
ARTICLE OPEN

Epidemiology

Standardised survival probabilities: a useful and informative
tool for reporting regression models for survival data
Elisavet Syriopoulou 1✉, Tove Wästerlid2,3, Paul C. Lambert1,4 and Therese M.-L. Andersson 1

© The Author(s) 2022

BACKGROUND: When interested in studying the effect of a treatment (or other exposure) on a time-to-event outcome, the most
popular approach is to estimate survival probabilities using the Kaplan–Meier estimator. In the presence of confounding, regression
models are fitted, and results are often summarised as hazard ratios. However, despite their broad use, hazard ratios are frequently
misinterpreted as relative risks instead of relative rates.
METHODS: We discuss measures for summarising the analysis from a regression model that overcome some of the limitations
associated with hazard ratios. Such measures are the standardised survival probabilities for treated and untreated: survival
probabilities if everyone in the population received treatment and if everyone did not. The difference between treatment arms can
be calculated to provide a measure for the treatment effect.
RESULTS: Using publicly available data on breast cancer, we demonstrated the usefulness of standardised survival probabilities for
comparing the experience between treated and untreated after adjusting for confounding. We also showed that additional
important research questions can be addressed by standardising among subgroups of the total population.
DISCUSSION: Standardised survival probabilities are a useful way to report the treatment effect while adjusting for confounding
and have an informative interpretation in terms of risk.
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BACKGROUND
When analysing time-to-event data (or survival data) from
epidemiological cohort studies in which a specific treatment (or
exposure) is under study, it is often of interest to compare survival
probabilities between treated and untreated patients. It is
important to note that the term survival probabilities does not
necessarily refer to being alive or not. Instead, it refers to being
event-free. For instance, when time to relapse or death (whichever
occurred first) is under study, survival probabilities refer to the
probability of being alive without having a relapse (this is often
referred to as relapse-free survival). Survival probabilities can also
be interpreted as the proportion of individuals who are event-free
at this time. When there are competing events, the survival
probabilities can under some assumptions be interpreted as the
probability of being event-free (or the proportion of individuals
who are event-free) in the absence of competing events. We will
not discuss these assumptions here as they are out of the scope of
this paper, but we instead refer the reader to other related
literature [1]. Survival probabilities can be compared using the
Kaplan–Meier estimator [2]. However, since confounding variables
might drive part of the observed differences in survival
probabilities, researchers often adjust for these potential con-
founder variables by fitting regression models, such as the Cox

proportional hazards model [3, 4]. A common practice after fitting
regression models is to summarise differences between treatment
or exposure groups using adjusted hazard ratios. The hazard ratio
for treatment is defined as the ratio of the hazard rates for the
treated and untreated.
Despite the popularity and broad use of hazard ratios, these are

often misinterpreted as relative risks. Several authors have
stressed the difference between hazard ratios and relative risks
previously, but their interpretation remains loose to this day [5–8].
A measure that has a more intuitive and easier interpretation than
hazard ratios and may be more relevant in several applications is
the survival probability. The survival probability at a specific time
is the probability that an individual did not have the event until
that specified time. The Kaplan–Meier method is a crude, i.e.
unadjusted, measure of the survival probability at a specified time.
The survival probabilities under different treatment arms or
exposure groups can be compared by calculating their difference
and can provide a measure for estimating the association between
treatment (or other exposure) and a specified outcome. An
appealing feature of using survival probabilities is that their
complement (1 minus survival probabilities) can be interpreted as
the risk of experiencing the event by a specific time, which is often
the quantity of interest. In fact, the popularity of Kaplan–Meier
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estimates as a crude measure in various studies, even though the
potential for confounding is known, highlights the importance of
presenting data in terms of survival probabilities as this is easier to
interpret than hazard rates.
However, there are methods to obtain survival curves that are

