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BACKGROUND: The associations between mammographic radiomics and breast cancer clinical endpoints are unclear. We aimed to
identify mammographic radiomics features associated with breast cancer prognosis.
METHODS: Nested from a large breast cancer cohort in our institution, we conducted an extreme case-control study consisting of
207 cases with any invasive disease-free survival (iDFS) endpoint <5 years and 207 molecular subtype-matched controls with >5-
year iDFS. A total of 632 radiomics features in craniocaudal (CC) and mediolateral oblique (MLO) views were extracted from pre-
treatment mammography. Logistic regression was used to identify iDFS-associated features with multiple testing corrections
(Benjamini–Hochberg method). In a subsample with RNA-seq data (n= 96), gene set enrichment analysis was employed to identify
pathways associated with lead features.
RESULTS: We identified 15 iDFS-associated features from CC-view yet none from MLO-view. S(1,−1)SumAverg and WavEnLL_s-6
were the lead ones and associated with favourable (OR 0.64, 95% CI 0.42–0.87, P= 0.01) and poor iDFS (OR 1.53, 95% CI 1.31–1.76,
P= 0.01), respectively. Both features were associated with eight pathways (primarily involving cell cycle regulation) in tumour but
not adjacent normal tissues.
CONCLUSION: Our findings suggest mammographic radiomics features are associated with breast cancer iDFS, potentially through
pathways involving cell cycle regulation.
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INTRODUCTION
Breast cancer is the most commonly diagnosed cancer and the
leading cause of cancer deaths in women [1]. Although targeted
therapy has significantly improved breast cancer survival [2],
breast cancer mortality remains the fifth leading cause of cancer
mortality worldwide, with 685,000 deaths in 2020 [1]. In addition
to estrogen receptor (ER), progesterone receptor (PR) and human
epidermal growth factor receptor 2 status (HER2), best-validated
gene expression assays (e.g. Oncotype Dx [3], MammaPrint [4] and
PAM50 [5]) may assist clinical decision-making to improve
prognosis. However, non-invasive and low-cost markers, indepen-
dent of tumour characteristics, in the prediction of breast cancer
prognosis are still lacking.
In the past decade, advances in medical image analysis

promoted the process of radiomics. Based on the quantitative
features of intensity, shape, size or volume and texture, radiomics
convert images into higher dimensional data for improved
decision support [6]. Radiomics in breast cancer include breast

magnetic resonance imaging (MRI), mammography and ultra-
sonography [7]. Mounting evidence demonstrated the associa-
tions of MRI features with diagnosis [8], prognosis [9], molecular
subtyping [10] and response to neoadjuvant chemotherapy in
breast cancer patients [7, 11]. For instance, pre-operative MRI
radiomics signatures were proved to predict invasive disease-free
survival (iDFS) in patients with invasive breast cancer [12, 13].
Mammography is a widely applied approach for breast cancer

screening and diagnosis. Several automated feature extraction
methods have been developed for mammography radiomics
features, such as radical edge-gradient analysis [14], deep CNN
model [15] and radiomics software (e.g. MAZDA [16], A.K. software
[17] and TIK-SNAP software [18]). Although manual mass
segmentation is needed for some methods before processing, a
favourable agreement has been shown by different readers [19]. It
has been shown that mammographic radiomics features were
predictive for mass classification [17, 19] and level of tumour-
infiltrating lymphocytes [18, 19] and were associated with
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oncotype DX test recurrence score [20]. However, it is unclear
whether mammographic radiomics features are associated with
breast cancer clinical endpoints (e.g. iDFS or overall survival).
In the present study, we aimed to identify mammographic

radiomics features associated with breast cancer prognosis and
explore the potential biological basis using RNA-seq data.

