Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics and Genomics

Is loss of p53 a driver of ductal carcinoma in situ progression?

Abstract

Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive carcinoma. Multiple studies have shown that DCIS lesions typically possess a driver mutation associated with cancer development. Mutation in the TP53 tumour suppressor gene is present in 15–30% of pure DCIS lesions and in ~30% of invasive breast cancers. Mutations in TP53 are significantly associated with high-grade DCIS, the most likely form of DCIS to progress to invasive carcinoma. In this review, we summarise published evidence on the prevalence of mutant TP53 in DCIS (including all DCIS subtypes), discuss the availability of mouse models for the study of DCIS and highlight the need for functional studies of the role of TP53 in the development of DCIS and progression from DCIS to invasive disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of breast cancer progression from a normal duct to an invasive carcinoma.
Fig. 2: Morphological subtypes of DCIS (solid, cribriform, papillary, micropapillary and comedo).
Fig. 3: Lollipop chart displaying frequency and distribution of TP53 mutations in DCIS (top) and breast cancer (bottom).

Similar content being viewed by others

References

  1. Schnitt SJ. Local outcomes in ductal carcinoma in situ based on patient and tumor characteristics. JNCI Monogr. 2010;2010:158–61. https://doi.org/10.1093/jncimonographs/lgq031.

    Article  Google Scholar 

  2. Allred DC. Ductal carcinoma in situ: terminology, classification, and natural history. JNCI Monogr. 2010;2010:134–8. https://doi.org/10.1093/jncimonographs/lgq035.

    Article  Google Scholar 

  3. Alsheh Ali M, Czene K, Hall P, Humphreys K. Association of microcalcification clusters with short-term invasive breast cancer risk and breast cancer risk factors. Sci Rep. 2019;9:14604 http://www.nature.com/articles/s41598-019-51186-w.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bent CK, Bassett LW, D’Orsi CJ, Sayre JW. The positive predictive value of BI-RADS microcalcification descriptors and final assessment categories. Am J Roentgenol. 2010;194:1378–83. https://doi.org/10.2214/AJR.09.3423.

    Article  Google Scholar 

  5. Burnside ES, Ochsner JE, Fowler KJ, Fine JP, Salkowski LR, Rubin DL, et al. Use of microcalcification descriptors in BI-RADS 4th edition to stratify risk of malignancy. Radiology. 2007;242:388–95. https://doi.org/10.1148/radiol.2422052130.

    Article  PubMed  Google Scholar 

  6. Uematsu T, Kasami M, Yuen S. Usefulness and limitations of the Japan Mammography Guidelines for the categorization of microcalcifications. Breast Cancer. 2008;15:291–7. https://doi.org/10.1007/s12282-008-0033-4.

    Article  PubMed  Google Scholar 

  7. van Seijen M, Lips EH, Thompson AM, Nik-Zainal S, Futreal A, Hwang ES, et al. Ductal carcinoma in situ: to treat or not to treat, that is the question. Br J Cancer. 2019;121:285–92. http://www.nature.com/articles/s41416-019-0478-6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goh CW, Wu J, Ding S, Lin C, Chen X, Huang O, et al. Invasive ductal carcinoma with coexisting ductal carcinoma in situ (IDC/DCIS) versus pure invasive ductal carcinoma (IDC): a comparison of clinicopathological characteristics, molecular subtypes, and clinical outcomes. J Cancer Res Clin Oncol. 2019;145:1877–86. https://doi.org/10.1007/s00432-019-02930-2.

    Article  PubMed  Google Scholar 

  9. Casasent AK, Edgerton M, Navin NE. Genome evolution in ductal carcinoma in situ: invasion of the clones. J Pathol. 2017;241:208–18. https://doi.org/10.1002/path.4840.

    Article  PubMed  Google Scholar 

  10. Tozbikian G, Brogi E, Vallejo CE, Giri D, Murray M, Catalano J, et al. Atypical ductal hyperplasia bordering on ductal carcinoma in situ. Int J Surg Pathol. 2017;25:100–7. https://doi.org/10.1177/1066896916662154.

