Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

EphA2 on urinary extracellular vesicles as a novel biomarker for bladder cancer diagnosis and its effect on the invasiveness of bladder cancer

Abstract

Background

Urinary extracellular vesicles (uEVs) secreted from bladder cancer contain cancer-specific proteins that are potential diagnostic biomarkers. We identified and evaluated a uEV-based protein biomarker for bladder cancer diagnosis and analysed its functions.

Methods

Biomarker candidates, selected by shotgun proteomics, were validated using targeted proteomics of uEVs obtained from 49 patients with and 48 individuals without bladder cancer, including patients with non-malignant haematuria. We developed an enzyme-linked immunosorbent assay (ELISA) for quantifying the uEV protein biomarker without ultracentrifugation and evaluated urine samples from 36 patients with and 36 patients without bladder cancer.

Results

Thirteen membrane proteins were significantly upregulated in the uEVs from patients with bladder cancer in shotgun proteomics. Among them, eight proteins were validated by target proteomics, and Ephrin type-A receptor 2 (EphA2) was the only protein significantly upregulated in the uEVs of patients with bladder cancer, compared with that of patients with non-malignant haematuria. The EV-EphA2-CD9 ELISA demonstrated good diagnostic performance (sensitivity: 61.1%, specificity: 97.2%). We showed that EphA2 promotes proliferation, invasion and migration and EV-EphA2 promotes the invasion and migration of bladder cancer cells.

Conclusions

We established EV-EphA2-CD9 ELISA for uEV-EphA2 detection for the non-invasive early clinical diagnosis of bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and validation of urinary EV-EphA2 as a biomarker for bladder cancer diagnosis.
Fig. 2: Development of EV-EphA2-CD9 ELISA and evaluation of bladder cancer diagnostic performance.
Fig. 3: Functional analysis and immunohistochemical staining of EphA2 in bladder cancer cells.
Fig. 4: The effect of EV-EphA2 on the invasion and migration potential of bladder cancer cells.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Babjuk M. Trends in bladder cancer incidence and mortality: success or disappointment? Eur Urol. 2017;71:109–10. https://doi.org/10.1016/j.eururo.2016.06.040.

    Article  PubMed  Google Scholar 

  2. Yoshida T, Kates M, Fujita K, Bivalacqua TJ, McConkey DJ. Predictive biomarkers for drug response in bladder cancer. Int J Urol. 2019;26:1044–53.

    Article  PubMed  Google Scholar 

  3. Lotan Y, Roehrborn CG. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: results of a comprehensive literature review and meta-analyses. Urology. 2003;61:109–18.

    Article  PubMed  Google Scholar 

  4. Schmitz-Dräger BJ, Droller M, Lokeshwar VB, Lotan Y, Hudson MA, Van Rhijn BW, et al. Molecular markers for bladder cancer screening, early diagnosis, and surveillance: The WHO/ICUD consensus. Urol Int. 2015;94:1–24.

    Article  PubMed  Google Scholar 

  5. Oeyen E, Hoekx L, De Wachter S, Baldewijns M, Ameye F, Mertens I. Bladder cancer diagnosis and follow-up: the current status and possible role of extracellular vesicles. Int J Mol Sci. 2019;20:821.

    Article  CAS  PubMed Central  Google Scholar 

  6. Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:1–60.

    Article  Google Scholar 

  7. Liu YR, Ortiz-Bonilla CJ, Lee YF. Extracellular vesicles in bladder cancer: biomarkers and beyond. Int J Mol Sci. 2018;19:2822.

    Article  PubMed Central  Google Scholar 

  8. Fujita K, Nonomura N. Urinary biomarkers of prostate cancer. Int J Urol. 2018;25:770–9.

    Article  CAS  PubMed  Google Scholar 

  9. Fujita K, Kume H, Matsuzaki K, Kawashima A, Ujike T, Nagahara A, et al. Proteomic analysis of urinary extracellular vesicles from high Gleason score prostate cancer. Sci Rep. 2017;7:1–9.

    Article  Google Scholar 

  10. Linxweiler J, Junker K. Extracellular vesicles in urological malignancies: an update. Nat Rev Urol. 2020;17:11–27. https://doi.org/10.1038/s41585-019-0261-8.

    Article  PubMed  Google Scholar 

  11. Matsuzaki K, Fujita K, Jingushi K, Kawashima A, Ujike T, Nagahara A, et al. MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma. Oncotarget. 2017;8:24668–78.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tomiyama E, Matsuzaki K, Fujita K, Shiromizu T, Narumi R, Jingushi K, et al. Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers. Cancer Sci. 2021;112:2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee J, McKinney KQ, Pavlopoulos AJ, Niu M, Kang JW, Oh JW, et al. Altered proteome of extracellular vesicles derived from bladder cancer patients urine. Mol Cells. 2018;41:179–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smalley DM, Sheman NE, Nelson K, Theodorescu D. Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res. 2008;7:2088–96.