similar to Kaplan–Meier estimates, but adjusted for potential
confounders. After fitting a regression model including various
confounding variables, estimates of adjusted survival probabilities
by treatment arms can be obtained and presented graphically.
These are called adjusted survival curves and are similar to a
Kaplan–Meier curve but have been adjusted for potential
confounders. Typically, after fitting a regression model, adjusted
survival curves by treatment status are estimated by setting all
other variables to the mean value of the population [9]. However,
the average values of confounding variables may be implausible
and with no useful meaning for the cohort in the study. Instead, a
more appropriate way to graphically report regression models
may be to estimate adjusted survival curves using standardisation
(so-called standardised survival curves). To do this, the individual-
specific survival probabilities across all patients in the study
population are estimated and averaged to obtain the standardised
survival estimates (i.e. by applying regression standardisation)
[10, 11]. In this way, we obtain estimates of the survival
probabilities under the observed covariate pattern of the overall
study population.
In this paper, we will discuss how we can summarise and

present the analysis of a regression model in a useful way using
standardised survival probabilities. This will be presented using
plain language and with a practical focus. We will use publicly
available data on breast cancer patients to demonstrate the
different measures that can be estimated, including survival
probabilities after fitting regression models with various con-
founders. We will also provide Stata code in the supplementary
material to encourage the use of standardised survival probabil-
ities in practice.

INTRODUCING THE ILLUSTRATIVE EXAMPLE
For the remainder of the paper, we will use an example on breast
cancer to illustrate the concepts. This dataset has been used in
several applications and is publicly available at http://www.stata-
press.com/data/fpsaus.html [12, 13]. The dataset consists of 2982
primary breast cancer patients included in the Rotterdam tumour
bank. The exposure of interest is hormonal therapy, and in the
remainder of the paper, we will refer to a comparison of treatment
groups even though these could also be exposure groups. The
methods discussed are applicable to any other exposure that

might be of interest (e.g., stage, deprivation status). The outcome
of interest in our example is time to relapse or death (measured as
time from primary surgery to relapse or death, whichever occurred
first, and is also known as relapse-free survival). However, the
methods discussed are applicable to any time-to-event outcome
(e.g., overall survival, metastasis-free survival). Data include
information on several factors, including age at surgery, tumour
size, differentiation grade, number of positive nodes and
progesterone level. More details on the data can be found in
Table 1.

EXPLORING DIFFERENCES IN SURVIVAL PROBABILITIES
BETWEEN TREATMENT GROUPS WITH THE KAPLAN–MEIER
ESTIMATOR
To explore whether treatment affects a time-to-event outcome,
the survival probabilities under different treatment arms are
frequently compared using the Kaplan–Meier estimator [2, 3]. For
instance, Fig. 1 shows the Kaplan–Meier survival probabilities for
the outcome of relapse-free survival for the breast cancer patients
who received hormonal therapy or not in the example dataset.
The event of interest in this example is death or relapse
(whichever occurs first). Here, survival probabilities are interpreted
in terms of not only being alive but also having no relapse.
Based on the Kaplan–Meier curves, hormonal therapy seems to

have an adverse effect on breast cancer patients. Ten years after
surgery, the survival probability for relapse-free survival (i.e. the
probability of being alive with no relapse) for those who received
hormonal therapy is 0.26, while those who did not receive
hormonal therapy had a higher probability of 0.41. This can also
be interpreted in terms of proportions: 26% of those who received
hormonal therapy and 41% of those who did not receive
hormonal therapy were alive with no relapse 10 years after
surgery. However, these crude Kaplan–Meier estimates do not
adjust for the fact that patients who received hormonal therapy
were older (median age of 62 years versus 53 years in the no
hormonal therapy group), had a higher number of positive nodes
and that there was a larger proportion of patients with a tumour
above 50mm among those who received hormonal therapy
(Table 1). These imbalances between treatment groups might
drive part of the differences in probabilities of relapse-free survival
and so it is important to consider these factors in the analysis.
Adjusting for multiple covariates at once can be done by

estimating the Kaplan–Meier curves within subgroups of the
population. If many potential factors are of interest this would
require calculation of multiple Kaplan–Meier estimates, and for
continuous covariates it would be possible only after

Table 1. Summary characteristics of breast cancer patients by treatment arm.