    Article  PubMed  Google Scholar 

  11. Makki J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8:CPath.S31563. https://doi.org/10.4137/CPath.S31563.

  12. Norton K-A, Wininger M, Bhanot G, Ganesan S, Barnard N, Shinbrot T. A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J Theor Biol. 2010;263:393–406. https://linkinghub.elsevier.com/retrieve/pii/S0022519309005669.

    Article  PubMed  Google Scholar 

  13. Salvatorelli L, Puzzo L, Vecchio GM, Caltabiano R, Virzì V, Magro G. Ductal carcinoma in situ of the breast: an update with emphasis on radiological and morphological features as predictive prognostic factors. Cancers (Basel). 2020;12:609 https://www.mdpi.com/2072-6694/12/3/609.

    Article  CAS  PubMed Central  Google Scholar 

  14. Maxwell AJ, Clements K, Hilton B, Dodwell DJ, Evans A, Kearins O, et al. Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ. Eur J Surg Oncol. 2018;44:429–35. https://linkinghub.elsevier.com/retrieve/pii/S074879831830009X.

    Article  PubMed  Google Scholar 

  15. Gorringe KL, Fox SB. Ductal carcinoma in situ biology, biomarkers, and diagnosis. Front Oncol. 2017. https://doi.org/10.3389/fonc.2017.00248/full.

  16. Harrison BT, Hwang ES, Partridge AH, Thompson AM, Schnitt SJ. Variability in diagnostic threshold for comedo necrosis among breast pathologists: implications for patient eligibility for active surveillance trials of ductal carcinoma in situ. Mod Pathol. 2019;32:1257–62. http://www.ncbi.nlm.nih.gov/pubmed/30980039.

    Article  PubMed  Google Scholar 

  17. van Seijen M, Jóźwiak K, Pinder SE, Hall A, Krishnamurthy S, Thomas JS, et al. Variability in grading of ductal carcinoma in situ among an international group of pathologists. J Pathol Clin Res. 2021;7:233–42. http://www.ncbi.nlm.nih.gov/pubmed/33620141.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thompson AM, Clements K, Cheung S, Pinder SE, Lawrence G, Sawyer E, et al. Management and 5-year outcomes in 9938 women with screen-detected ductal carcinoma in situ: the UK Sloane Project. Eur J Cancer. 2018;101:210–9. https://linkinghub.elsevier.com/retrieve/pii/S0959804918309419.

    Article  PubMed  Google Scholar 

  19. Marmot MG, Altman DG, Cameron DA, Dewar JA, Thompson SG, Wilcox M. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108:2205–40. http://www.nature.com/articles/bjc2013177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ryser MD, Weaver DL, Zhao F, Worni M, Grimm LJ, Gulati R, et al. Cancer outcomes in DCIS patients without locoregional treatment. JNCI J Natl Cancer Inst. 2019;111:952–60. https://academic.oup.com/jnci/article/111/9/952/5318677.

    Article  PubMed  Google Scholar 

  21. Kanbayashi C, Thompson AM, Hwang E-SS, Partridge AH, Rea DW, Wesseling J, et al. The international collaboration of active surveillance trials for low-risk DCIS (LORIS, LORD, COMET, LORETTA). J Clin Oncol. 2019;37:TPS603–TPS603. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS603.

    Article  Google Scholar 

  22. Hwang ES, Hyslop T, Lynch T, Frank E, Pinto D, Basila D, et al. The COMET (Comparison of Operative versus Monitoring and Endocrine Therapy) trial: a phase III randomised controlled clinical trial for low-risk ductal carcinoma in situ (DCIS). BMJ Open. 2019;9:e026797 http://www.ncbi.nlm.nih.gov/pubmed/30862637.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Elshof LE, Tryfonidis K, Slaets L, van Leeuwen-Stok AE, Skinner VP, Dif N, et al. Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ – The LORD study. Eur J Cancer. 2015;51:1497–510. https://linkinghub.elsevier.com/retrieve/pii/S0959804915003949.

