Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Translational Therapeutics

Targeting the untargetable: RB1-deficient tumours are vulnerable to Skp2 ubiquitin ligase inhibition

Abstract

Proteins that regulate the cell cycle are accumulated and degraded in a coordinated manner during the transition from one cell cycle phase to the next. The rapid loss of a critical protein, for example, to allow the cell to move from G1/G0 to S phase, is often regulated by its ubiquitination and subsequent proteasomal degradation. Protein ubiquitination is mediated by a series of three ligases, of which the E3 ligases provide the specificity for a particular protein substrate. One such E3 ligase is SCFSkp1/Cks1, which has a substrate recruiting subunit called S-phase kinase-associated protein 2 (Skp2). Skp2 regulates cell proliferation, apoptosis, and differentiation, can act as an oncogene, and is overexpressed in human cancer. A primary target of Skp2 is the cyclin-dependent kinase inhibitor p27 (CDKN1b) that regulates the cell cycle at several points. The RB1 tumour suppressor gene regulates Skp2 activity by two mechanisms: by controlling its mRNA expression, and by an effect on Skp2’s enzymatic activity. For the latter, the RB1 protein (pRb) directly binds to the substrate-binding site on Skp2, preventing protein substrates from being ubiquitinated and degraded. Inactivating mutations in RB1 are common in human cancer, becoming more frequent in aggressive, metastatic, and drug-resistant tumours. Hence, RB1 mutation leads to the loss of pRb, an unrestrained increase in Skp2 activity, the unregulated decrease in p27, and the loss of cell cycle control. Because RB1 mutations lead to the loss of a functional protein, its direct targeting is not possible. This perspective will discuss evidence validating Skp2 as a therapeutic target in RB1-deficient cancer.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of the SCF E3 ligase Skp2.

References

  1. Duan S, Pagano M. Ubiquitin ligases in cancer: functions and clinical potentials. Cell Chem Biol. 2021;28:918–33.

    CAS  PubMed  Article  Google Scholar 

  2. Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18:69–88.

    CAS  PubMed  Article  Google Scholar 

  3. Duan G, Walther D. The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput Biol. 2015;11:e1004049.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: a comprehensive review. Med Res Rev. 2020;40:1920–49.

    CAS  PubMed  Article  Google Scholar 

  5. Spratt DE, Walden H, Shaw GS. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J. 2014;458:421–37.

    CAS  PubMed  Article  Google Scholar 

  6. Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5:739–51.

    CAS  PubMed  Article  Google Scholar 

  7. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and ß-TrCP: tipping the scales of cancer. Nat Rev Cancer. 2008;8:438–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14:369–81.

    CAS  PubMed  Article  Google Scholar 

  9. Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, et al. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci USA. 2003;100:10231–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA. 2005;102:1649–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Yu ZK, Gervais JL, Zhang H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA. 1998;95:11324–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Chu IM, Hengst L, Slingerland J,M. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer. 2008;8:253–67.

    CAS  PubMed  Article  Google Scholar 

  13. Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell. 2004;6:661–72.

    CAS  PubMed  Article  Google Scholar 

  14. Hume S, Grou CP, Lascaux P, D’Angiolella V, Legrand AJ, Ramadan K, et al. The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat Comm. 2021;12:6959.

    CAS  Article  Google Scholar 

  15. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 2000;19:2069–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995;269:682–5.

    CAS  PubMed  Article  Google Scholar 

  17. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, et al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol. 2001;3:321–4.

    CAS  PubMed  Article  Google Scholar 

  18. Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol. 2003;13:41–47.

    CAS  PubMed  Article  Google Scholar 

  19. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81.

    CAS  PubMed  Article  Google Scholar 

  20. Chiarle R, Fan Y, Piva R, Boggino H, Skolnik J, Novero D, et al. S-phase kinase-associated protein 2 expression in non-Hodgkin’s lymphoma inversely correlates with p27 expression and defines cells in S phase. Am J Pathol. 2002;160:1457–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 2010;464:374–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA. 2001;98:2515–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, et al. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA. 2001;98:5043–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Lough L, Sherman D, Ni E, Young LM, Hao B, Cardozo T. Chemical probes of Skp2-mediated p27 ubiquitylation and degradation. Medchemcomm. 2018;9:1093–104.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol. 2012;19:1515–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Singh R, Sran A, Carroll DC, Huang J, Tsvetkov L, Zhou X, et al. Developing structure-activity relationships from an HTS hit for inhibition of the Cks1-Skp2 protein-protein interaction. Bioorg Medicinal Chem Lett. 2015;25:5199–202.

