Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Translational Therapeutics

M-CSF as a therapeutic target in BRAFV600E melanoma resistant to BRAF inhibitors



Disseminated BRAFV600E melanoma responds to BRAF inhibitors (BRAFi) but easily develops resistance with poor prognosis. Secretome plays a pivotal role during tumour progression causing profound effects on therapeutic efficacy. Secreted M-CSF is involved in both cytotoxicity suppression and tumour progression in melanoma. We aimed to analyse the M-CSF contribution in resistant metastatic melanoma to BRAF-targeted therapies.


Conditioned media from melanoma cells were analysed by citoarray. Viability and migration/invasion assays were performed with paired melanoma cells and tumour growth in xenografted SCID mice. We evaluated the impact of M-CSF plasma levels with clinical prognosis from 35 metastatic BRAFV600E-mutant melanoma patients.


BRAFi-resistant melanoma cells secretome is rich in pro-tumour cytokines. M-CSF secretion is essential to induce a Vemurafenib-resistant phenotype in melanoma cells. Further, we demonstrated that M-CSF mAb in combination with Vemurafenib and autophagy blockers synergistically induce apoptosis, impair migration and reduce tumour growth in BRAFi-resistant melanoma cells. Interestingly, lower M-CSF plasma levels are associated with better prognosis in metastatic melanoma patients.


Secreted M-CSF induces a BRAFi-resistant phenotype and means worse prognosis in BRAFV600E metastatic melanoma patients. These results identify secreted M-CSF as a promising therapeutic target toward BRAFi-resistant melanomas.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Secreted media from Vemurafenib-resistant melanoma cell lines induces a resistance phenotype in sensitive melanoma cells.
Fig. 2: Cytokine secretome profile of Vemurafenib-resistant melanoma cell lines exhibit an increase in pro-tumour cytokines.
Fig. 3: M-CSF promotes the acquisition of Vemurafenib-resistance in BRAFV600E melanoma cells.
Fig. 4: Autophagic blockers Mibefradil/Chloroquine, Vemurafenib and M-CSF mAb-combined therapy induce apoptotic cell death and impair migration of BRAFV600E-resistant melanoma cells.
Fig. 5: Autophagic blockers Mibefradil/Chloroquine, Vemurafenib and M-CSF mAb-combined therapy reduce tumour growth and vascularisation of BRAFV600E-resistant melanoma cells
Fig. 6: M-CSF plasma levels determine melanoma OS and DFS in metastatic melanoma patients.

Data availability

Not applicable


  1. Kosmopoulou M, Giannopoulou AF, Iliou A, Benaki D, Panagiotakis A, Velentzas AD, et al. Human melanoma‐cell metabolic profiling: Identification of novel biomarkers indicating metastasis. Int J Mol Sci. 2020;21:2436.

  2. Mishra H, Mishra PK, Ekielski A, Jaggi M, Iqbal Z, Talegaonkar S. Melanoma treatment: from conventional to nanotechnology. J Cancer Res Clin Oncol. 2018;144:2283–302.

    CAS  Article  Google Scholar 

  3. Trubini S, Ubiali A, Paties C, Cavanna L. Novel BRAF mutation in melanoma: a case report. Mol Clin Oncol. 2018;8:460–2. Epub 2018 Jan 12.

  4. Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B, et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of us food and drug administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107.

    CAS  Article  Google Scholar 

  5. Das A, Pushparaj C, Herreros J, Nager M, Vilella R, Portero M, et al. T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res. 2013;26:874–85.

    CAS  Article  Google Scholar 

  6. Maiques O, Barceló C, Panosa A, Pijuan J, Orgaz JL, Rodriguez-Hernandez I, et al. T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1. Pigment Cell Melanoma Res. 2018;31:484–95.

    CAS  Article  Google Scholar 

  7. Yang X, Yu DD, Yan F, Jing YY, Han ZP, Sun K, et al. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci. 2015;5:1–11.

    Article  Google Scholar 

  8. Ndoye A, Weeraratna AT. Autophagy—an emerging target for melanoma therapy [version 1; referees: 2 approved]. F1000Research. 2016;5:1–9.

    Article  Google Scholar 

  9. Barceló C, Sisó P, Maiques O, García-Mulero S, Sanz-Pamplona R, Navaridas R, et al. T-type calcium channels as potential therapeutic targets in vemurafenib-resistant BRAFV600E melanoma. J Invest Dermatol. 2020;140:1253–65.

    Article  Google Scholar 

  10. Barceló C, Sisó P, Maiques O, de la Rosa I, Martí RM, Macià A. T-type calcium channels: a potential novel target in melanoma. Cancers (Basel). 2020;12:1–13.

    Article  Google Scholar 

  11. Di Leo L, Bodemeyer V, De, Zio D. The complex role of autophagy in melanoma evolution: new perspectives from mouse models. Front Oncol. 2020;9:1–9.

    Google Scholar 

  12. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8:761–73.

    CAS  Article  Google Scholar 

  13. Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5.