    Article  PubMed  Google Scholar 

  24. Francis A, Thomas J, Fallowfield L, Wallis M, Bartlett JMS, Brookes C, et al. Addressing overtreatment of screen detected DCIS; the LORIS trial. Eur J Cancer. 2015;51:2296–303. https://linkinghub.elsevier.com/retrieve/pii/S0959804915006978.

    Article  PubMed  Google Scholar 

  25. Van Bockstal MR, Berlière M, Duhoux FP, Galant C. Interobserver variability in ductal carcinoma in situ of the breast. Am J Clin Pathol. 2020;154:596–609. https://academic.oup.com/ajcp/article/154/5/596/5860662.

    Article  PubMed  Google Scholar 

  26. Kanbayashi C, Iwata H. Current approach and future perspective for ductal carcinoma in situ of the breast. Jpn J Clin Oncol. 2017;47:671–7. https://academic.oup.com/jjco/article/47/8/671/3807293*.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pang J-MB, Savas P, Fellowes AP, Mir Arnau G, Kader T, Vedururu R, et al. Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod Pathol. 2017;30:952–63. http://www.nature.com/articles/modpathol201721.

    Article  CAS  PubMed  Google Scholar 

  28. Bergholtz H, Kumar S, Wärnberg F, Lüders T, Kristensen V, Sørlie T. Comparable cancer‐relevant mutation profiles in synchronous ductal carcinoma in situ and invasive breast cancer. Cancer Rep. 2020. https://doi.org/10.1002/cnr2.1248.

  29. Zhu C, Hu H, Li J, Wang J, Wang K, Sun J. Identification of key differentially expressed genes and gene mutations in breast ductal carcinoma in situ using RNA-seq analysis. World J Surg Oncol. 2020;18:52 https://doi.org/10.1186/s12957-020-01820-z.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaur H, Mao S, Li Q, Sameni M, Krawetz SA, Sloane BF, et al. RNA-seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PLoS ONE. 2012;7:e50249. https://doi.org/10.1371/journal.pone.0050249.

  31. van der Groep P, van Diest PJ, Menko FH, Bart J, de Vries EGE, van der Wall E. Molecular profile of ductal carcinoma in situ of the breast in BRCA1 and BRCA2 germline mutation carriers. J Clin Pathol. 2009;62:926–30. https://doi.org/10.1136/jcp.2009.065524.

    Article  PubMed  Google Scholar 

  32. Petridis C, Arora I, Shah V, Megalios A, Moss C, Mera A, et al. Frequency of pathogenic germline variants in BRCA1, BRCA2, PALB2, CHEK2 and TP53 in ductal carcinoma in situ diagnosed in women under the age of 50 years. Breast Cancer Res. 2019;21:58 https://doi.org/10.1186/s13058-019-1143-y.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kuba MG, Lester SC, Bowman T, Stokes SM, Taneja KL, Garber JE, et al. Histopathologic features of breast cancer in Li–Fraumeni syndrome. Mod Pathol. 2021;34:542–8. http://www.nature.com/articles/s41379-020-0610-4.

    Article  CAS  PubMed  Google Scholar 

  34. Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell. 2018;172:205–.e12. http://www.ncbi.nlm.nih.gov/pubmed/29307488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lane DP. p53, guardian of the genome. Nature. 1992;358:15–6. http://www.nature.com/articles/358015a0.

    Article  CAS  PubMed  Google Scholar 

  36. Zilfou JT, Lowe SW. Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 2009;1:a001883–a001883. https://doi.org/10.1101/cshperspect.a001883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moyer SM, Wasylishen AR, Qi Y, Fowlkes N, Su X, Lozano G. p53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo. Proc Natl Acad Sci USA. 2020;117:23663–73. https://doi.org/10.1073/pnas.2008474117.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ. 2022;29:895–910. https://www.nature.com/articles/s41418-022-00943-y.