    CAS  Article  Google Scholar 

  27. Lee Y, Lim HS. Skp2 inhibitors: novel anticancer strategies. Curr Med Chem. 2016;23:2363–79.

    CAS  PubMed  Article  Google Scholar 

  28. Skaar JR, Pagan JK, Pagano M. SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov. 2014;13:889–903.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Dick FA, Goodrich DW, Sage J, Dyson NJ. Non-canonical functions of the RB protein in cancer. Nat Rev Cancer. 2018;18:442–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Dyson NJ. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016;30:1492–502.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Frolov MV, Dyson NJ. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci. 2004;117:2173–81.

    CAS  PubMed  Article  Google Scholar 

  32. Ji P, Jiang H, Rekhtman K, Bloom J, Ichetovkin M, Pagano M, et al. An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol Cell. 2004;16:47–58.

    CAS  PubMed  Article  Google Scholar 

  33. Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J, et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/- mice. Nat Genet. 2010;42:83–88.

    CAS  PubMed  Article  Google Scholar 

  34. Zhao H, Wang H, Bauzon F, Lu Z, Fu H, Cui J, et al. Deletions of retinoblastoma 1 (Rb1) and its repressing target S phase kinase-associated protein 2 (Skp2) are synthetic lethal in mouse embryogenesis. J Biol Chem. 2016;291:10201–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, et al. The Skp2 pathway: a critical target for cancer therapy. Semin Cancer Biol. 2020;67:16–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Hao Z, Huang S. E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy. Front Biosci (Landmark Ed). 2015;20:474–90.

    CAS  Article  Google Scholar 

  37. Gong J, Zhou Y, Liu D, Huo J. F-box proteins involved in cancer-associated drug resistance. Oncol Lett. 2018;15:8891–8900.

    PubMed  PubMed Central  Google Scholar 

  38. Chen WS, Alshalalfa M, Zhao SG, Liu Y, Mahal BA, Quigley DA, et al. Novel RB1-loss transcriptomic signature is associated with poor clinical outcomes across cancer types. Clin Cancer Res. 2019;25:4290–9.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Pizzi S, Azzoni C, Bassi D, Bottarelli L, Milione M, Bordi C. Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract. Cancer. 2003;98:1273–782.

    CAS  PubMed  Article  Google Scholar 

  40. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569:560–4.

    CAS  PubMed  Article  Google Scholar 

  41. Goldhoff P, Clarke J, Smirnov I, Berger MS, Prados MD, James CD, et al. Clinical stratification of glioblastoma based on alterations in retinoblastoma tumor suppressor protein (RB1) and association with the proneural subtype. J Neuropathol Exp Neurol. 2012;71:83–89.

    CAS  PubMed  Article  Google Scholar 

  42. Zhu L, Lu Z, Zhao H. Antitumor mechanisms when pRb and p53 are genetically inactivated. Oncogene. 2015;34:4547–57.

    CAS  PubMed  Article  Google Scholar 

  43. Frizziero M, Kilgour E, Simpson KL, Rothwell DG, Moore DA, Frese KK, et al. Expanding therapeutic opportunities for extra-pulmonary neuroendocrine carcinoma. Clin Cancer Res. 2022;28:1999–2019.

  44. Li R, Yang Z, Shao F, Cheng H, Wen Y, Sun S, et al. Multi-omics profiling of primary small cell carcinoma of the esophagus reveals RB1 disruption and additional molecular subtypes. Nat Commun. 2021;12:3785.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell. 2019;177:1035–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Pietanza MC, Byers LA, Minna JD, Rudinm CM. Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res. 2015;21:2244–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer. 2017;17:725–37.

    CAS  PubMed  Article  Google Scholar 

  48. Chan JM, Quintanal-Villalonga A, Gao VR, Xie Y, Allaj V, Chaudhary O, et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell. 2021;39:1479–96.

    CAS  PubMed  Article  Google Scholar 

  49. Polley E, Kunkel M, Evans D, Silvers T, Delosh R, Laudeman J, et al. Small cell lung cancer screen of oncology drugs, investigational agents, and gene and microRNA expression. J Natl Cancer Inst. 2016;108. PMID: 27247353.