METHODS
Study design
The Breast Cancer Cohort from our institution is a prospective cohort of
patients who were diagnosed with breast cancer in our institution from
January 2009 onwards [20]. Information on tumour characteristics, such as
tumour size (the largest tumour diameter), tumour stage (TNM stage
according to the AJCC Cancer Staging Manual), histologic grade (Scarff-
Bloom-Richardson histologic grading system [21]) and molecular subtype
[22], as well as treatment, was collected from medical records [23]. Patients
were followed every 4 months in the first 3 years after surgery, every
6–12 months in the fourth and fifth years and annually thereafter. Follow-
up was operated by office visit, telephone or postal contact. This study was
approved by the Clinical Test and Biomedical Ethics Committee of our
institution (No. 2019-16). Informed consent was obtained from all patients.
Both diagnostic ultrasound and mammography were routinely per-

formed for patients with suspicious breast mass at our institution. The
digital database of mammography images was available from January
2010. Between January 2010 and February 2017, 6455 patients were
enrolled on the cohort; among them, 3737 (57.9%) patients received
mammography in our institution before surgery. Patients were further
excluded according to the following criteria: underwent neoadjuvant
therapy (n= 449); with distant metastases (n= 82); carcinoma in situ
(n= 157) or with missing information on tumour stage, i.e. unknown
number of positive lymph nodes (n= 8) and tumour size (n= 188).
Subsequently, 2853 patients with pre-surgical mammography were eligible
for this study (Fig. 1).
To optimise the cost-effectiveness and maximise the statistical power,

we performed a matched extreme case-control design (comparing patients
with the poorest prognosis with those with the most favourable prognosis)
which has been proved to successfully identify prognostic biomarkers
associated with cancer prognosis [24]. During the follow-up from diagnosis
through June 2020 (median: 5.2 years), 207 patients developed iDFS
endpoints [25] (including any local or regional recurrence, distant
metastasis, contralateral breast cancer, secondary primary cancer, cancer-
specific death and death from other causes) during the first 5 years after
cancer diagnosis (cases). Patients without any clinical events of iDFS who
survived at least 5 years after cancer diagnosis were considered controls
(n= 1451). Controls were randomly selected and 1:1 matched on

molecular subtype [22]. Finally, 414 patients (207 cases) were included
for analysis; fresh-frozen breast tumour tissues were available for 50 cases
and 46 controls.

Mammography radiomics features
Both diagnostic ultrasound and mammography were routinely performed
for patients with suspicious breast mass for purpose of diagnosing/staging
at our institution, a tertiary medical centre. Because no formal
mammography screening program has been established in our province,
most breast cancers were detected due to symptoms or breast self-
examination.
All mammogram images were obtained from the GE SenoBright full-field

digital mammography systems (GE Healthcare, Chicago, IL). Leveraging the
free radiomics platform MAZDA software (Technical University of Lodz)
[16], an experienced and specialised radiologist (one of the first authors
having subspecialty experience in breast radiology) manually outlined
tumour contours in craniocaudal (CC) and mediolateral oblique (MLO)
views of each patient and extracted radiomics features of the lesion area.
MAZDA computed six categories of features: histogram, gradient, co-
occurrence matrix, run-length matrix (RLM), autoregressive model and
Haar wavelet groups. A total of 316 mammography radiomics features
were extracted from each view. The values of each feature were
normalised through z-score transformation.

RNA sequencing
Fresh-frozen breast tumour tissues and paired adjacent normal tissues
were donated at the surgery. RNA integrity was examined using the RNA
Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system and RNA
Integrity Number (RIN) > 7.0 was required to pass the quality control. RNA
sequencing was performed on the Illumina Hi-Seq, Paired-end 150. Raw
RNA-seq data were processed according to nfcore/rnaseq: a bioinformatics
analysis pipeline for RNA sequencing data (https://nf-co.re/rnaseq/1.0/).
Fragments Per Kilobase Million (FPKM) of each gene were calculated by
dividing the read count by the gene length and the total number of reads
mapped to protein-coding genes. A total of 19,448 genes were profiled.
The FPKM values were further normalised using z-score transformation.

