for this study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2021;71:209–49.

    Google Scholar 

  2. Kroep S, Lansdorp-Vogelaar I, Rubenstein JH, Lemmens VEPP, van Heijningen EB, Aragonés N, et al. Comparing trends in esophageal adenocarcinoma incidence and lifestyle factors between the United States, Spain, and The Netherlands. Am J Gastroenterol. 2014;109:336–44.

    Article  CAS  PubMed  Google Scholar 

  3. Spechler SJ. Barrett esophagus and risk of esophageal cancer: a clinical review. J Am Med Assoc. 2013;310:627–36.

    Article  CAS  Google Scholar 

  4. Kambhampati S, Tieu AH, Luber B, Wang H, Meltzer SJ. Risk factors for progression of Barrett’s esophagus to high grade dysplasia and esophageal adenocarcinoma. Sci Rep. 2020;10:4899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Then EO, Lopez M, Saleem S, Gayam V, Sunkara T, Culliford A, et al. Esophageal cancer: an updated surveillance epidemiology and end results database analysis. World J Oncol. 2020;11:55–64.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fan Y, Yuan J-M, Wang R, Gao Y-T, Yu MC. Alcohol, tobacco and diet in relation to esophageal cancer: The Shanghai Cohort Study. Nutr Cancer. 2008;60:354–63.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alexandre L, Long E, Beales IL. Pathophysiological mechanisms linking obesity and esophageal adenocarcinoma. World J Gastrointest Pathophysiol. 2014;5:534–49.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yu X, Chen J, Jiang W, Zhang D. Alcohol, alcoholic beverages and risk of esophageal cancer by histological type: a dose-response meta-analysis of observational studies. Alcohol Alcohol. 2020;55:457–67.

    Article  PubMed  Google Scholar 

  9. Chang JT, Katzka DA. Gastroesophageal reflux disease, Barrett esophagus, and esophageal adenocarcinoma. Arch Intern Med. 2004;164:1482–8.

    Article  PubMed  Google Scholar 

  10. Deshpande NP, Riordan SM, Castaño-Rodríguez N, Wilkins MR, Kaakoush NO. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome. 2018;6:227.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bhat S, Coleman HG, Yousef F, Johnston BT, McManus DT, Gavin AT, et al. Risk of malignant progression in Barrett's esophagus patients: results from a large population-based study. JNCI: J Natl Cancer Inst. 2011;103:1049–57.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Yang CS. Esophageal adenocarcinoma: a review and perspectives on the mechanism of carcinogenesis and chemoprevention. Carcinogenesis. 2001;22:1119–29.

    Article  CAS  PubMed  Google Scholar 

  13. Kaz AM, Grady WM, Stachler MD, Bass AJ. Genetic and epigenetic alterations in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin North Am. 2015;44:473–89.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ajayi TA, Cantrell S, Spann A, Garman KS. Barrett’s esophagus and esophageal cancer: links to microbes and the microbiome. PLoS Pathog. 2018;14:e1007384.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lv J, Guo L, Liu J-J, Zhao H-P, Zhang J, Wang J-H. Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J Gastroenterol. 2019;25:2149–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armstrong H, Bording-Jorgensen M, Dijk S, Wine E. The complex interplay between chronic inflammation, the microbiome, and cancer: understanding disease progression and what we can do to prevent it. Cancers. 2018;10:83.

    Article  PubMed Central  Google Scholar 

  17. Quante M, Graham TA, Jansen M. Insights into the pathophysiology of esophageal adenocarcinoma. Gastroenterology. 2018;154:406–20.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smet A, Kupcinskas J, Link A, Hold GL, Bornschein J. The role of microbiota in gastrointestinal cancer and cancer treatment: chance or curse? Cell Mol Gastroenterol Hepatol. 2022;13:857–74.

    Article  PubMed  Google Scholar 

  20. Snider EJ, Compres G, Freedberg DE, Khiabanian H, Nobel YR, Stump S, et al. Alterations to the esophageal microbiome associated with progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer Epidemiol, Biomark Prev. 2019;28:1687–93.