    Article  CAS  PubMed  Google Scholar 

  39. Silwal-Pandit L, Vollan HKM, Chin S-F, Rueda OM, McKinney S, Osako T, et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res. 2014;20:3569–80. https://doi.org/10.1158/1078-0432.CCR-13-2943.

    Article  CAS  PubMed  Google Scholar 

  40. Wasylishen AR, Lozano G. Attenuating the p53 pathway in human cancers: many means to the same end. Cold Spring Harb Perspect Med. 2016;6:a026211 https://doi.org/10.1101/cshperspect.a026211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abubakar M, Guo C, Koka H, Sung H, Shao N, Guida J, et al. Clinicopathological and epidemiological significance of breast cancer subtype reclassification based on p53 immunohistochemical expression. npj Breast Cancer. 2019;5:20 http://www.nature.com/articles/s41523-019-0117-7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gencel-Augusto J, Lozano G. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev. 2020;34:1128–46. https://doi.org/10.1101/gad.340976.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim MP, Lozano G. Mutant p53 partners in crime. Cell Death Differ. 2018;25:161–8. http://www.nature.com/articles/cdd2017185.

    Article  CAS  PubMed  Google Scholar 

  44. Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–13. http://www.nature.com/articles/nrc2693.

    Article  CAS  PubMed  Google Scholar 

  45. Lang GA, Iwakuma T, Suh Y-A, Liu G, Rao VA, Parant JM, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119:861–72. https://linkinghub.elsevier.com/retrieve/pii/S0092867404010487.

    Article  CAS  PubMed  Google Scholar 

  46. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell. 2004;119:847–60. https://linkinghub.elsevier.com/retrieve/pii/S0092867404010463.

    Article  CAS  PubMed  Google Scholar 

  47. O’Malley FP, Vnencak-Jones CL, Dupont WD, Parl F, Manning S, Page DL. p53 mutations are confined to the comedo type ductal carcinoma in situ of the breast. Immunohistochemical and sequencing data. Lab Invest. 1994;71:67–72. http://www.ncbi.nlm.nih.gov/pubmed/8041120.

    PubMed  Google Scholar 

  48. Rajan PB, Scott DJ, Perry RH, Griffith CDM. p53 protein expression in ductal carcinoma in situ (DCIS) of the breast. Breast Cancer Res Treat. 1997;42:283–90. https://doi.org/10.1023/A:1005741723479.

    Article  CAS  PubMed  Google Scholar 

  49. Done SJ, Eskandarian S, Bull S, Redston M, Andrulis IL. p53 missense mutations in microdissected high-grade ductal carcinoma in situ of the breast. JNCI J Natl Cancer Inst. 2001;93:700–4. https://doi.org/10.1093/jnci/93.9.700.

    Article  CAS  PubMed  Google Scholar 

  50. Visser LL, Elshof LE, Van de Vijver K, Groen EJ, Almekinders MM, Sanders J, et al. Discordant marker expression between invasive breast carcinoma and corresponding synchronous and preceding DCIS. Am J Surg Pathol. 2019;43:1574–82. http://journals.lww.com/00000478-201911000-00015.

    Article  PubMed  Google Scholar 

  51. Radford DM, Fair K, Thompson AM, Ritter JH, Holt M, Steinbrueck T, et al. Allelic loss on a chromosome 17 in ductal carcinoma in situ of the breast. Cancer Res. 1993;53:2947–9. http://www.ncbi.nlm.nih.gov/pubmed/8391383.

    CAS  PubMed  Google Scholar 

  52. Bouchalova P, Nenutil R, Muller P, Hrstka R, Appleyard MV, Murray K, et al. Mutant p53 accumulation in human breast cancer is not an intrinsic property or dependent on structural or functional disruption but is regulated by exogenous stress and receptor status. J Pathol. 2014;233:238–46. https://doi.org/10.1002/path.4356.

