Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

HECTD3 regulates the tumourigenesis of glioblastoma by polyubiquitinating PARP1 and activating EGFR signalling pathway

Abstract

Background

The E3 ubiquitin ligase HECTD3 is a homologue of the E6-related protein carboxyl terminus, which plays a crucial role in biological processes and tumourigenesis. However, the functional characterisation of HECTD3 in glioblastoma is still elusive.

Methods

Determination of the functional role of HECTD3 in glioblastoma was made by a combination of HECTD3 molecular pattern analysis from human glioblastoma databases and subcutaneous and in situ injections of tumours in mice models.

Results

This study reports that the DOC domain of HECTD3 interacts with the DNA binding domain of PARP1, and HECTD3 mediated the K63-linked polyubiquitination of PARP1 and stabilised the latter expression. Moreover, the Cysteine (Cys) 823 (ubiquitin-binding site) mutation of HECTD3 significantly reduced PARP1 polyubiquitination and HECTD3 was involved in the recruitment of ubiquitin-related molecules to PARP1 ubiquitin-binding sites (Lysines 209 and 221, respectively). Lastly, activation of EGFR-mediated signalling pathways by HECTD3 regulates PARP1 polyubiquitination.

Conclusion

Our results unveil the potential role of HECTD3 in glioblastoma and strongly preconise further investigation and consider HECTD3 as a promising therapeutic marker for glioblastoma treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HECTD3 is highly expressed in GBM tissues and associated with a poor prognosis.
Fig. 2: Knockdown of HECTD3 inhibited the proliferation and migration ability of GBM cells.
Fig. 3: HECTD3 is required for GBM cell proliferation.
Fig. 4: The HECTD3 DOC domain interacts with the PARP1 DNA-binding domain.
Fig. 5: Depletion of HECTD3 reduces the expression of PARP1 and induces apoptosis and DNA damage in GBM cells.
Fig. 6: HECTD3 mediates the K63-linked polyubiquitination of PARP1.
Fig. 7: HECTD3 activates the EGFR-mediated signalling pathway through PARP1.

Similar content being viewed by others

Data availability

All data analysed or generated in this study are included in this article as well as in the Supplementary Information file.

References

  1. Budke M, Isla-Guerrero A, Perez-Lopez C, Perez-Alvarez M, Garcia-Grande A, Bello MJ, et al. A comparative study of the treatment of high grade gliomas. Rev Neurol. 2003;37:912–6.

    CAS  PubMed  Google Scholar 

  2. Riddick G, Fine HA. Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol. 2011;7:439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao Y, He J, Li Y, Lv S, Cui H. NUSAP1 potentiates chemoresistance in glioblastoma through its SAP domain to stabilize ATR. Signal Transduct Target Ther. 2020;5:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang Q, Li F, Cheng Z, Kong Y, Chen C. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond. Cell Mol life Sci. 2020;77:1483–95.

    Article  CAS  PubMed  Google Scholar 

  5. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503–33.

    Article  CAS  PubMed  Google Scholar 

  6. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29.

    Article  CAS  PubMed  Google Scholar 

  7. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 2009;11:123–32.

    Article  CAS  PubMed  Google Scholar 

  8. Trempe JF. Reading the ubiquitin postal code. Curr Opin Struct Biol. 2011;21:792–801.

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Chen X, Wang Z, Zhao D, Chen H, Chen W, et al. The HECTD3 E3 ubiquitin ligase suppresses cisplatin-induced apoptosis via stabilizing MALT1. Neoplasia. 2013;15:39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang L, Kang L, Bond W, Zhang N. Interaction between syntaxin 8 and HECTd3, a HECT domain ligase. Cell Mol Neurobiol. 2009;29:115–21.

    Article  PubMed  Google Scholar 

  11. Yu J, Lan J, Zhu Y, Li X, Lai X, Xue Y, et al. The E3 ubiquitin ligase HECTD3 regulates ubiquitination and degradation of Tara. Biochem Biophys Res Commun. 2008;367:805–12.

    Article  CAS  PubMed  Google Scholar 

  12. Shu T, Li Y, Wu X, Li B, Liu Z. Down-regulation of HECTD3 by HER2 inhibition makes serous ovarian cancer cells sensitive to platinum treatment. Cancer Lett. 2017;411:65–73.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Wu X, Li L, Liu Y, Xu C, Su D, et al. The E3 ligase HECTD3 promotes esophageal squamous cell carcinoma (ESCC) growth and cell survival through targeting and inhibiting caspase-9 activation. Cancer Lett. 2017;404:44–52.

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Zhou L, Prodromou C, Savic V, Pearl LH. HECTD3 mediates an HSP90-dependent degradation pathway for protein kinase clients. Cell Rep. 2017;19:2515–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Investig. 2018;128:4148–62.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Kong Y, Zhou Z, Chen H, Wang Z, Hsieh YC, et al. The HECTD3 E3 ubiquitin ligase facilitates cancer cell survival by promoting K63-linked polyubiquitination of caspase-8. Cell Death Dis. 2013;4:e935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu X, Li L, Li Y, Liu Z. MiR-153 promotes breast cancer cell apoptosis by targeting HECTD3. Am J Cancer Res. 2016;6:1563–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Engbrecht M, Mangerich A. The nucleolus and PARP1 in cancer biology. Cancers. 2020;12:1813.