    Article  CAS  Google Scholar 

  50. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Zhao H, Bauzon F, Bi E, Yu JJ, Fu H, Lu Z, et al. Substituting threonine 187 with alanine in p27Kip1 prevents pituitary tumorigenesis by two-hit loss of Rb1 and enhances humoral immunity in old age. J Biol Chem. 2015;290:5797–809.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Zhao H, Bauzon F, Fu H, Lu Z, Cui J, Nakayama K, et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell. 2013;24:645–59.

    CAS  PubMed  Article  Google Scholar 

  53. Zhao H, Iqbal NJ, Sukrithan V, Nicholas C, Xue Y, Yu C, et al. Targeted inhibition of the E3 Ligase SCF(Skp2/Cks1) has antitumor activity in RB1-deficient human and mouse small-cell lung cancer. Cancer Res. 2020;80:2355–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Faugeroux V, Pailler E, Oulhen M, Deas O, Brulle-Soumare L, Hervieu C, et al. Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nat Commun. 2020;11:1884.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018;50:645–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Nava Rodrigues D, Casiraghi N, Romanel A, Crespo M, Miranda S, Rescigno P, et al. RB1 heterogeneity in advanced metastatic castration-resistant prostate cancer. Clin Cancer Res. 2019;25:687–97.

    PubMed  Article  Google Scholar 

  57. Morrow JK, Lin HK, Sun SC, Zhang S. Targeting ubiquitination for cancer therapies. Future Med Chem. 2015;7:2333–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, et al. Skp2: a novel potential therapeutic target for prostate cancer. Biochim Biophys Acta. 2012;1825:11–17.

    CAS  PubMed  Google Scholar 

  59. Nguyen PL, Lin DI, Lei J, Fiorentino M, Mueller E, Weinstein MH, et al. The impact of Skp2 overexpression on recurrence-free survival following radical prostatectomy. Urol Oncol. 2011;29:302–8.

    CAS  PubMed  Article  Google Scholar 

  60. Yang G, Ayala G, De Marzo A, Tian W, Frolov A, Wheeler TM, et al. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res. 2002;8:3419–26.

    CAS  PubMed  Google Scholar 

  61. Chen YC, Huang WJ, Hsu JL, Yu CC, Wang WT, Guh JH. A novel hydroxysuberamide derivative potentiates MG132-mediated anticancer activity against human hormone refractory prostate cancers-the role of histone deacetylase and endoplasmic reticulum stress. Prostate. 2013;73:1270–80.

    CAS  PubMed  Article  Google Scholar 

  62. Rico-Bautista E, Yang CC, Lu L, Roth GP, Wolf DA. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 2010;8:153.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Zhao H, Lu Z, Bauzon F, Fu H, Cui J, Locker J, et al. p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer. Oncogene. 2017;36:60–70.

    PubMed  Article  CAS  Google Scholar 

  64. Ding L, Sun R, Yan Q, Wang C, Han X, Cui Y, et al. MiR-506 exerts antineoplastic effects on osteosarcoma cells via inhibition of the Skp2 oncoprotein. Aging (Albany NY). 2021;13:6724–39.

    CAS  Article  Google Scholar 

  65. Wang J, Aldahamsheh O, Ferrena A, Borjihan H, Singla A, Yaguare S, et al. The interaction of SKP2 with p27 enhances the progression and stemness of osteosarcoma. Ann NY Acad Sci. 2021;1490:90–104.

    CAS  PubMed  Article  Google Scholar 

  66. Ding L, Wang C, Cui Y, Han X, Zhou Y, Bai J, et al. S-phase kinase-associated protein 2 is involved in epithelial-mesenchymal transition in methotrexate-resistant osteosarcoma cells. Int J Oncol. 2018;52:1841–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Zvi YS, Batko B, Zaphiros N, O’Donnell EF, Wang J, et al. Down-regulation of Skp2 expression inhibits invasion and lung metastasis in osteosarcoma. Sci Rep. 2018;8:14294.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Wang J, Sato K, O’Donnell E, Singla A, Yaguare S, Aldahamsheh O, et al. Skp2 depletion reduces tumor-initiating properties and promotes apoptosis in synovial sarcoma. Transl Oncol. 2020;13:100809.