    Article  Google Scholar 

  21. Elliott DRF, Walker AW, O’Donovan M, Parkhill J, Fitzgerald RC. A non-endoscopic device to sample the oesophageal microbiota: a case-control study. lancet Gastroenterol Hepatol. 2017;2:32–42.

    Article  PubMed  Google Scholar 

  22. Lopetuso LR, Severgnini M, Pecere S, Ponziani FR, Boskoski I, Larghi A, et al. Esophageal microbiome signature in patients with Barrett’s esophagus and esophageal adenocarcinoma. PLoS ONE. 2020;15:e0231789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peter S, Pendergraft A, VanDerPol W, Wilcox CM, Kyanam Kabir Baig KR, Morrow C, et al. Mucosa-associated microbiota in Barrett’s esophagus, dysplasia, and esophageal adenocarcinoma differ similarly compared with healthy controls. Clin Transl Gastroenterol. 2020;11:e00199–e00199.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gall A, Fero J, McCoy C, Claywell BC, Sanchez CA, Blount PL, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PLoS ONE. 2015;10:e0129055.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77:6777–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 2020;579:567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zozaya-Valdes E, Wong SQ, Raleigh J, Hatzimihalis A, Ftouni S, Papenfuss AT, et al. Detection of cell-free microbial DNA using a contaminant-controlled analysis framework. Genome Biol. 2021;22:187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong Z, Chen B, Pan H, Wang D, Liu M, Yang Y, et al. Detection of microbial 16S rRNA gene in the serum of patients with gastric cancer. Front Oncol. 2019;9:608.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiao Q, Lu W, Kong X, Shao YW, Hu Y, Wang A, et al. Alterations of circulating bacterial DNA in colorectal cancer and adenoma: a proof-of-concept study. Cancer Lett. 2021;499:201–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chin RI, Chen K, Usmani A, Chua C, Harris PK, Binkley MS, et al. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA). Mol diagnosis Ther. 2019;23:311–31.

    Article  CAS  Google Scholar 

  31. Adlung L, Elinav E, Greten TF, Korangy F. Microbiome genomics for cancer prediction. Nat Cancer. 2020;1:379–81.

    Article  PubMed  Google Scholar 

  32. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.

    Article  Google Scholar 

  33. Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems 2018;3: e00202-00217.

  34. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–745.

    Article  PubMed  Google Scholar 

  35. Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife. 2021;10:e65088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. May M, Abrams JA. Emerging insights into the esophageal microbiome. Curr Treat Options Gastroenterol. 2018;16:72–85.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Choi HJ, Kim J, Do KH, Park S-H, Moon Y. Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1 mediates cancer cell survival: an in vitro implication of infection-linked tumor dissemination. Oncogene. 2013;32:4960–9.

    Article  CAS  PubMed  Google Scholar 

  39. Amir I, Konikoff FM, Oppenheim M, Gophna U, Half EE. Gastric microbiota is altered in oesophagitis and Barrett’s oesophagus and further modified by proton pump inhibitors. Environ Microbiol. 2014;16:2905–14.

    Article  CAS  PubMed  Google Scholar 

  40. Zaidi AH, Kelly LA, Kreft RE, Barlek M, Omstead AN, Matsui D, et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer. 2016;16:52.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang R, Han D, Li L, Luo W, Liu J, Qian L. EphA5 silencing increases the radiosensitivity of ESCC cells through ATM-dependent pathway. Cancer Manag Res. 2020;12:9539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gillespie MR, Rai V, Agrawal S, Nandipati KC. The role of microbiota in the pathogenesis of esophageal adenocarcinoma. Biology. 2021;10:697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ouaknine Krief J, Helly de Tauriers P, Dumenil C, Neveux N, Dumoulin J, Giraud V, et al. Role of antibiotic use, plasma citrulline and blood microbiome in advanced non-small cell lung cancer patients treated with nivolumab. J Immunother Cancer. 2019;7:176.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dong Z, Chen B, Pan H, Wang D, Liu M, Yang Y, et al. Detection of microbial 16S rRNA gene in the serum of patients with gastric cancer. Front Oncol. 2019;9:608.