    Article  CAS  PubMed  Google Scholar 

  53. Pareja F, Brown DN, Lee JY, Da Cruz Paula A, Selenica P, Bi R, et al. Whole-exome sequencing analysis of the progression from non–low-grade ductal carcinoma in situ to invasive ductal carcinoma. Clin Cancer Res. 2020;26:3682–93. https://doi.org/10.1158/1078-0432.CCR-19-2563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou W, Muggerud AA, Vu P, Due EU, Sørlie T, Børresen-Dale A-L, et al. Full sequencing of TP53 identifies identical mutations within in situ and invasive components in breast cancer suggesting clonal evolution. Mol Oncol. 2009;3:214–9. https://doi.org/10.1016/j.molonc.2009.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, et al. A molecular portrait of high-grade ductal carcinoma In situ. Cancer Res. 2015;75:3980–90. https://doi.org/10.1158/0008-5472.CAN-15-0506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479 http://www.nature.com/articles/ncomms11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52. http://www.nature.com/articles/nature10983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data: Fig. 1. Cancer Discov. 2012;2:401–4. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  59. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6. https://doi.org/10.1126/scisignal.2004088.

  60. Lukas J, Niu N, Press MF. p53 mutations and expression in breast carcinoma in situ. Am J Pathol. 2000;156:183–91. https://linkinghub.elsevier.com/retrieve/pii/S0002944010647189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Done SJ, Arneson NC, Ozçelik H, Redston M, Andrulis IL. p53 mutations in mammary ductal carcinoma in situ but not in epithelial hyperplasias. Cancer Res. 1998;58:785–9. http://www.ncbi.nlm.nih.gov/pubmed/9485035.

    CAS  PubMed  Google Scholar 

  62. Lips EH, Kumar T, Megalios A, Visser LL, Sheinman M, Fortunato A, et al. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer. Nat Genet. 2022. https://www.nature.com/articles/s41588-022-01082-3.

  63. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12:954–61. http://www.ncbi.nlm.nih.gov/pubmed/1312220.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR, et al. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene. 2000;19:1020–7. http://www.ncbi.nlm.nih.gov/pubmed/10713685.

    Article  CAS  PubMed  Google Scholar 

  65. Schulze-Garg C, Löhler J, Gocht A, Deppert W. A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene. 2000;19:1028–37. http://www.ncbi.nlm.nih.gov/pubmed/10713686.

    Article  CAS  PubMed  Google Scholar 

  66. Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO, et al. Transgenic Polyoma middle-T mice model premalignant mammary disease. Cancer Res. 2001;61:8298–305. http://www.ncbi.nlm.nih.gov/pubmed/11719463.

    CAS  PubMed  Google Scholar 

  67. Maglione JE, McGoldrick ET, Young LJT, Namba R, Gregg JP, Liu L, et al. Polyomavirus middle T-induced mammary intraepithelial neoplasia outgrowths: single origin, divergent evolution, and multiple outcomes. Mol Cancer Ther. 2004;3:941–53. http://www.ncbi.nlm.nih.gov/pubmed/15299077.

    Article  CAS  PubMed  Google Scholar 

  68. Namba R, Maglione JE, Young LJT, Borowsky AD, Cardiff RD, MacLeod CL, et al. Molecular characterization of the transition to malignancy in a genetically engineered mouse-based model of ductal carcinoma in situ. Mol Cancer Res. 2004;2:453–63. http://www.ncbi.nlm.nih.gov/pubmed/15328372.

    Article  CAS  PubMed  Google Scholar 

  69. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21. http://www.nature.com/articles/356215a0.

    Article  CAS  PubMed  Google Scholar 

  70. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4:1–7. https://linkinghub.elsevier.com/retrieve/pii/S0960982200000026.

    Article  CAS  PubMed  Google Scholar 

  71. Koch JG, Gu X, Han Y, El-Naggar AK, Olson MV, Medina D, et al. Mammary tumor modifiers in BALB/cJ mice heterozygous for p53. Mamm Genome. 2007;18:300–9. http://link.springer.com/10.1007/s00335-007-9028-2.

