Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Neuropeptide Y, a paracrine factor secreted by cancer cells, is an independent regulator of angiogenesis in colon cancer

Abstract

Background

Resistance to anti-angiogenic therapies targeting vascular endothelial growth factor-A (VEGF-A) stems from VEGF-A independent angiogenesis mediated by other proangiogenic factors. Therefore identifying these factors in colon adenocarcinoma (CA) will reveal new therapeutic targets.

Methods

Neuropeptide Y (NPY) and Y2 receptor (Y2R) expressions in CA were studied by immunohistochemical analysis. Orthotopic HT29 with intact VEGF-A gene and VEGF-A knockdown (by CRISPR/Cas9 gene-editing technique) HT29 colon cancer-bearing mice were treated with specific Y2R antagonists, and the effects on angiogenesis and tumour growth were studied. The direct effect of NPY on angiogenesis and the underlying molecular mechanism was elucidated by the modulation of Y2R receptors expressed on colonic endothelial cells (CEC).

Results

The results demonstrated that NPY and Y2R are overexpressed in human CA, orthotopic HT29, and most interestingly in VEGF-A-depleted orthotopic HT29 tumours. Treatment with Y2R antagonists inhibited angiogenesis and thereby HT29 tumour growth. Blocking /silencing Y2R abrogated NPY-induced angiogenic potential of CEC. Mechanistically, NPY regulated the activation of the ERK/MAPK signalling pathway in CEC.

Conclusions

NPY derived from cancer cells independently regulates angiogenesis in CA by acting through Y2R present on CEC. Targeting NPY/Y2R thus emerges as a novel potential therapeutic strategy in CA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expressions of neuropeptide Y (NPY) and its receptor (Y2R) are significantly upregulated in colon adenocarcinoma (CA).
Fig. 2: Neuropeptide Y (NPY) and Y2R are overexpressed in orthotopic HT29 colon cancer.
Fig. 3: Significant upregulation of angiogenesis (CD31 + ve vessels) in colon adenocarcinoma shows a strong positive correlation with NPY expression.
Fig. 4: Significant tumour growth and angiogenesis inhibition upon treatment of orthotopic HT29 and HT29 VEGF-A knockout (VEGF-A KO HT29) tumour-bearing mice with Y2R antagonists, BIIE0246 and JNJ5207787.
Fig. 5: NPY stimulates the angiogenic potential of colonic endothelial cells via Y2R expressed on these cells.
Fig. 6: NPY stimulates angiogenesis in colon cancer by activating the ERK/MAPK pathway.

Similar content being viewed by others

Data availability

All data relevant to the study are included in the article or uploaded as supplementary information.

References

  1. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995;55:3964–8.

    CAS  PubMed  Google Scholar 

  2. den Uil SH, van den Broek E, Coupé VMH, Vellinga TT, Delis-van Diemen PM, Bril H, et al. Prognostic value of microvessel density in stage II and III colon cancer patients: a retrospective cohort study. BMC Gastroenterol. 2019;19:146.

    Article  Google Scholar 

  3. Ferrara N, Kerbel R. Angiogenesis as a therapeutic target. Nature. 2005;438:967–74.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara N, Adamis A. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15:385–403.

    Article  CAS  PubMed  Google Scholar 

  5. Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388:518–29.

    Article  CAS  PubMed  Google Scholar 

  6. Itatani Y, Yamamoto T, Zhong C, Molinolo AA, Ruppel J, Hegde P, et al. Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc Natl Acad Sci USA. 2020;117:21598–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8:592–03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Itatani Y, Kawada K, Yamamoto T, Sakai Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int J Mol Sci. 2018;19:1232.

    Article  PubMed Central  Google Scholar 

  10. Kopetz S, Hoff PM, Morris JS, Wolff RA, Eng C, Glover KY, et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol. 2010;28:453–9.

    Article  CAS  PubMed  Google Scholar 

  11. Lakhan SE, Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation. 2010;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Duchalais E, Guilluy C, Nedellec S, Touvron M, Bessard A, Touchefeu Y, et al. Colorectal cancer cells adhere to and migrate along the neurons of the enteric nervous system. Cell Mol Gastroenterol Hepatol. 2017;5:31–49.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gamet L, Murat JC, Remaury A, Remesy C, Valet P, Paris H, et al. Vasoactive intestinal peptide and forskolin regulate proliferation of the HT29 human colon adenocarcinoma cell line. J Cell Physiol. 1992;150:501–9.