  45. Kohata Y, Nakahara K, Tanigawa T, Yamagami H, Shiba M, Watanabe T, et al. Rebamipide alters the esophageal microbiome and reduces the incidence of Barrett’s esophagus in a rat model. Digestive Dis Sci. 2015;60:2654–61.

    Article  CAS  Google Scholar 

  46. Kaakoush NO, Morris MJ. The oesophageal microbiome: an unexplored link in obesity-associated oesophageal adenocarcinoma. FEMS Microbiol Ecol. 2016;92.

  47. Zhong L, Zhang X, Covasa M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterology: WJG. 2014;20:7878–86.

    Article  PubMed Central  Google Scholar 

  48. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Legesse Bedada T, Feto TK, Awoke KS, Garedew AD, Yifat FT, Birri DJ. Probiotics for cancer alternative prevention and treatment. Biomedicine Pharmacother. 2020;129:110409.

    Article  CAS  Google Scholar 

  50. Rather IA, Bajpai VK, Ching LL, Majumder R, Nam G-J, Indugu N, et al. Effect of a bioactive product SEL001 from Lactobacillus sakei probio65 on gut microbiota and its anti-colitis effects in a TNBS-induced colitis mouse model. Saudi J Biol Sci. 2020;27:261–70.

    Article  CAS  PubMed  Google Scholar 

  51. Kim S-Y, Shin J-S, Chung K-S, Han H-S, Lee H-H, Lee J-H, et al. Immunostimulatory effects of live Lactobacillus sakei K040706 on the CYP-induced immunosuppression mouse model. Nutrients. 2020;12:E3573.

    Article  PubMed  Google Scholar 

  52. Ota A, Morita S, Matsuoka A, Shimokata T, Maeda O, Mitsuma A, et al. Detection of bacteria in blood circulation in patients receiving cancer chemotherapy. Int J Clin Oncol. 2020;25:210–5.

    Article  CAS  PubMed  Google Scholar 

  53. Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE. 2013;8:e56964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fabbri A, Travaglione S, Ballan G, Loizzo S, Fiorentini C. The cytotoxic necrotizing factor 1 from E. Coli: a Janus toxin playing with cancer regulators. Toxins. 2013;5:1462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fabbri A, Bracci L. Immunomodulatory properties of CNF1 toxin from E. coli: implications for colorectal carcinogenesis. Am J Cancer Res. 2022;12:651–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Polimeno L, Barone M, Mosca A, Viggiani MT, Di Leo A, Debellis L, et al. Gut microbiota imbalance is related to sporadic colorectal neoplasms. A Pilot Study. Appl Sci. 2019;9:5491.

    Article  CAS  Google Scholar 

  58. Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol. 2019;9:148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. John Gillece and Dr. Sarah Highlander for their expertise and hard work in data analysis and for providing their critical insights into the analysis of microbial metagenome sequencing data.

Funding

This work was supported by CA72851, CA181572, CA184792, CA202797 and CA227602 grants from the National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

AHZ (conceptualisation: lead; funding acquisition: equal; methodology: equal; writing—review and editing: equal). MYP (data curation: lead; formal analysis: equal; methodology: equal; writing—original draft: lead; writing—review and editing: equal). ANO (data curation: equal; formal analysis: supporting; validation: supporting; writing—original draft: lead; writing—review and editing: supporting). AG (resources: supporting; writing—review and editing: supporting). RM (resources: supporting; writing—review and editing: supporting). RM-K (resources: supporting; writing—review and editing: supporting). BAJ (resources: supporting; validation: supporting; writing—review and editing: supporting). PLW (resources: supporting; validation: supporting; writing—review and editing: supporting). RJK (resources: supporting; validation: supporting; writing—review and editing: supporting). AG (conceptualisation: lead; funding acquisition: lead; methodology: equal; writing—review and editing: equal). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ajay Goel.

Ethics declarations

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all patients, and the study was approved by the institutional review boards of the participating institutions.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidi, A.H., Pratama, M.Y., Omstead, A.N. et al. A blood-based circulating microbial metagenomic panel for early diagnosis and prognosis of oesophageal adenocarcinoma. Br J Cancer 127, 2016–2024 (2022). https://doi.org/10.1038/s41416-022-01974-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01974-5

Search

Quick links