Statistical analysis
Clinical characteristics, including age at diagnosis, menopausal status,
molecular subtype, tumour stage, histologic grade, hormone therapy,
chemotherapy and radiotherapy, were compared between patients with
poor iDFS (cases) and those with favourable iDFS (controls) using t-test for
continuous variables or Chi-square test for categorical ones. Using logistic
regression, odds ratios (ORs) and 95% confidence intervals (CIs) of iDFS
endpoints were estimated for mammography radiomics features from CC

Patients diagnosed with breast cancer
from 2010 to 2017, N = 6455

N = 3737 (with pretreatment
mammography)

Final cohort
N = 2853

1:1 matched by molecular subtype

Cases (n = 207)
(207 pts with radiomics;
50 pts with RNA-seq)

Controls (n = 207)
(207 pts with radiomics;
46 pts with RNA-seq)

Excluded (n = 2718)
- No diagnostic mammography

Excluded (n = 884)
- Underwent neoadjuvant therapy (n = 449)
- Stage IV breast cancer (n = 82)
- Carcinoma in situ (n = 157)
- Missing TNM stage (n = 196)

Fig. 1 Flow diagram of patient selection. The flowchart depicts the patient selection process from a prospective cohort of patients being
diagnosed with breast cancer in our institution between January 2010 and February 2017.
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and MLO views, respectively. As described above, iDFS endpoints included
any local or regional recurrence, distant metastasis, contralateral breast
cancer, secondary primary cancer, cancer-specific death and death from
other causes. Multiple testing was corrected using Benjamini–Hochberg
method to control for the false discovery rate (FDR). We presented ORs
without adjustment (Model 1), ORs adjusted for demographic character-
istics (age at diagnosis and menopausal status; Model 2) and ORs
additionally adjusted for tumour characteristics (molecular subtype,
tumour stage and histologic grade; Model 3). Radiomics features with
significant associations in Model 3 were considered as lead markers. In a
sensitivity analysis, we further adjusted for treatment modes (receipt of
chemotherapy, hormone therapy and radiotherapy; Model 4), which
should be considered as potential mediators rather than confounders.
Many radiomics features were highlighted as correlated. To reduce
multiple testing, we used a correlation matrix to examine clusters and
identify top independent markers for subsequent analyses, in which Model
3 was applied.
Leveraging the RNA-seq data from breast cancer tissues and paired

adjacent normal tissues, we examined the associations between top
independent markers and the expression levels of individual genes using
linear regression and visualised them in volcano plots. P values were
corrected using FDR. To shed light on the biological mechanisms, we
performed gene set enrichment analysis using a camera package and
identified hallmark and KEGG pathways associated with top independent
markers. The gene lists of candidate pathways were downloaded from the
Gene Set Enrichment Analysis (http://www.gsea-msigdb.org/gsea/index.jsp).
All statistical tests were two-tailed and conducted using R version 3.5.0

(R Foundation for Statistical Computing, Vienna, Austria).

RESULTS
Compared to patients with favourable iDFS (controls; n= 207),
patients with poor iDFS (cases; n= 207) were more likely to be
post-menopausal at diagnosis (43.0% vs. 32.4%, P= 0.033), to
have advanced tumour stage (42.0% vs. 15.0%, P < 0.001) and high
histologic grade (65.7% vs. 54.6%, P= 0.027) and to receive no

hormone therapy (57.0% vs. 69.1%, P= 0.015; Table 1). Similar
patterns were observed for patients whose tumours have been
sequenced for RNA, although the tumour stage was significantly
different between the two groups (50.0% vs. 10.9%, P < 0.001;
Supplementary Table S1).

Identifying features associated with iDFS
In our primary model, where we adjusted for demographic and
tumour characteristics, 15 out of 316 mammography radiomics
features from CC-view were significantly associated with iDFS after
multiple testing corrections (all P < 0.05; Table 2, Model 3). These
associations remained significant with additional adjustments for
treatment modes (Supplementary Table S2). In a sensitivity
analysis, we excluded cases who died of non-breast-cancer causes
and yielded similar findings (Supplementary Table S3). Other CC-
view features were not associated with iDFS (Supplementary Table
S4). Moreover, no features from the MLO-view were associated
with iDFS after multiple testing correlations (all P > 0.05; Supple-
mentary Table S5). Although none of MLO-view features was
identified as lead features, three MLO-view features [GrKurtosis,
Skewness and S(1,0)SumAverg] appeared associated with iDFS
(empirical P < 0.05; Supplementary Table S6).
Using the correlation matrix analysis, we identified two clusters