  14. Di Blasio S, van Wigcheren GF, Becker A, van Duffelen A, Gorris M, Verrijp K, et al. The tumour microenvironment shapes dendritic cell plasticity in a human organotypic melanoma culture. Nat Commun. 2020;11:1–17.

    CAS  Article  Google Scholar 

  15. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17:302–17.

    CAS  Article  PubMed  Google Scholar 

  16. Herraiz C, Jiménez-Cervantes C, Sánchez-Laorden B, García-Borrón JC. Functional interplay between secreted ligands and receptors in melanoma. Semin Cell Dev Biol. 2018;78:73–84.

    CAS  Article  PubMed  Google Scholar 

  17. Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25:198–213.

    Article  Google Scholar 

  18. Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W, Shi H, et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 2015;520:368–72.

    CAS  Article  Google Scholar 

  19. da Cunha BR, Domingos C, Buzzo Stefanini AC, Henrique T, Polachini GM, Castelo-Branco P, et al. Cellular interactions in the tumor microenvironment: the role of secretome. J Cancer. 2019;10:4574–87.

    Article  Google Scholar 

  20. Madden EC, Gorman AM, Logue SE, Samali A. Tumour cell secretome in chemoresistance and tumour recurrence. Trends Cancer. 2020;6:489–505.

    CAS  Article  PubMed  Google Scholar 

  21. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    CAS  Article  PubMed  Google Scholar 

  22. Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood. 2010;115:1461–71.

    CAS  Article  Google Scholar 

  23. Chockalingam S, Ghosh SS. Macrophage colony-stimulating factor and cancer: a review. Tumor Biol. 2014;35:10635–44.

    CAS  Article  Google Scholar 

  24. Laoui D, van Overmeire E, de Baetselier P, van Ginderachter JA, Raes G. Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front Immunol. 2014;5:489.

  25. Neubert NJ, Schmittnaegel M, Bordry N, Nassiri S, Martignier C, Tillé L, et al. T cell–induced CSF1 promotes melanoma resistance to PD1 blockade Natalie. Sci Transl Med. 2018;10:1–30.

    Article  Google Scholar 

  26. Dwyer AR, Greenland EL, Pixley FJ. Promotion of tumor invasion by tumor-associated macrophages: The role of CSF-1-activated phosphatidylinositol 3 kinase and Src family kinase motility signaling. Cancers (Basel). 2017;9:1–15.

    Article  Google Scholar 

  27. Baghdadi M, Endo H, Takano A, Ishikawa K, Kameda Y, Wada H, et al. High co-expression of IL-34 and M-CSF correlates with tumor progression and poor survival in lung cancers. Sci Rep. 2018;8:1–10.

    CAS  Article  Google Scholar 

  28. Giricz O, Mo Y, Dahlman KB, Cotto-Rios XM, Vardabasso C, Nguyen H, et al. The RUNX1/IL-34/CSF-1R axis is an autocrinally regulated modulator of resistance to BRAF-V600E inhibition in melanoma. JCI Insight. 2018;3:e120422.

  29. Mok S, Tsoi J, Koya RC, Hu-Lieskovan S, West BL, Bollag G, et al. Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition. BMC Cancer. 2015;15:1–10.

    CAS  Article  Google Scholar 

  30. Liberato T, Pessotti DS, Fukushima I, Kitano ES, Serrano SMT, Zelanis A. Signatures of protein expression revealed by secretome analyses of cancer associated fibroblasts and melanoma cell lines. J Proteom. 2018;174:1–8.

    CAS  Article  Google Scholar 

  31. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20:840.

  32. Pijuan J, Barceló C, Moreno DF, Maiques O, Sisó P, Marti RM, et al. In vitro cell migration, invasion, and adhesion assays: From cell imaging to data analysis. Front Cell Dev Biol. 2019;7:107.

  33. Eritja N, Chen BJ, Rodríguez-Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608–24.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007;3:452–60.

    CAS  Article  Google Scholar 

  35. Maiques O, Macià A, Moreno S, Barceló C, Santacana M, Vea A, et al. Immunohistochemical analysis of T-type calcium channels in acquired melanocytic naevi and melanoma. Br J Dermatol. 2017;176:1247–58.

    CAS  Article  Google Scholar 

  36. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:1–7.

    CAS  Article  Google Scholar 

  37. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–3.

    CAS  Article  Google Scholar 

  38. Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell. 2011;20(Aug):229–45.

    CAS  Article  Google Scholar 

  39. Neubert NJ, Schmittnaegel M, Bordry N, Nassiri S, Wald N, Martignier C, et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med. 2018;10:eaan3311.

  40. Dvořánková B, Szabo P, Kodet O, Strnad H, Kolář M, Lacina L, et al. Intercellular crosstalk in human malignant melanoma. Vol. 254, Protoplasma. 2017;254:1143–50.