    Article  CAS  PubMed  Google Scholar 

  72. Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D, et al. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. Am J Pathol. 2000;157:2151–9. https://linkinghub.elsevier.com/retrieve/pii/S0002944010648535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Medina D, Kittrell FS, Shepard A, Stephens LC, Jiang C, Lu J, et al. Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 2002;16:881–3. https://doi.org/10.1096/fj.01-0885fje.

    Article  CAS  PubMed  Google Scholar 

  74. Ross SR. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses. 2010;2:2000–12. http://www.mdpi.com/1999-4915/2/9/2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu X, Liu DP, Xu Y. The gain of function of p53 cancer mutant in promoting mammary tumorigenesis. Oncogene. 2013;32:2900–6. http://www.ncbi.nlm.nih.gov/pubmed/22824795.

    Article  CAS  PubMed  Google Scholar 

  76. Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:1–9. https://www.hindawi.com/journals/mbi/2014/852748/.

    Article  Google Scholar 

  77. Yallowitz AR, Li D, Lobko A, Mott D, Nemajerova A, Marchenko N. Mutant p53 amplifies epidermal growth factor receptor family signaling to promote mammary tumorigenesis. Mol Cancer Res. 2015;13:743–54. http://www.ncbi.nlm.nih.gov/pubmed/25573952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alexandrova EM, Yallowitz AR, Li D, Xu S, Schulz R, Proia DA, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352–6. http://www.nature.com/articles/nature14430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alexandrova EM, Mirza SA, Xu S, Schulz-Heddergott R, Marchenko ND, Moll UM. p53 loss-of-heterozygosity is a necessary prerequisite for mutant p53 stabilization and gain-of-function in vivo. Cell Death Dis. 2017;8:e2661 http://www.ncbi.nlm.nih.gov/pubmed/28277540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wijnhoven SWP, Zwart E, Speksnijder EN, Beems RB, Olive KP, Tuveson DA, et al. Mice expressing a mammary gland–specific R270H mutation in the p53 tumor suppressor gene mimic human breast cancer development. Cancer Res. 2005;65:8166–73. https://doi.org/10.1158/0008-5472.CAN-05-1650.

    Article  CAS  PubMed  Google Scholar 

  81. Triplett AA, Sakamoto K, Matulka LA, Shen L, Smith GH, Wagner K-U. Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells. Genes. 2005;43:1–11. http://www.ncbi.nlm.nih.gov/pubmed/16106354.

    Article  CAS  Google Scholar 

  82. Heinlein C, Krepulat F, Löhler J, Speidel D, Deppert W, Tolstonog GV. Mutant p53R270H gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis. Int J Cancer. 2007;122:1701–9. https://doi.org/10.1002/ijc.23317.

    Article  CAS  Google Scholar 

  83. Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res. 2009;11:R66 http://www.ncbi.nlm.nih.gov/pubmed/19735549.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kittrell F, Valdez K, Elsarraj H, Hong Y, Medina D, Behbod F. Mouse mammary intraductal (MIND) method for transplantation of patient derived primary DCIS cells and cell lines. Bio Protoc. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27446983.

  85. Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol. 2011;225:565–73. http://www.ncbi.nlm.nih.gov/pubmed/22025213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hong Y, Limback D, Elsarraj HS, Harper H, Haines H, Hansford H, et al. Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of <scp>DCIS</scp> malignancy. J Pathol. 2022;256:186–201. https://doi.org/10.1002/path.5820.

    Article  CAS  PubMed  Google Scholar 

  87. Vasioukhin V, Degenstein L, Wise B, Fuchs E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci USA. 1999;96:8551–6. https://doi.org/10.1073/pnas.96.15.8551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bado I, Nikolos F, Rajapaksa G, Wu W, Castaneda J, Krishnamurthy S, et al. Somatic loss of estrogen receptor beta and p53 synergize to induce breast tumorigenesis. Breast Cancer Res. 2017;19:79 http://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-017-0872-z.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bowman-Colin C, Xia B, Bunting S, Klijn C, Drost R, Bouwman P, et al. Palb2 synergizes with Trp53 to suppress mammary tumor formation in a model of inherited breast cancer. Proc Natl Acad Sci USA. 2013;110:8632–7. https://doi.org/10.1073/pnas.1305362110.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25:5864–74. http://www.nature.com/articles/1209874.