    Article  CAS  PubMed  Google Scholar 

  14. Chandrasekharan B, Bala V, Kolachala VL, Vijay-Kumar M, Jones D, Gewirtz AT, et al. Targeted deletion of neuropeptide Y (NPY) modulates experimental colitis. PLoS ONE. 2008;3:e3304.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dvorak AM, Onderdonk AB, McLeod RS, Monahan-Earley RA, Cullen J, Antonioli DA, et al. Axonal necrosis of enteric autonomic nerves in continent ileal pouches. Possible implications for pathogenesis of Crohn’s disease. Ann Surg. 1993;217:260–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holzer P, Reichmann F, Farzi A, Neuropeptide Y, peptide YY. and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 2012;46:261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reubi JC, Gugger M, Waser B, Schaer JC. Y(1)-mediated effect of neuropeptide Y in cancer: breast carcinomas as targets. Cancer Res. 2001;61:4636–41.

    CAS  PubMed  Google Scholar 

  18. Rasiah KK, Kench JG, Gardiner-Garden M, Biankin AV, Golovsky D, Brenner PC, et al. Aberrant neuropeptide Y and macrophage inhibitory cytokine-1 expression are early events in prostate cancer development and are associated with poor prognosis. Cancer Epidemiol Biomark Prev. 2006;15:711–6.

    Article  CAS  Google Scholar 

  19. Cox HM. Endogenous PYY and NPY mediate tonic Y1- and Y2-mediated absorption in human and mouse colon. Nutrition. 2008;24:900–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hyland NP, Cox HM. The regulation of veratridine-stimulated electrogenic ion transport in mouse colon by neuropeptide Y (NPY), Y1 and Y2 receptors. Br J Pharm. 2005;146:712–22.

    Article  CAS  Google Scholar 

  21. Rettenbacher M, Reubi JC. Localization and characterization of neuropeptide receptors in human colon. Naunyn Schmiedebergs Arch Pharm. 2001;364:291–304.

    Article  CAS  Google Scholar 

  22. Matyal R, Chu L, Mahmood F, Robich MP, Wang A, Hess PE, et al. Neuropeptide Y improves myocardial perfusion and function in a swine model of hypercholesterolemia and chronic myocardial ischemia. J Mol Cell Cardiol. 2012;53:891–8.

    Article  CAS  PubMed  Google Scholar 

  23. Novielli NM, Al-Khazraji BK, Medeiros PJ, Goldman D, Jackson DN. Pre-diabetes augments neuropeptide Y1- and α1-receptor control of basal hindlimb vascular tone in young ZDF rats. PLoS ONE. 2012;7:e46659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McDermott BJ, Bell D. NPY and cardiac diseases. Curr Top Med Chem. 2007;7:1692–703.

    Article  CAS  PubMed  Google Scholar 

  25. Velayos F. Colon cancer surveillance in inflammatory bowel disease patients: current and emerging practices. Expert Rev Gastroenterol Hepatol. 2008;2:817–25.

    Article  PubMed  Google Scholar 

  26. Lakatos PL, Lakatos L. Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol. 2008;14:3937–47.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feagins LA, Souza RF, Spechler SJ. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol. 2009;6:297–305.

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar C, Chakroborty D, Goswami S, Fan H, Mo X, Basu S. VEGF-A controls the expression of its regulator of angiogenic functions, dopamine D2 receptors on endothelial cells. J Cell Sci. 2022; https://doi.org/10.1242/jcs.259617.

  29. Chakroborty D, Sarkar C, Yu H, Wang J, Liu Z, Dasgupta PS, et al. Dopamine stabilizes tumor blood vessels by upregulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci USA. 2011;108:20730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarkar C, Chakroborty D, Chowdhury UR, Dasgupta PS, Basu S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res. 2008;14:2502–10.

    Article  CAS  PubMed  Google Scholar 

  31. Janssen P, Verschueren S, Rotondo A, Tack J. Role of Y(2) receptors in the regulation of gastric tone in rats. Am J Physiol Gastrointest Liver Physiol. 2012;302:G732–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mittapalli GK, Roberts E. Ligands of the neuropeptide Y Y2 receptor. Bioorg Med Chem Lett. 2014;24:430–41.

    Article  CAS  PubMed  Google Scholar 

  33. Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—a review. Diagn Pathol. 2014;9:221.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chakroborty D, Sarkar C, Mitra RB, Banerjee S, Dasgupta PS, Basu S. Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res. 2004;10:4349–56.