  19. Ghorai A, Mahaddalkar T, Thorat R, Dutt S. Sustained inhibition of PARP-1 activity delays glioblastoma recurrence by enhancing radiation-induced senescence. Cancer Lett. 2020;490:44–53.

    Article  CAS  PubMed  Google Scholar 

  20. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature. 1985;313:144–7.

    Article  CAS  PubMed  Google Scholar 

  21. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.

    Article  CAS  PubMed  Google Scholar 

  22. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  Google Scholar 

  23. Hou J, Deng Q, Zhou J, Zou J, Zhang Y, Tan P, et al. CSN6 controls the proliferation and metastasis of glioblastoma by CHIP-mediated degradation of EGFR. Oncogene. 2017;36:1134–44.

    Article  CAS  PubMed  Google Scholar 

  24. Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12:675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Felsberg J, Hentschel B, Kaulich K, Gramatzki D, Zacher A, Malzkorn B, et al. Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res. 2017;23:6846–55.

    Article  CAS  PubMed  Google Scholar 

  26. Lai Y, Kong Z, Zeng T, Xu S, Duan X, Li S, et al. PARP1-siRNA suppresses human prostate cancer cell growth and progression. Oncol Rep. 2018;39:1901–9.

    CAS  PubMed  Google Scholar 

  27. Peng W, Shi S, Zhong J, Liang H, Hou J, Hu X, et al. CBX3 accelerates the malignant progression of glioblastoma multiforme by stabilizing EGFR expression. Oncogene. 2022;41:3051–63.

  28. Hou J, Xu M, Gu H, Pei D, Liu Y, Huang P, et al. ZC3H15 promotes glioblastoma progression through regulating EGFR stability. Cell Death Dis. 2022;13:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong Z, Lei Q, Yang R, Zhu S, Ke XX, Yang L, et al. Inhibition of neurotensin receptor 1 induces intrinsic apoptosis via let-7a-3p/Bcl-w axis in glioblastoma. Br J Cancer. 2017;116:1572–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xuan F, Huang M, Liu W, Ding H, Yang L, Cui H. Homeobox C9 suppresses Beclin1-mediated autophagy in glioblastoma by directly inhibiting the transcription of death-associated protein kinase 1. Neuro Oncol. 2016;18:819–29.

    Article  CAS  PubMed  Google Scholar 

  31. McPhee TR, McDonald PC, Oloumi A, Dedhar S. Integrin-linked kinase regulates E-cadherin expression through PARP-1. Dev Dyn. 2008;237:2737–47.

    Article  CAS  PubMed  Google Scholar 

  32. Li F, Liang H, You H, Xiao J, Xia H, Chen X, et al. Targeting HECTD3-IKKalpha axis inhibits inflammation-related metastasis. Signal Transduct Target Ther. 2022;7:264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer. 2015;15:302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaffanet M, Chauvin C, Laine M, Berger F, Chedin M, Rost N, et al. EGF receptor amplification and expression in human brain tumours. Eur J Cancer. 1992;28:11–7.

    Article  CAS  PubMed  Google Scholar 

  36. Libermann TA, Razon N, Bartal AD, Yarden Y, Schlessinger J, Soreq H. Expression of epidermal growth factor receptors in human brain tumors. Cancer Res. 1984;44:753–60.

    CAS  PubMed  Google Scholar 

  37. Eskilsson E, Rosland GV, Solecki G, Wang Q, Harter PN, Graziani G, et al. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro Oncol. 2018;20:743–52.

    Article  CAS  PubMed  Google Scholar 

  38. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl J Med. 2014;370:699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol. 2015;11:504–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alexander BM, Cloughesy TF. Adult glioblastoma. J Clin Oncol. 2017;35:2402–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daping Hospital (Chongqing, China) for providing primary glioblastoma cells (GBM-3). We thank Dr. Ulrich Aymard Ekomi Moure for correcting spelling and grammar errors. We also thank Jifu Li for providing technical support during the use of the Confocal Laser Scanning Microscope (Olympus Fv1000, Japan).

Funding

This research was supported by the Natural Science Foundation of Chongqing (cstc2022ycjh-bgzxm0145) and (cstc2019jcyjzdxmX0033).

Author information

Authors and Affiliations

Authors

Contributions

GZ and HC were responsible for the design of the study. GZ, PL, RT, SW, BL, and XH performed the experiments. HC, GZ, XD, RY, and EZ analysed the data and designed the figures. GZ, PL, and JZ wrote the manuscript.

Corresponding authors

Correspondence to Ping Liang or Hongjuan Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Animal handling was approved by the Committee for Animal Protection and ethics of Southwest University. All experiments were conducted following the Guidelines for Animal Health and Use of the Ministry of Science and Technology of China (2006). Clinical glioma tissue samples were purchased from Chaoying Biotechnology Co., Ltd, and the study was approved by the Medical Ethics Committee of Tongxu County People’s Hospital of Henan Province and all participants provided informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Tan, R., Wan, S. et al. HECTD3 regulates the tumourigenesis of glioblastoma by polyubiquitinating PARP1 and activating EGFR signalling pathway. Br J Cancer 127, 1925–1938 (2022). https://doi.org/10.1038/s41416-022-01970-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01970-9

This article is cited by

Search

Quick links