Variables Hormonal therapy: no Hormonal therapy: yes Total

N= 2643 N= 339 N= 2982

Age at surgery (years) 53 (44–64) 62 (57–69) 54 (45–65)

Number of positive nodes 0 (0–3) 4 (2–9) 1 (0–4)

Progesterone level (fmol/l) 46 (5–208) 19 (1–117) 41 (4–198)

Differentiation grade

2 735 (28%) 59 (17%) 794 (27%)

3 1908 (72%) 280 (83%) 2188 (73%)

Tumour size

<=20mm 1283 (49%) 104 (31%) 1387 (47%)

>20–50mm 1119 (42%) 172 (51%) 1291 (43%)

>50mm 241 (9%) 63 (18%) 304 (10%)

For categorical variables, the number of individuals with relevant proportions is given.
For continuous variables, median with 25th and 75th percentiles are given.
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categorisation. When there are several confounding variables, it
may not be feasible to estimate Kaplan–Meier estimates within
each subgroup, due to potentially low number of individuals
within each strata. Also, it becomes difficult to summarise the
results when the survival probability within each strata has to be
reported. An additional limitation is that although there are ways
to evaluate whether differences in the two survival curves are
statistically significant (e.g using the log-rank test), an estimate of
the magnitude of the difference between the groups is not
provided [14]. An alternative and more popular way to explore
differences in survival probabilities between treatment groups,
while accounting for several covariates, is to fit regression models.

ESTIMATING HAZARD RATIOS USING REGRESSION MODELS
The most commonly applied statistical regression model when
studying time-to-event outcomes is Cox’s proportional hazards
model [15]. Other regression models are also available with some
(e.g. so-called flexible parametric survival models) having advan-
tages in terms of modelling time-dependent effects (i.e. relaxing
the assumption of proportional hazards) and also in terms of
predictions [12]. For the analysis of the breast cancer data, we will
use flexible parametric survival models. However, in principle, any
survival model could be fitted, including the Cox model. As the
main focus of this paper is to describe different ways of
summarising the results of a regression model and not the model
itself, we skip details on flexible parametric survival models but
more information on these can be found elsewhere [12, 16].
After fitting a survival model the analysis is often summarised

using the hazard ratio (HR) which is the ratio of the event rates in
the two groups we want to compare. The hazard rate of a
particular group is the rate of individuals who experience the
event under study over a short period of time, provided that the
individuals have not experienced the event yet. For instance, by
fitting a flexible parametric survival model to the breast cancer
data including only hormonal therapy in the model, we obtain a
HR equal to 1.33 (95% CI: 1.15–1.54). This is in agreement with the
findings of the Kaplan–Meier estimator about an adverse effect of
hormonal therapy, but also provides an estimate of the size of the
difference between treatment groups, i.e. the hazard rate of
patients who received hormonal therapy is 33% higher than the
hazard rate of those who did not receive hormonal therapy.
However, this model does not take into consideration the
imbalances we see between treatment groups in Table 1. After
fitting a flexible parametric model for hormonal therapy adjusting

for age at surgery, the number of positive nodes, progesterone
level, differentiation grade and tumour size and relaxing the
proportionality assumption for tumour grade and the number of
positive nodes, we obtain a HR suggestive of a protective
treatment effect and equal to 0.76 (95% CI: 0.65–0.89) i.e. the
hazard rate of those who received hormonal therapy is 24%
(=1–0.76) lower than the hazard rate of those who did not receive
hormonal therapy.
Many authors have previously argued about limitations related