    PubMed  PubMed Central  Article  Google Scholar 

  69. Martin A, Cano A. Tumorigenesis: Twist1 links EMT to self-renewal. Nat Cell Biol. 2021;12:924–5.

    Article  CAS  Google Scholar 

  70. Lee KW, Lee NK, Ham S, Roh TY, Kim SH. Twist1 is essential in maintaining mesenchymal state and tumor-initiating properties in synovial sarcoma. Cancer Lett. 2014;343:62–73.

    CAS  PubMed  Article  Google Scholar 

  71. Katagiri Y, Hozumi Y, Kondo S. Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. J Dermatol Sci. 2006;42:215–24.

    CAS  PubMed  Article  Google Scholar 

  72. Xu D, Li CF, Zhang X, Gong Z, Chan CH, Lee SW, et al. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 2015;6:6641.

    CAS  PubMed  Article  Google Scholar 

  73. Jardim DL, Schwaederle M, Wei C, Lee JJ, Hong DS, Eggermont AM, et al. Impact of a biomarker-based strategy on oncology drug development: a meta-analysis of clinical trials leading to FDA approval. J Natl Cancer Inst. 2015;107:djv253.

    PubMed  Article  Google Scholar 

  74. Yang C, Nan H, Ma J, Jiang L, Guo Q, Han L, et al. High Skp2/Low p57(Kip2) expression is associated with poor prognosis in human breast carcinoma. Breast Cancer (Auckl). 2015;9:13–21.

    Google Scholar 

  75. Liu J, Wei XL, Huang WH, Chen CF, Bai JW, Zhang GJ. Cytoplasmic Skp2 expression is associated with p-Akt1 and predicts poor prognosis in human breast carcinomas. PLoS One. 2012;7:e52675.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Zhang W, Cao L, Sun Z, Xu J, Tang L, Chen W, et al. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation. Cell Cycle. 2016;15:1344–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Sonoda H, Inoue H, Ogawa K, Utsunomiya T, Masuda TA, Mori M. Significance of skp2 expression in primary breast cancer. Clin Cancer Res. 2006;12:1215–20.

    CAS  PubMed  Article  Google Scholar 

  78. Traub F, Mengel M, Luck HJ, Kreipe HH, von Wasielewski R. Prognostic impact of Skp2 and p27 in human breast cancer. Breast Cancer Res Treat. 2006;99:185–91.

    CAS  PubMed  Article  Google Scholar 

  79. Wang X, Zhang T, Zhang S, Shan J. Prognostic values of F-box members in breast cancer: an online database analysis and literature review. Biosci Rep. 2019;39. PMID: 30341246.

    Google Scholar 

  80. Dowen SE, Scott A, Mukherjee G, Stanley MA. Overexpression of Skp2 in carcinoma of the cervix does not correlate inversely with p27 expression. Int J Cancer. 2003;105:326–30.

    CAS  PubMed  Article  Google Scholar 

  81. Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM, et al. Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer. 2001;91:1745–51.

    CAS  PubMed  Article  Google Scholar 

  82. Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I, Hershko DD. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 2005;103:1336–46.

    CAS  PubMed  Article  Google Scholar 

  83. Li JQ, Wu F, Masaki T, Kubo A, Fujita J, Dixon DA, et al. Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. Int J Oncol. 2004;25:87–95.

    PubMed  Google Scholar 

  84. Lahav-Baratz S, Ben-Izhak O, Sabo E, Ben-Eliezer S, Lavie O, Ishai D, et al. Decreased level of the cell cycle regulator p27 and increased level of its ubiquitin ligase Skp2 in endometrial carcinoma but not in normal secretory or in hyperstimulated endometrium. Mol Hum Reprod. 2004;10:567–72.

    CAS  PubMed  Article  Google Scholar 

  85. Wang XC, Wu YP, Ye B, Lin DC, Feng YB, Zhang ZQ, et al. Suppression of anoikis by SKP2 amplification and overexpression promotes metastasis of esophageal squamous cell carcinoma. Mol Cancer Res. 2009;7:12–22.

    CAS  PubMed  Article  Google Scholar 

  86. Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, et al. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 2002;62:3819–25.

    CAS  PubMed  Google Scholar 

  87. Honjo S, Kase S, Osaki M, Ardyanto TD, Kaibara N, Ito H. COX-2 correlates with F-box protein, Skp2 expression and prognosis in human gastric carcinoma. Int J Oncol. 2005;26:353–60.