  41. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Article  PubMed  Google Scholar 

  42. Kodet O, Dvořánková B, Bendlová B, Sýkorová V, Krajsová I, Štork J, et al. Microenvironment-driven resistance to B-Raf inhibition in a melanoma patient is accompanied by broad changes of gene methylation and expression in distal fibroblasts. Int J Mol Med. 2018;41:2687–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Qu Y, Dou B, Tan H, Feng Y, Wang N, Wang D. Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Mol Cancer. 2019;18:1–16.

    Article  Google Scholar 

  44. Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RRK, Morgan RA, et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest. 2010;120:3953–68.

    CAS  Article  Google Scholar 

  45. Landskron G, De La Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185. Epub 2014 May 13.

  46. Bielenberg DR, Zetter BR. The contribution of angiogenesis to the process of metastasis. Cancer J (U S). 2015;21:267–73.

    CAS  Google Scholar 

  47. Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med. 2009;206(May):1089–102.

    CAS  Article  Google Scholar 

  48. Fend L, Accart N, Kintz J, Cochin S, Reymann C, Le Pogam F, et al. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts. PLoS ONE. 2013.

  49. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:1–13.

    Article  Google Scholar 

  50. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl J Med. 2011;364:2507–16.

    CAS  Article  Google Scholar 

  51. Sun C, Wang L, Huang S, Heynen GJJE, Prahallad A, Robert C. et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature. 2014;508:118–22.

    CAS  Article  PubMed  Google Scholar 

  52. Ngiow SF, Meeth KM, Stannard K, Barkauskas DS, Bollag G, Bosenberg M, et al. Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAFV600Emelanoma. Oncoimmunology. 2016;5:1–11.

    CAS  Article  Google Scholar 

  53. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    CAS  Article  Google Scholar 

  54. Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:1477–90.

    Article  Google Scholar 

Download references


This work was supported by grants from ISCIII/FEDER “Una manera de hacer Europa” (PI1500711 to R.M.M. & PI18/00573 to RMM & AM and PI20/00502 to NE) and CIBERONC-CB16/12/00231 to XMG, Fundació la Marató de TV3 (FMTV 201331-31) to RM and Generalitat de Catalunya (2014/SGR138) to XMG. CB and PS hold a predoctoral fellowship from UdL-IRBLleida. IR holds a predoctoral fellowship from AECC. AM holds a postdoctoral fellowship from AECC. The cell culture experiments were performed in the Cell Culture Scientific & Technical Service from Universitat de Lleida (UdL), Lleida, Spain. Work supported by the Xarxa de Bancs de Tumours de Catalunya sponsored by Pla Director d’Oncología de Catalunya (XBTC)”, IRBLleida Biobank (B.0000682) and PLATAFORMA BIOBANCOS (PT17/0015/0027; PT20/00021) and HCB-IDIBAPS Biobank (R120904-090) integrated in the Spanish National Biobank Network (ISCIII Code C 0.000.334). The research at the Melanoma Unit from Hospital Clinic of Barcelona was partially funded by Insituto de Salud Carlos III (ISCIII), Spain, through projects PI18/00419 and PI18/01077, and co-funded by the European Union; by the grant AC16/00081, integrated in the Plan Estatal I + D + I, IMMUSPHINX-Transcan-2; by the CIBER de Enfermedades Raras of ISCIII, Spain, cofinanced by European Development Regional Fund “A way to achieve Europe” ERDF; and by the Generalitat de Catalunya (AGAUR 2017/SGR1134 and CERCA Program). We are grateful to our patients and relatives, to physicians and nurses from the Melanoma Unit of Hospital Clínic of Barcelona for collecting patients samples and data, and to Judit Mateu from the “Melanoma: image, genetics and immunology” group at IDIBAPS for her technical assistance. NCL holds a predoctoral fellowship from Ministerio de Educación, Cultura y Deportes, Spain (FPU17/05453).

Author information

Authors and Affiliations



Conceptualisation: CB, PS, RM, AM; Data curation: CB, PS, IR, CM, RN, OM, IU, NE, XS, AM; Formal analysis: CB, PS, OM, AM; Funding acquisition: RM, AM, SP, XMG, NE; Investigation: CB, PS, IR, CM, RN, OM, IU, NE, MP, NCLl, AM. Methodology: CB, PS, OM, AM. Project administration: CB, PS, AM. Resources: SP, MP, NCLl, XMG, NE, RM, AM; Software: CB, PS, OM. Supervision: RM, AM; Validation: CB, PS; Visualisation: CB, PS, AM; Writing—original draft preparation: CB, PS, AM; Writing—review and editing: CB, PS, OM, SP, RM, AM.

Corresponding authors

Correspondence to R. M. Martí or A. Macià.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal experimental committee approved animal work procedures (CEEA from University of Lleida). The Clinical Research Ethics Committee of the HCB (study registry 2013/8305) approved this study and each study participant signed written informed consent in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barceló, C., Sisó, P., de la Rosa, I. et al. M-CSF as a therapeutic target in BRAFV600E melanoma resistant to BRAF inhibitors. Br J Cancer (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


Quick links