to the use of HRs. Despite the wide use of HRs to estimate the
treatment effect, the interpretation of HRs remains challenging as
HRs are often misinterpreted as relative risks [5, 7]. By definition
the HR compares the rate of experiencing the event among
treated and the rate of experiencing the event among untreated.
This is different from the relative risk of experiencing the event by
a specific time. The relative risk is the ratio of the probability of
experiencing the event by a specific time for the treated to the
probability for the untreated. In contrast to HR, the relative risk is
always a function of time. For instance, the HR estimated for
breast cancer patients after fitting a flexible parametric model that
included only hormonal therapy and no confounding variables
(unadjusted) was equal to 1.33 and remained constant during
follow-up. However, the relative risk of having the event (relapse
or death) is different and varies with time. The risk for treated and
untreated can be obtained as 1 minus the survival probability
estimates of Fig. 2, which shows the survival probabilities
estimated from the same flexible parametric model that includes
only hormonal therapy. These are similar to the Kaplan–Meier
curves of Fig. 1 but are obtained from a regression model. As we
can see in Fig. 2, both survival probabilities are close to each other
early on, with values close to 1 since not many patients had
relapsed or died in either treatment group, i.e. the risk of
experiencing the event is close to 0 and the relative risk is ~1. One
year after surgery, the risk of having the event for those who
received hormonal therapy is 0.11 (=1–0.89) and for those who
did not receive hormonal therapy 0.09 (=1–0.91), resulting in a
relative risk of 1.22 (=0.11/0.09). Similarly, ten years after surgery
the risk is equal to 0.69 (=1–0.31) for those who received
hormonal therapy and 0.59 (=1–0.41) for those who did not
receive it, resulting in a relative risk equal to 1.17 (=0.69/0.59). If
we had allowed more follow-up time, the relative risk would
approach 1 again later on, as the survival curves would eventually
reach 0 both for treated and untreated (as all deaths will be
realised eventually). However, this would not be the case when
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Fig. 2 Survival probabilities for the event of relapse-free survival
by treatment group for breast cancer patients, with 95%
confidence intervals. Estimates are obtained after fitting a flexible
parametric survival model including only hormonal therapy.
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Fig. 1 Kaplan–Meier survival curves. Kaplan–Meier survival prob-
abilities for the event of relapse-free survival by treatment group for
breast cancer patients.
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the event of interest is death due to a specific cause or when the
event of interest is not death. As we can see by this example, the
relative risk is highly dependent on the time of interest and its
value differed from the HR estimate. HRs should be interpreted as
relative rates and not relative risks. However, it is important to
note that even though the HR estimate will be different to the
relative risk value, the direction of the hazard ratio will be the
same as the direction of the relative risk if the proportional
hazards assumption is valid [5]. For example, a HR below 1 that
corresponds to a lower hazard rate under treatment is also
suggestive of a lower relative risk under treatment.
Another challenge with HRs is that studies often report a single

HR estimate for the whole study follow-up. This was also the case
in our example above. Thus, we assumed that the HR remains
constant over time i.e. proportional hazards for treatment.
However, this is often an unrealistic assumption and the HR will
vary over time [17]. For instance, the effect of age might vary with
time or the effect of a treatment may lose effectiveness over time.
Thus, when the proportionality assumption is not valid, reporting
a single hazard ratio is non-informative and can be very
misleading. Several methods are available to obtain time-
dependent HRs, but these are often overlooked. Moreover, the
HR is a relative measure; although a HR lower than 1 suggests a
protective effect of treatment and a HR higher than 1 suggest an
adverse effect, HRs provide no information on the absolute effect
or whether this effect is clinically meaningful. Statistically
significant HRs indicate that there is a statistical significant
difference between treatment groups, but the corresponding
difference in survival probabilities might be very small and not
important from a clinical point of view. Assessing the treatment
effect by examining absolute measures such as the difference in
survival probabilities at fixed time points can be more informative
than relative measures [18]. Finally, HRs are estimated based on
individuals who have survived up to a particular time. As time
increases, the characteristics of individuals who are still in follow-
up in each treatment group might differ, resulting in an
imbalanced comparison between treatment groups. This is often
referred to as built-in selection bias of hazard ratios [6, 19]. For
instance, when an effective treatment is under study, as time
increases there will be more patients with worse prognosis
characteristics (e.g. older patients or patients with comorbidities)
still alive among the treated group in comparison to the placebo
group. This will be the case even if we have sufficiently adjusted
for confounding and there are no imbalances between the

treatment groups at the start of follow-up, due to emerging
differences in characteristics between treated and untreated
survivors with time. The selection bias of hazard ratios cannot
be addressed even after appropriately modelling time-varying
covariates and allowing for time-dependent covariate effects.