    CAS  PubMed  Google Scholar 

  88. Saigusa K, Hashimoto N, Tsuda H, Yokoi S, Maruno M, Yoshimine T, et al. Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated with poor prognosis of glioblastomas. Cancer Sci. 2005;96:676–83.

    CAS  PubMed  Article  Google Scholar 

  89. Penin RM, Fernandez-Figueras MT, Puig L, Rex J, Ferrandiz C, Ariza A. Over-expression of p45(SKP2) in Kaposi’s sarcoma correlates with higher tumor stage and extracutaneous involvement but is not directly related to p27(KIP1) down-regulation. Mod Pathol. 2002;15:1227–35.

    CAS  PubMed  Article  Google Scholar 

  90. Yokoi S, Yasui K, Saito-Ohara F, Koshikawa K, Iizasa T, Fujisawa T, et al. A novel target gene, SKP2, within the 5p13 amplicon that is frequently detected in small cell lung cancers. Am J Pathol. 2002;161:207–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Zhu CQ, Blackhall FH, Pintilie M, Iyengar P, Liu N, Ho J, et al. Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker. Clin Cancer Res. 2004;10:1984–91.

    CAS  PubMed  Article  Google Scholar 

  92. Yokoi S, Yasui K, Mori M, Iizasa T, Fujisawa T, Inazawa J. Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am J Pathol. 2004;165:175–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Goto A, Niki T, Moriyama S, Funata N, Moriyama H, Nishimura Y, et al. Immunohistochemical study of Skp2 and Jab1, two key molecules in the degradation of P27, in lung adenocarcinoma. Pathol Int. 2004;54:675–81.

    CAS  PubMed  Article  Google Scholar 

  94. Osoegawa A, Yoshino I, Tanaka S, Sugio K, Kameyama T, Yamaguchi M, et al. Regulation of p27 by S-phase kinase-associated protein 2 is associated with aggressiveness in non-small-cell lung cancer. J Clin Oncol. 2004;22:4165–73.

    CAS  PubMed  Article  Google Scholar 

  95. Takanami I. The prognostic value of overexpression of Skp2 mRNA in non-small cell lung cancer. Oncol Rep. 2005;13:727–31.

    CAS  PubMed  Google Scholar 

  96. Seki R, Okamura T, Koga H, Yakushiji K, Hashiguchi M, Yoshimoto K, et al. Prognostic significance of the F-box protein Skp2 expression in diffuse large B-cell lymphoma. Am J Hematol. 2003;73:230–5.

    PubMed  Article  Google Scholar 

  97. Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RC, Tripp S, et al. Expression of Skp2, a p27(Kip1) ubiquitin ligase, in malignant lymphoma: correlation with p27(Kip1) and proliferation index. Blood. 2002;100:2950–6.

    CAS  PubMed  Article  Google Scholar 

  98. Rose AE, Wang G, Hanniford D, Monni S, Tu T, Shapiro RL, et al. Clinical relevance of SKP2 alterations in metastatic melanoma. Pigment Cell Melanoma Res. 2011;24:197–206.

    CAS  PubMed  Article  Google Scholar 

  99. Li Q, Murphy M, Ross J, Sheehan C, Carlson JA. Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J Cutan Pathol. 2004;31:633–42.

    PubMed  Article  Google Scholar 

  100. Woenckhaus C, Maile S, Uffmann S, Bansemir M, Dittberner T, Poetsch M, et al. Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome. Histol Histopathol. 2005;20:501–8.

    CAS  PubMed  Google Scholar 

  101. Muth D, Ghazaryan S, Eckerle I, Beckett E, Pöhler C, Batzler J, et al. Transcriptional repression of SKP2 is impaired in MYCN-amplified neuroblastoma. Cancer Res. 2010;70:3791–802.

  102. Westermann F, Henrich KO, Wei JS, Lutz W, Fischer M, Konig R, et al. High Skp2 expression characterizes high-risk neuroblastomas independent of MYCN status. Clin Cancer Res. 2007;13:4695–703.

    CAS  PubMed  Article  Google Scholar 

  103. Kudo Y, Kitajima S, Sato S, Miyauchi M, Ogawa I, Takata T. High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 2001;61:7044–7.