from the 15 lead features from CC-view (Supplementary Fig. S1).
S(1,−1)SumAverg and WavEnLL_s-6 were the top features (with
strongest association with iDFS) in each cluster, and associated
with favourable iDFS (OR, 0.64; 95% CI, 0.42–0.87; P= 0.010;
Table 2) and poor iDFS (OR, 1.53; 95% CI, 1.31–1.76; P= 0.010;
Table 2), respectively. Feature S(1,−1)SumAverg belongs to the
category of co-occurrence matrix, while feature WavEnLL_s-6 is
part of the Haar wavelet category. In stratified analyses, stronger
associations were found in pre-menopausal patients for both
features and patients with Luminal A tumour for feature S(1,−1)

Table 1. Clinical characteristics of breast cancer patients with poor (cases) and favourable invasive disease-free survival (controls): an extreme case-
control study.

Controls Cases P

Number 207 207

Mean (SD) Mean (SD)

Age, years 47.74 (8.69) 49.14 (10.58) 0.140

N (%) N (%)

Menopausal status No 140 (67.6) 118 (57.0) 0.033

Yes 67 (32.4) 89 (43.0)

Molecular subtype Luminal A 12 (5.8) 12 (5.8) 0.999

Luminal B 119 (57.5) 119 (57.5)

HER2 positive 29 (14.0) 29 (14.0)

TNBC 32 (15.5) 32 (15.5)

Indeterminate 15 (7.2) 15 (7.2)

Tumour stage I 58 (28.0) 22 (10.6) <0.001

II 118 (57.0) 98 (47.3)

III 31 (15.0) 87 (42.0)

Histologic grade I–II 94 (45.4) 71 (34.3) 0.027

III 113 (54.6) 136 (65.7)

Hormone therapy No 64 (30.9) 89 (43.0) 0.015

Yes 143 (69.1) 118 (57.0)

Chemotherapy No 6 (2.9) 11 (5.3) 0.322

Yes 201 (97.1) 196 (94.7)

Radiotherapy No 131 (63.3) 133 (64.3) 0.919

Yes 76 (36.7) 74 (35.7)

N number, SD standard deviation, HER2 human epidermal growth factor receptor 2, TNBC triple-negative breast cancer.
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SumAverg (P-for-interaction < 0.05; Supplementary Table S7).
Similar associations were noted for both features across tumour
stage and histologic grade groups.

Exploring the biological basis for identified features
Feature WavEnLL_s-6 was significantly associated with a more
advanced tumour stage (P= 0.029; Supplementary Table S8) but
not associated with molecular subtype or histologic grade. Feature
S(1,−1)SumAverg was not associated with tumour characteristics.
In a subsample of patients whose tumours were profiled for

RNA (n= 96), feature S(1,−1)SumAverg was significantly asso-
ciated with the expression of gene MOV10L1, LRP1B, ZFY, PITX2,
TRAPPC12, MMGT1 and PPP2R2C (all P < 0.05; Fig. 2 and
Supplementary Table S9). Feature WavEnLL_s-6 was positively
associated with the expression of gene CSNK2A1 (P= 0.005; Fig. 2
and Supplementary Table S9). The above associations were not

observed in paired adjacent normal tissues (n= 60; Supplemen-
tary Table S9).
In pathway analysis, we further found that feature S(1,−1)

SumAverg was significantly associated with upregulated signalling
of 8 pathways, including G2M checkpoint pathway, E2F_target
genes, MYC targets v1 and v2 (two subgroups of genes regulated
by MYC—version 1 and—version 2), DNA replication, mismatch
repair pathway, cell cycle pathway and the ubiquitin-proteasome
pathway (all P < 0.05; Table 3). The majority of these pathways
were essential for DNA replication, cell cycle progression and DNA
damage repair. Feature WavEnLL_s-6 was similarly associated with
the aforementioned pathways and with downregulated signalling
of the ribosome pathway (all P < 0.05; Table 3). However, in paired
adjacent normal tissues (n= 60), both features were not
associated with the aforementioned pathways except MYC targets
v2 in an opposite direction for feature WavEnLL_s-6 (Table 3).