    Article  CAS  PubMed  Google Scholar 

  35. Chakroborty D, Chowdhury UR, Sarkar C, Baral R, Dasgupta PS, Basu S. Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Investig. 2008;118:1380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarkar C, Ganju RK, Pompili VJ, Chakroborty D. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis. Angiogenesis. 2017;20:97–107.

    Article  CAS  PubMed  Google Scholar 

  37. Lu K, Chakroborty D, Sarkar C, Lu T, Xie Z, Liu Z, et al. Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis. PLoS ONE. 2012;7:e43934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, Dasgupta PS, et al. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res. 2004;64:5551–5.

    Article  CAS  PubMed  Google Scholar 

  39. Sarkar C, Das S, Chakroborty D, Chowdhury UR, Basu B, Dasgupta PS, et al. Cutting edge: stimulation of dopamine D4 receptors induce T cell quiescence by upregulating Kruppel-like factor-2 expression through inhibition of ERK1/ERK2 phosphorylation. J Immunol. 2006;177:7525–9.

    Article  CAS  PubMed  Google Scholar 

  40. Aerts E, Geets E, Sorber L, Beckers S, Verrijken A, Massa G, et al. Evaluation of a role for NPY and NPY2R in the pathogenesis of obesity by mutation and copy number variation analysis in obese children and adolescents. Ann Hum Genet. 2018;82:1–10.

    Article  CAS  PubMed  Google Scholar 

  41. Movafagh S, Hobson JP, Spiegel S, Kleinman HK, Zukowska Z. Neuropeptide Y induces migration, proliferation, and tube formation of endothelial cells bimodally via Y1, Y2, and Y5 receptors. FASEB J. 2006;20:1924–6.

    Article  CAS  PubMed  Google Scholar 

  42. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  43. Chibaudel B, Tournigand C, André T, de Gramont A. Therapeutic strategy in unresectable metastatic colorectal cancer. Ther Adv Med Oncol. 2012;4:75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun W. Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy. J Hematol Oncol. 2012;5:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lopez A, Harada K, Vasilakopoulou M, Shanbhag N, Ajani JA. Targeting angiogenesis in colorectal carcinoma. Drugs. 2019;79:63–74.

    Article  CAS  PubMed  Google Scholar 

  46. Silva AP, Kaufmann JE, Vivancos C, Fakan S, Cavadas C, Shaw P, et al. Neuropeptide Y expression, localization and cellular transducing effects in HUVEC. Biol Cell. 2005;97:457–67.

    Article  CAS  PubMed  Google Scholar 

  47. Lacorre DA, Baekkevold ES, Garrido I, Brandtzaeg P, Haraldsen G, Amalric F, et al. Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment. Blood. 2004;103:4164–72.

    Article  CAS  PubMed  Google Scholar 

  48. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158–73.

    Article  CAS  PubMed  Google Scholar 

  49. De Francesco EM, Sotgia F, Clarke RB, Lisanti MP, Maggiolini M. G protein-coupled receptors at the crossroad between physiologic and pathologic angiogenesis: old paradigms and emerging concepts. Int J Mol Sci. 2017;18:2713.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the veterinarian and vivarium staff of OSU ULAR for our animal studies and OSU Pathology Core facilities for confocal microscopy studies.

Funding

This study was supported by funding from NIH/NCI [R21 CA216763 to CS]. CS and DC would like to acknowledge the funding received from Mitchell Cancer Institute, University of South Alabama. DC was also supported by DOD, USA [W81XWH-20-1-0618], and SB was supported by DOD, USA [W81XWH-19-1-0233 and W81XWH2110874].

Author information

Authors and Affiliations

Authors

Contributions

Conception: CS; design: CS, DC and SG; development of methodology: DC, SG and CS; experiment and data generation: DC, SG and HF; analysis and interpretation of data: CS, DC, SG, HF, WF and SB; writing original draft: DC, SG and CS; writing/reviewing and editing: DC, SG, HF, WF, SB and CS; administrative and study supervision: DC and CS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chandrani Sarkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Only de-identified and archived human colon cancer tissues were used under an exempt (category 4) protocol as determined by The Ohio State University Institutional Review Board. The study was performed in accordance with the Declaration of Helsinki.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakroborty, D., Goswami, S., Fan, H. et al. Neuropeptide Y, a paracrine factor secreted by cancer cells, is an independent regulator of angiogenesis in colon cancer. Br J Cancer 127, 1440–1449 (2022). https://doi.org/10.1038/s41416-022-01916-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01916-1

This article is cited by

Search

Quick links