ADJUSTED SURVIVAL CURVES USING THE MEAN COVARIATE
METHOD
A more informative way to summarise the treatment effect is to
use adjusted survival probabilities. As mentioned earlier for the
Kaplan–Meier estimator, the survival probability at a specific time
corresponds to the probability of being event-free at a particular
time after the beginning of follow-up (e.g., 5 years after surgery).
Even though rarely reported, estimating survival probabilities after
fitting a regression model is no more difficult than HRs and it can
be obtained using standard statistical software. In a modelling
context, when multiple covariates are included in the regression
model, adjusted survival probabilities are often estimated using
the average covariate value for the adjusting covariates. For the
breast cancer example, after fitting the same flexible parametric
survival model described earlier for the HR (with hormonal
therapy as the treatment of interest and adjusting for various
variables), 10 years after surgery the relapse-free survival
probability (i.e. the probability of being alive with no relapse)
was 0.48 (95% CI: 0.43–0.54) for those who received hormonal
therapy and 0.39 (95% CI: 0.36–0.41) for those who did not receive
it (Fig. 3). This can also be interpreted in terms of proportions: 48%
of those who received hormonal therapy and 39% of those who
did not receive hormonal therapy were alive without having a
relapse 10 years after surgery. To obtain these estimates, we set all
adjusting variables to their mean value, except the treatment that
is first set to treated and then untreated, and an adjusted survival
curve is estimated for each treatment arm. So, our estimates
correspond to the survival probability of an “average” individual if
this “average” individual received hormonal therapy and an
“average” individual who did not receive hormonal therapy. Thus,
a caveat with “naively” adjusted survival curves is the need to
calculate an “average” for included variables. For continuous
variables, such as age at surgery, the “average” individual in terms
of the mean value might be easy to interpret. However, for
categorical variables, such as tumour size, it is not clear what an
average individual is [9]. The average value for a binary variable
such as sex taking values 1 for females and 0 for males
corresponds for instance to the proportion of individuals who
were females (e.g. if 40% of the individual were females it will be
equal to 0.4) and has no meaning on an individual level (as it does
not correspond to either females or males). Also, for continuous
variables, even though it is more straightforward to think about
the mean value, this might still not be relevant to our study
population. Imagine for example, a disease that is more common
among individuals younger than 25 years old and older than 60
years old. In this example, the average age at diagnosis might not
even correspond to a plausible patient profile. A way to overcome
this is to obtain adjusted survival curves at fixed values for the
adjusting variables but in this way the survival curves will still be
restricted to a specific covariate pattern.

STANDARDISED SURVIVAL CURVES
Another way to overcome the need to estimate adjusted survival
probabilities for an “average” individual but still obtain adjusted
survival probabilities that can be presented graphically is to apply
regression standardisation and thus obtain so-called standardised
survival curves (also known as marginal survival curves)
[10, 11, 20, 21]. To do this, a regression model is fitted as in the
previous examples. Based on this model, the standardised survival
curve under treatment is obtained by first estimating individual-
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Fig. 3 Adjusted survival probabilities for the event of relapse-free
survival by treatment group for the “average” individual in the
breast cancer study population. 95% confidence intervals are also
provided.
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specific survival probabilities for every individual in the study
population given the individual’s covariate pattern and if they
received the treatment. It is important to note that “under
treatment” is used here to be explicit about the fact that the
covariate value used for the survival estimates for some
individuals will be different from their observed value. We do
not simply calculate an average over those who received
treatment and an average over those who did not receive the
treatment: this would result on comparing two groups with very
different covariate distributions. For the standardised survival
estimates under treatment, no change is made on the treatment
covariate for those who were treated but the covariate value for
those not treated is changed to treated. Then, the individual-
specific survival probabilities are averaged to obtain the
standardised survival probability under treatment. Similarly, the
standardised survival curve under no treatment is estimated by
averaging the individual-specific survival probabilities for each
individual given the individuals covariate pattern but this time if
everyone was untreated. For this, no change is made in the
treatment covariate for those who were untreated but the
covariate value for the treated is changed to untreated.
Note that for a study population of N individuals, N estimates of