Table 2. Associations of lead mammography radiomics features at diagnosis with invasive disease-free survival among patients with breast cancera,
after multiple testing correlation.

Features Mean (SD) Model 1b Model 2c Model 3d

Controls Cases OR (95% CI) P OR (95% CI) P OR (95% CI) P

S(1,-1)SumAverg 0.13 (0.95) −0.13 (1.03) 0.76 (0.56–0.96) 0.043 0.71 (0.50–0.93) 0.035 0.64 (0.42–0.87) 0.010

S(2,0)SumAverg 0.14 (0.97) −0.14 (1.01) 0.76 (0.55–0.96) 0.043 0.72 (0.51–0.92) 0.035 0.66 (0.44–0.88) 0.010

S(2,−2)SumAverg 0.16 (1.00) −0.16 (0.98) 0.72 (0.52–0.93) 0.043 0.68 (0.47–0.89) 0.016 0.64 (0.41–0.87) 0.010

S(3,0)SumAverg 0.14 (1.00) −0.14 (0.98) 0.74 (0.54–0.94) 0.043 0.70 (0.49–0.91) 0.023 0.66 (0.44–0.88) 0.010

S(3,−3)SumAverg 0.16 (1.01) −0.16 (0.97) 0.72 (0.52–0.92) 0.043 0.68 (0.47–0.89) 0.014 0.65 (0.42–0.87) 0.010

S(4,−4)SumAverg 0.16 (1.01) −0.16 (0.96) 0.72 (0.51–0.92) 0.043 0.68 (0.47–0.89) 0.014 0.65 (0.43–0.88) 0.010

S(5,−5)SumAverg 0.16 (1.02) −0.16 (0.96) 0.72 (0.52–0.92) 0.043 0.68 (0.47–0.89) 0.014 0.66 (0.43–0.88) 0.010

WavEnLL_s-6 −0.19 (1.05) 0.19 (0.91) 1.49 (1.28–1.69) 0.026 1.56 (1.35–1.77) 0.011 1.53 (1.31–1.76) 0.010

S(4,0)SumAverg 0.15 (1.01) −0.15 (0.97) 0.74 (0.54–0.94) 0.043 0.70 (0.49–0.91) 0.020 0.67 (0.44–0.89) 0.011

S(1,0)SumAverg 0.11 (0.92) −0.11 (1.07) 0.80 (0.60–1.00) 0.062 0.76 (0.55–0.96) 0.066 0.67 (0.45–0.89) 0.012

S(5,0)SumAverg 0.15 (1.02) −0.15 (0.96) 0.74 (0.54–0.94) 0.043 0.70 (0.49–0.91) 0.020 0.67 (0.45–0.89) 0.012

WavEnLL_s-7 −0.15 (1.04) 0.15 (0.94) 1.36 (1.16–1.55) 0.043 1.43 (1.22–1.63) 0.020 1.48 (1.25–1.70) 0.017

WavEnLL_s-5 −0.18 (1.05) 0.18 (0.92) 1.45 (1.25–1.66) 0.026 1.51 (1.30–1.72) 0.011 1.48 (1.25–1.70) 0.018

WavEnHL_s-5 0.19 (1.02) −0.19 (0.95) 0.66 (0.43–0.88) 0.026 0.64 (0.41–0.87) 0.011 0.69 (0.46–0.92) 0.028

WavEnLL_s-4 −0.18 (1.05) 0.18 (0.91) 1.46 (1.25–1.66) 0.026 1.50 (1.29–1.71) 0.011 1.44 (1.22–1.67) 0.031