    Article  CAS  PubMed  Google Scholar 

  91. Winter C, Nilsson MP, Olsson E, George AM, Chen Y, Kvist A, et al. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic. Ann Oncol. 2016;27:1532–8. https://linkinghub.elsevier.com/retrieve/pii/S0923753419347404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hollern DP, Contreras CM, Dance-Barnes S, Silva GO, Pfefferle AD, Xiong J, et al. A mouse model featuring tissue-specific deletion of p53 and Brca1 gives rise to mammary tumors with genomic and transcriptomic similarities to human basal-like breast cancer. Breast Cancer Res Treat. 2019;174:143–55. http://link.springer.com/10.1007/s10549-018-5061-y.

    Article  CAS  PubMed  Google Scholar 

  93. Liu H, Murphy CJ, Karreth FA, Emdal KB, White FM, Elemento O, et al. Identifying and targeting sporadic oncogenic genetic aberrations in mouse models of triple-negative breast cancer. Cancer Discov. 2018;8:354–69. https://doi.org/10.1158/2159-8290.CD-17-0679 .

    Article  CAS  PubMed  Google Scholar 

  94. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001;29:418–25. http://www.nature.com/articles/ng747z.

  95. Macedo GS, Alemar B, Ashton-Prolla P. Reviewing the characteristics of BRCA and PALB2-related cancers in the precision medicine era. Genet Mol Biol. 2019;42(1 suppl 1):215–31. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572019000200215&tlng=en.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gusterson BA, Ross DT, Heath VJ, Stein T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res. 2005;7:143 http://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rutkowski MR, Allegrezza MJ, Svoronos N, Tesone AJ, Stephen TL, Perales-Puchalt A, et al. Initiation of metastatic breast carcinoma by targeting of the ductal epithelium with adenovirus-cre: a novel transgenic mouse model of breast cancer. J Vis Exp. 2014. http://www.jove.com/video/51171/initiation-metastatic-breast-carcinoma-targeting-ductal-epithelium.

  98. Tao L, Xiang D, Xie Y, Bronson RT, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun. 2017;8:14431 http://www.nature.com/articles/ncomms14431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang Y, Xiong S, Liu B, Pant V, Celii F, Chau G, et al. Somatic Trp53 mutations differentially drive breast cancer and evolution of metastases. Nat Commun. 2018;9:3953 http://www.nature.com/articles/s41467-018-06146-9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brock EJ, Ji K, Shah S, Mattingly RR, Sloane BF. In vitro models for studying invasive transitions of ductal carcinoma in situ. J Mammary Gland Biol Neoplasia. 2019;24:1–15. http://link.springer.com/10.1007/s10911-018-9405-3.

    Article  PubMed  Google Scholar 

  101. Bischel LL, Beebe DJ, Sung KE. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer. 2015;15:12 https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1007-5.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kang J, Kim S, Noh D-Y, Choe K, Lee E, Kang H-S. The timing and characterization of p53 mutations in progression from atypical ductal hyperplasia to invasive lesions in the breast cancer. J Mol Med. 2001;79:648–55. http://link.springer.com/10.1007/s001090100269.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the NIH/NCI under award number F31CA246917, the Cancer Prevention Research Institute of Texas under award number RP180313 and Cancer Research UK and KWF Kankerbestrijding (ref. C38317/A24043).

Author information

Authors and Affiliations

Authors

Contributions

RLM, AMT and GL wrote and revised the manuscript.

Corresponding author

Correspondence to Guillermina Lozano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrissey, R.L., Thompson, A.M. & Lozano, G. Is loss of p53 a driver of ductal carcinoma in situ progression?. Br J Cancer 127, 1744–1754 (2022). https://doi.org/10.1038/s41416-022-01885-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01885-5

Search

Quick links