individual-specific survival probabilities are obtained and then
averaged to obtain the standardised survival curve in the whole
population under each treatment arm. This is different to the
approach described in the previous section where only one
survival curve is estimated for each treatment arm based on the
average values of the adjusting covariates. With standardisation,
instead of using an “average individual,” the empirical (i.e.
observed) covariate distribution of the population is used for
the estimate. Standardised survival estimates under treatment and
no treatment can thus be interpreted as the average survival
probabilities if everyone in the study population was treated or if
everyone in the study population was untreated. Since the
distribution of all other adjusting covariates are the same in the
two standardised probabilities, fairer comparisons between
treated and untreated can be made. An alternative interpretation

for standardised survival estimates would be the proportion of
individuals in the observed population that would survive if
everyone was treated and the proportion of individuals in the
observed population that would survive if no one was treated.
In the breast cancer example, we can obtain the standardised

survival curve under hormonal therapy as the average of the
individual-specific survival probability estimates for the event of
relapse-free survival if each individual received hormonal therapy
over all individuals in the cohort. Similarly, the standardised
survival curve under no hormonal therapy can be obtained by
averaging across the individual-specific survival probability
estimates if each individual did not receive hormonal therapy.
Figure 4a shows the standardised survival curves under hormonal
therapy and under no hormonal therapy. Ten years after surgery,
the standardised survival probabilities are 0.48 (95% CI: 0.43–0.53)
under hormonal therapy and 0.39 (95% CI: 0.37–0.41) under no
hormonal therapy. Note that these standardised estimates are
very close to the adjusted survival curves for an “average”
individual (Fig. 3), but this will not always be the case. For instance,
at 5 years since surgery, the standardised survival estimates are
0.63 (95% CI: 0.60–0.67) under hormonal therapy and 0.56 (95% CI:
0.54–0.58) under no hormonal therapy (Fig. 4a), while the adjusted
survival probabilities for the “average” individual are higher: they
are 0.66 (95% CI: 0.61–0.70) under hormonal therapy and 0.58
(95% CI: 0.56–0.59) under no hormonal therapy (Fig. 3). Estimates
at 1, 5 and 10 years after surgery are also shown in Supplementary
Table S1.
A comparison of the survival probabilities for different

treatment groups can be performed by calculating the difference
in the standardised survival probabilities under treatment and
under no treatment. By applying the empirical covariate distribu-
tion in the survival estimates for both treatment groups, a fairer
comparison between treated and not treated is obtained. The
difference in standardised survival probabilities is a comparison of
the probability of being event-free if all individuals had received
treatment versus if they had not. An advantage of quantifying the
treatment effect in terms of survival probabilities is that this can
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Fig. 4 Standardised survival probabilities. a Standardised survival probabilities for the event of relapse-free survival by treatment group and
b the difference in standardised survival probabilities for the event of relapse-free survival under hormonal therapy and under no hormonal
therapy, with 95% confidence intervals. Standardisation is performed by using the empirical covariate distribution of the total breast cancer
population.
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now be interpreted as risk (e.g., difference in risk of experiencing
the event by a specific time under treatment in comparison to no
treatment). Moreover, if the variables we had adjusted for are
sufficient and there are no unmeasured confounders, the
difference in standardised survival probabilities is an estimate of
the causal effect of treatment on survival outcome [11]. This
assumption is particularly important and its validity requires
subject matter knowledge. Figure 4b shows the difference in
standardised relapse-free survival probabilities under hormonal
therapy and no hormonal therapy for the breast cancer
population. The difference is increasing with time and ten years
after surgery it is equal to 0.09 (95% CI: 0.04–0.14). Similarly, we
can say that the proportion of being alive with no relapse under

hormonal therapy is 9 percentage points larger than the
proportion under no hormonal therapy.
The ratio in survival probabilities can also be calculated if a

relative measure is of interest. For instance, 10 years after surgery
the ratio in survival probabilities for the event of relapse-free
survival under hormonal therapy compared to no hormonal
therapy is equal to 1.22 (95% CI: 1.10–1.36) (Fig. 5). However,
absolute measures are often better for understanding if differ-
ences between groups are clinically meaningful. For example, if
60% of treated patients are event-free at 5 years compared to 40%
for untreated, the absolute difference in proportion of event-free
patients is 20 percentage points, equal to a ratio of proportions of
1.5 at 5 years. In a different study population, with a 5-year
proportion of being event-free of 15% for treated and 10% for
untreated, the ratio in proportions is also equal to 1.5, whereas the
absolute difference is only 5 percentage points.