SD standard deviation, OR odds ratio, CI confidence interval.
aOnly features with FDR-corrected P-values less than 0.05 in Model 3 were present.
bCrude model.
cEstimates were adjusted for age and menopausal status.
dEstimates were adjusted for age, menopausal status, molecular subtype, tumour stage and histologic grade.
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DISCUSSION
To the best of our knowledge, this is the first study to identify
mammography radiomics features associated with invasive
disease-free survival among patients with invasive breast cancer.
In the extreme case-control study nested from a large prospective
cohort, two independent features from CC-view, S(1,−1)SumAverg
and WavEnLL_s-6, were associated with invasive disease-free
survival, independent of clinical characteristics and after stringent
correction for multiple comparisons. Moreover, both features were
associated with gene signatures of pathways responsible for DNA
replication, cell cycle progression and DNA damage repair in
tumour tissue, but not in paired adjacent normal tissue. These
findings shed light on the potential biological mechanisms linking
identified features to breast cancer prognosis. Although these
markers are to be confirmed in an independent setting, the
highlighted biological processes underlying these features
strongly refute the possibility of findings by pure chance.
In a previous study of 350 patients with ER-positive breast

cancer, Woodard et al. found that mammographic breast density,
calcification morphology and mass margins were correlated with a
prognostic biomarker—the Oncotype DX recurrence score [20].
However, these features were derived from the BI-RADS, which is
subjective to the observer’s visual interpretation [26]; and the
associations were not confirmed using clinical endpoints. By
contrast, mathematical extraction of mammography radiomics
features is more objective and feasible for application. In the
present study, we also illustrated that the identified radiomics
features were associated with iDFS endpoints; and the associa-
tions were robust across molecular subtypes and independent of
clinical characteristics.
One of the two top independent features, S(1,−1)SumAverg, is

under the category of co-occurrence matrix [27]. Using the RNA-
seq data, we showed that feature S(1,−1)SumAverg was
associated with expression levels of genes (i.e. LRP1B and PITX2)
in tumour tissue but not in adjacent normal tissue. Both LRP1B [28]

and PITX2 [29] are involved in the regulation of the cell cycle and
DNA damage repair. In the pathway analysis, we further illustrated
that feature S(1,−1)SumAverg was primarily associated with the
signalling of pathways playing a pivotal role in DNA replication,
cell cycle progression and DNA damage repair, specifically in
tumour tissue. These pathways are critical for tumour phenotypes
and patient survival [30, 31]. Taken together, our findings lend
support to that feature S(1,−1)SumAverg may capture the
underlying biological process of cell cycle regulation in breast
tumours and therefore is linked to the prognosis.
The other feature, WavEnLL_s-6, is under the category of Haar

wavelet [16, 32]. Our data showed that feature WavEnLL_s-6 was
associated with CSNK2A1expression, specifically in tumour tissue.
It is known that CSNK2A1 promotes proliferation and invasiveness
of breast cancer cells through mediating phosphorylation of SIRT6
[33]. Moreover, WavEnLL_s-6 was associated with the same
pathways shown for S(1,−1)SumAverg and ribosome pathway.
Ribosomal protein RPL15 upregulates the expression of cell cycle
mediators and facilitates breast cancer metastasis in vivo [34].
Collectively, we elucidated that the feature WavEnLL_s-6 is
associated with breast cancer prognosis potential through the
biological process of DNA replication, cell cycle progression and
DNA damage repair.
In contrast, we only found three MLO-view features that were

empirically suggested for breast cancer iDFS. The reason for fewer
hits in MLO-view is unclear. Gupta et al [35]. explored the
correlations between CC-view and MLO-view Haralick texture
features of breast lesions in 1350 patients. Among 13 feature
clusters, they found 4 clusters, including sum average, had weak
two-view correlation. These findings suggest that breast lesions
displayed distinct textures in terms of the structure regularity in
CC and MLO views. Of note, sum average cluster is one of the top
features in CC-view associated with breast cancer iDFS. The low
correlation between CC-view and MLO-view for this feature cluster
may account for the fewer findings from the MLO-view.

Table 3. Pathways associated with top independent mammography radiomics features at diagnosis among patients with breast cancer using gene
set enrichment analysisa, in tumour tissues and adjacent normal tissues.