    CAS  PubMed  Google Scholar 

  104. Wang J, Huang Y, Guan Z, Zhang JL, Su HK, Zhang W, et al. E3-ligase Skp2 predicts poor prognosis and maintains cancer stem cell pool in nasopharyngeal carcinoma. Oncotarget. 2014;5:5591–601.

    PubMed  PubMed Central  Article  Google Scholar 

  105. Shintani S, Li C, Mihara M, Hino S, Nakashiro K, Hamakawa H. Skp2 and Jab1 expression are associated with inverse expression of p27(KIP1) and poor prognosis in oral squamous cell carcinomas. Oncology. 2003;65:355–62.

    CAS  PubMed  Article  Google Scholar 

  106. Ben-Izhak O, Kablan F, Laster Z, Nagler RM. Oropharyngeal cancer pathogenesis: ubiquitin proteolytic, apoptotic and epidermal growth factor related pathways act in concert-first report. Oral Oncol. 2005;41:851–60.

    CAS  PubMed  Article  Google Scholar 

  107. Dong Y, Sui L, Watanabe Y, Sugimoto K, Tokuda M. S-phase kinase-associated protein 2 expression in laryngeal squamous cell carcinomas and its prognostic implications. Oncol Rep. 2003;10:321–5.

    CAS  PubMed  Google Scholar 

  108. Liao QD, Zhong D, Chen Q. [Protein expression of Skp2 in osteosarcoma and its relation with prognosis]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2008;33:606–11.

    CAS  PubMed  Article  Google Scholar 

  109. Ding L, Li R, Han X, Zhou Y, Zhang H, Cui Y, et al. Inhibition of Skp2 suppresses the proliferation and invasion of osteosarcoma cells. Oncol Rep. 2017;38:933–40.

    CAS  PubMed  Article  Google Scholar 

  110. Ding L, Li R, Sun R, Zhou Y, Zhou Y, Han X, et al. S-phase kinase-associated protein 2 promotes cell growth and motility in osteosarcoma cells. Cell Cycle. 2017;16:1547–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Shigemasa K, Gu L, O’Brien TJ, Ohama K. Skp2 overexpression is a prognostic factor in patients with ovarian adenocarcinoma. Clin Cancer Res. 2003;9:1756–63.

    CAS  PubMed  Google Scholar 

  112. Einama T, Kagata Y, Tsuda H, Morita D, Ogata S, Ueda S, et al. High-level Skp2 expression in pancreatic ductal adenocarcinoma: correlation with the extent of lymph node metastasis, higher histological grade, and poorer patient outcome. Pancreas. 2006;32:376–81.

    CAS  PubMed  Article  Google Scholar 

  113. Ben-Izhak O, Lahav-Baratz S, Meretyk S, Ben-Eliezer S, Sabo E, Dirnfeld M, et al. Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. J Urol. 2003;170:241–5.

    CAS  PubMed  Article  Google Scholar 

  114. Drobnjak M, Melamed J, Taneja S, Melzer K, Wieczorek R, Levinson B, et al. Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clin Cancer Res. 2003;9:2613–9.

    CAS  PubMed  Google Scholar 

  115. Langner C, von Wasielewski R, Ratschek M, Rehak P, Zigeuner R. Biological significance of p27 and Skp2 expression in renal cell carcinoma. A systematic analysis of primary and metastatic tumour tissues using a tissue microarray technique. Virchows Arch. 2004;445:631–6.

    CAS  PubMed  Article  Google Scholar 

  116. Oliveira AM, Okuno SH, Nascimento AG, Lloyd RV. Skp2 protein expression in soft tissue sarcomas. J Clin Oncol. 2003;21:722–7.

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This work was supported by NIH/NCI grants RO1 CA230032, RO1 CA201458, RO1 CA255643, and an AACR-Bayer Innovation and Discovery grant.

Author information

Authors and Affiliations

Authors

Contributions

PG, BH and ELS wrote the manuscript; PG, HZ and ELS edited the manuscript. Revising it critically: all. Final approval of the version to be published: all.

Corresponding author

Correspondence to Edward L. Schwartz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Zhao, H., Hoang, B. et al. Targeting the untargetable: RB1-deficient tumours are vulnerable to Skp2 ubiquitin ligase inhibition. Br J Cancer (2022). https://doi.org/10.1038/s41416-022-01898-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-022-01898-0

Search

Quick links