STANDARDISING WITHIN A SUBSET OF THE STUDY
POPULATION
In the previous section, standardisation was performed using the
empirical covariate distribution in the whole population, i.e., we
estimated the average survival probability for the whole popula-
tion if everyone was treated compared to if no one was treated.
However, in some situations it may be more relevant to apply the
empirical covariate distribution of a subset of the total study
population, such as the covariate distribution among the treated.
This would, for example, be the case when evaluating the impact
of an intervention (e.g., a new treatment or a nutritional diet) in
the population who actually received the intervention as opposed
to evaluating the effect of the intervention in the total population
(including patients to whom the intervention was never allocated).
For instance, how large was the improvement in the probability of
being alive with no relapse for the breast cancer patients who
received hormonal therapy? Similarly, if the interest is to assess
the potential impact of an intervention on a population who have
not yet received it, it would be more relevant to apply the
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empirical distribution among the untreated. For instance, what
would the improvement be in the probability of being alive and
having no relapse if the untreated group had hormonal therapy?
As was also the case when we standardised over the whole group,
we need to assume that the treatment effect would be the same
in this group (untreated). Such research questions are of high
importance from a public health view and for policymakers.
Providing estimates of the standardised survival probabilities
within a subset of the total population is easily done by restricting
the population on which we standardise to the subset of interest.
Once again, we use the same population to obtain estimates
under treatment and under no treatment. However, this time only
the covariate distribution of a specific subset is used for the
standardisation. For instance, by applying the empirical covariate
distribution of breast cancer patients who received hormonal
therapy (i.e. restricting our estimates only to those who received
hormonal treatment), the 10-year standardised relapse-free
survival probability is equal to 0.32 (95% CI: 0.28–0.37) under
hormonal therapy and 0.24 (95% CI: 0.22–0.26) under no hormonal
therapy. This results in a difference in 10-year standardised
survival probabilities of 0.08 (95% CI: 0.04–0.13) within the treated
group (Fig. 6). The standardised survival probabilities within the
treated group is lower than the survival within the total
population (Fig. 3). This is expected as the patients who had
hormonal therapy were older, had a higher number of positive
nodes, and there was a larger proportion of tumours above 50mm
in comparison to patients who did not receive hormonal therapy
(Table 1).

DISCUSSION
When estimating the effect of a treatment (or exposure) on a time-
to-event outcome, it is important to consider potential imbalances
in the groups of comparison and as far as possible adjust the
statistical analysis for confounding variables. This can be done by
fitting regression models. In this article, we have reviewed different
ways to do this and provided illustrative examples of how
regression models can be depicted graphically. We showed that
absolute values for differences in standardised survival can be
obtained by estimating standardised survival probabilities for each
treatment arm. The association between treatment and the
outcome of interest can then be quantified by calculating the
difference in standardised survival probabilities by treatment status.
Currently, HRs are commonly reported as the main measure

after fitting regression models to time-to-event data, i.e. a relative
rather than absolute value for the effect of treatment (or
exposure). In comparison, the difference in standardised survival
probabilities provide an estimate of the absolute risk with/without
treatment (or exposure) and are thus in general more informative
than the HR. Comparing the effect of treatment on survival using
absolute rather than relative measures makes it easier to
understand whether treatment results in clinically meaningful
improvements in survival. Moreover, survival probabilities have a
less challenging interpretation in comparison to hazard ratios.
Often HRs are misinterpreted as relative risks. However, the HR is
simply calculated as the ratio of hazard rates and corresponds to
relative rates. In contrast, the survival probability estimates the
probability of not experiencing the event by a specific time and its
complement (1 minus survival probability) can be interpreted as
the risk. Further, HR estimates are affected by built-in selection
bias, as HRs are conditional on individuals that have not yet
experienced the event, which is not the case with survival
probabilities [6, 19]. Finally, the effect of treatment is often
reported as a single HR for the whole study duration assuming
that the treatment effect remains constant during follow-up. For
many settings, this is not a realistic assumption and time-
dependent HRs can communicate the experience of patients
more accurately (e.g., by plotting the time-dependent hazard ratio