Tumour Normal

N of Genes Direction P* Direction P*

S(1,−1)SumAverg Hallmark G2M_CHECKPOINT 193 Up 4.99E-07 Down 0.751

E2F_TARGETS 198 Up 4.99E-07 Down 0.751

MYC_TARGETS_V1 195 Up 1.98E-04 Up 0.935

MYC_TARGETS_V2 58 Up 9.25E-05 Down 0.107

KEGG DNA_REPLICATION 36 Up 8.83E-05 Down 0.947

MISMATCH_REPAIR 23 Up 0.023 Down 0.947

CELL_CYCLE 124 Up 0.043 Up 0.994

PROTEASOME 44 Up 0.043 Up 0.366

WavEnLL_s-6 Hallmark G2M_CHECKPOINT 193 Up 2.81E-07 Down 0.588

E2F_TARGETS 198 Up 2.80E-07 Down 0.582

MYC_TARGETS_V1 195 Up 1.16E-04 Down 0.749

MYC_TARGETS_V2 58 Up 7.26E-05 Down 0.016

KEGG DNA_REPLICATION 36 Up 2.54E-05 Down 0.889

MISMATCH_REPAIR 23 Up 0.011 Down 0.909

RIBOSOME 86 Down 0.011 Up 0.684

CELL_CYCLE 124 Up 0.031 Down 0.970

PROTEASOME 44 Up 0.041 Up 0.684

N number.
*FDR-corrected P-value.
aThis analysis was performed in breast cancer patients whose tumours have been sequenced for RNA (n= 96) and adjusted for age, menopausal status,
molecular subtype, tumour stage and histologic grade.
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One major strength of our study is the rich information on
multi-omics data, which allowed us to explore the biological basis
linking radiomics features to breast cancer prognosis. The present
study, however, has several limitations. First, in our cohort, only
58% of patients had data on mammography prior to surgery,
resulting in a limited sample size for this study. However, the
clinical characteristics were largely comparable between patients
with and without mammography, except that patients with
mammography were slightly younger and had less advanced
tumour stage (Supplementary Table S10). However, our estimates
have been carefully adjusted for age and tumour stage. Moreover,
in the stratified analysis, similar associations between the top
features and iDFS were found across tumour stages. Stronger
results were noted among pre-menopausal patients (i.e. younger
ones), suggesting that the associations would slightly attenuate if
including patients without mammography who had 7% more pre-
menopausal women. Moreover, only patients with fresh-frozen
samples were profiled for RNA and were included in the analyses
of gene expression and pathway. Yet, the clinical characteristics of
those with RNA-seq data were compared with those without,
except that they were somewhat younger at diagnosis (Supple-
mentary Table S11). Second, we only analysed the radiomics
features within 2 months before surgery. Radiomics features may
change along the disease course. Whether the temporal changes
associated with prognosis warrants future research. Third,
although the MAZDA platform provides objective measures on
feature extraction, manual outlining of tumour areas in mammo-
graphy may be subjective to the readers. However, a fairly good
agreement has been shown for data extracted by different readers
[19]. Fourth, we considered all-cause mortality as one of the iDFS
endpoints, and patients who died of non-breast-cancer causes
may not have experienced cancer progression. However, we have
yielded very similar associations by excluding patients who died of
non-breast-cancer causes. Fifth, it has been well-demonstrated
that mammographic density predicts breast cancer risk [36].
Future research is needed to explore the association between
mammographic density and breast cancer prognosis.
In conclusion, our findings suggest that mammography radio-

mics features S(1,−1)SumAverg and WavEnLL_s-6 from CC-view
are associated with invasive disease-free survival among patients
with breast cancer, potential through pathways involving DNA
replication and damage response and cell cycle regulation. If
confirmed in other studies, our findings may provide important
evidence to incorporate top mammography radiomics features
into the conventional breast cancer prognostic nomograms. These
radiomics features could be easily obtained from the standard of
care at minimal cost and aid healthcare providers to identify high-
risk patients and navigate treatment decisions.

DATA AVAILABILITY
The datasets generated and/or analysed during the current study are available from
the corresponding author on reasonable request.
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