of age across time since diagnosis). The difference in standardised
survival probabilities provides a summary of the treatment effect
using a single measure for each time of interest even after fitting
complex models with various time-dependent effects and
interactions. If the covariates we have adjusted for in the analysis
are sufficient for confounding control, then the difference in
standardised survival probabilities can be interpreted as the
population causal effect [11]. It is important to note, though that
this interpretation relies on the validity of the unmeasured
confounding assumption (which is based on subject matter
knowledge) and requires careful consideration, as often it is not
possible to adjust for all relevant confounders. Adjusting for
sufficient confounders is important also when hazard ratios are of
interest and is not specific only to standardised survival curves. In
practice, sensitivity analyses to modelling assumption are
recommend as a way of assessing their impact on the estimates
of interest. Moreover, in this paper, we focus on examples with no
competing events, however, the interpretation of the standardised
survival probabilities is less straightforward in the presence of
competing events. If the competing events are conditionally
independent, standardised cause-specific survival curves can be
obtained after fitting cause-specific regression models. Otherwise,
standardised cumulative incidence functions for the event of
interest in the presence of competing events can be obtained
instead, and these are discussed in detail elsewhere [22].
Compared to adjusted survival curves using the mean covariate

method, standardised survival probabilities are obtained by
averaging the conditional survival estimates of all individuals in
the study population. In this way, the empirical covariate
distribution is applied and the standardised estimates correspond
to the estimates for the observed covariate distribution in the
overall population instead of setting the adjusting covariates to a
fixed and potentially meaningless value (e.g., mean observed
value), as when obtaining “naively” adjusted survival curves.
Standardising to a subset of the population can also be done by
restricting the estimates to a particular subset (e.g. treated) and
this help us address important clinical questions regarding the
potential impact of interventions on individuals who did not
receive the intervention yet or the impact of an intervention on
individuals who actually received the intervention. Standardised
survival estimates, as well as confidence intervals, can easily be
obtained using standard existing software. A code example is
provided in the supplementary material, with the standard errors
obtained using the delta-method [23, 24]. In our analysis, we fitted
a flexible parametric survival model that can incorporate complex
effects easily. However, standardised survival curves can, in
principle, be obtained after fitting any survival model and have
also been implemented in R for the Cox model [11]. Finally, even
though in this paper our focus was on using regression
standardisation to obtain standardised survival probabilities,
marginal probabilities can also be estimated using other
approaches not presented in the paper, such as inverse probability
weights [25]. In the inverse probability weighting approach,
instead of adjusting for covariates in the survival model, each
individual is given a weight based on the probability of receiving
their own treatment conditional on their observed covariate
pattern. These weights are obtained from fitting a regression
model with the treatment as the outcome, for example using
logistic regression for a binary treatment.
Our illustrative example included only baselines covariates (i.e.

covariates measured at start of follow-up). However, time-varying
covariates may be of interest. In principle, standardised survival
curves can also be obtained when the treatment under study is
time-varying by estimating the survival curve under a scenario
were individuals are “always treated” and the scenario “never
treated”. However, careful consideration is required to determine
whether this comparison is relevant for the question under study.
Obtaining standardised curves is though more straightforward
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when other covariates included in the model are time-varying.
This is because when comparing survival curves under different
treatment arms, we only need to set the other adjusting covariates
to the same values for both estimated curves to compare the
same population. However, the interpretation is in terms of the
covariate distribution at the start of follow-up/baseline.
The difference in standardised survival probabilities under

different treatment arms is a valuable and informative measure to
summarise the effect of treatment while adjusting for several
confounding variables. Its estimation is no more complex than
frequently reported measures, such as HRs, and so we highly
encourage its use as an additional measure for reporting the
results of a time-to-event analysis.

DATA AVAILABILITY
The authors use publicly available data on breast cancer patients to demonstrate the
different measures. Data can be downloaded from http://www.stata-press.com/data/
fpsaus.html. The authors also provide Stata code in the supplementary material.
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