    Article  CAS  PubMed  Google Scholar 

  15. Chen CL, Lai YF, Tang P, Chien KY, Yu JS, Tsai CH, et al. Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J Proteome Res. 2012;11:5611–29.

    Article  CAS  PubMed  Google Scholar 

  16. Lin SY, Chang CH, Wu HC, Lin CC, Chang KP, Yang CR, et al. Proteome profiling of urinary exosomes identifies alpha 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma. Sci Rep [Internet]. 2016;6:1–12. https://doi.org/10.1038/srep34446.

    Article  CAS  Google Scholar 

  17. Tomiyama E, Fujita K, Nonomura N. Urinary extracellular vesicles. In: Salvi S, Casadio V (eds). Urinary Biomarkers: Methods and Protocols, Methods in Molecular Biology, vol. 2292. (New York: Humana Press; 2021) pp 173–81.

  18. Nakai W, Yoshida T, Diez D, Miyatake Y, Nishibu T, Imawaka N, et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016;6:1–11.

    Article  Google Scholar 

  19. Tomiyama E, Fujita K, Rodriguez Pena MDC, Taheri D, Banno E, Kato T, et al. Expression of nectin-4 and pd-l1 in upper tract urothelial carcinoma. Int J Mol Sci. 2020;21:1–13.

    Article  Google Scholar 

  20. Dadhania V, Zhang M, Zhang L, Bondaruk J, Majewski T, Siefker-Radtke A, et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine. 2016;12:105–17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tomiyama E, Fujita K, Hashimoto M, Miyamoto H, Netto GJ, Nonomura N. Programmed cell death-ligand 1 expression in different molecular subtypes of upper tract urothelial carcinoma. Int J Urol. 2022;29:89–90.

    Article  CAS  PubMed  Google Scholar 

  22. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzales P, Pisitkun T, Knepper MA. Urinary exosomes: is there a future? Nephrol Dial Transpl. 2008;23:1799–801.

    Article  Google Scholar 

  24. Rood IM, Deegens JKJ, Merchant ML, Tamboer WPM, Wilkey DW, Wetzels JFM, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int [Internet]. 2010;78:810–6. https://doi.org/10.1038/ki.2010.262

    Article  CAS  Google Scholar 

  25. Dhondt B, Geeurickx E, Tulkens J, Van Deun J, Vergauwen G, Lippens L, et al. Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine. J Extracell Vesicles. 2020. https://doi.org/10.1080/20013078.2020.1736935

  26. Wei Q, Wei L, Zhang J, Li Z, Feng H, Ren L. EphA2-enriched exosomes promote cell migration and are a potential diagnostic serum marker in pancreatic cancer. Mol Med Rep. 2020;22:2941–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao Z, Han X, Zhu Y, Zhang H, Tian R, Wang Z. Drug-resistant cancer cell-derived exosomal EphA2 promotes breast cancer metastasis via the EphA2-Ephrin A1 reverse signaling. Cell Death Dis. 2021. https://doi.org/10.1038/s41419-021-03692-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. BioLegend, Inc. Purified anti-human EphA2 Antibody. 2013. https://www.biolegend.com/ja-jp/products/purified-anti-human-epha2-antibody-8365?GroupID=BLG15664. Accessed 25 May 2022.

  29. Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133:38–52.

    Article  CAS  PubMed  Google Scholar 

  30. Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene. 2021;40:2483–95. https://doi.org/10.1038/s41388-021-01714-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dunne PD, Dasgupta S, Blayney JK, McArt DG, Redmond KL, Weir JA, et al. EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clin Cancer Res. 2016;22:230–42.

    Article  CAS  PubMed  Google Scholar 

  32. Brannan JM, Dong W, Prudkin L, Behrens C, Lotan R, Bekele BN, et al. Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non -small cell lung cancer. Clin Cancer Res. 2009;15:4423–30.

    Article  CAS  PubMed  Google Scholar 

  33. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001;61:2301–6.

    CAS  PubMed  Google Scholar 

  34. Brantley-Sieders DM, Zhuang G, Hicks D, Wei BF, Hwang Y, Cates JMM, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008;118:64–78.

    Article  CAS  PubMed  Google Scholar 

  35. Yuan WJ, Ge J, Chen ZK, Wu SB, Shen H, Yang P, et al. Over-expression of EphA2 and ephrina-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients. Dig Dis Sci. 2009;54:2410–7.

    Article  CAS  PubMed  Google Scholar 

  36. Miyazaki T, Kato H, Fukuchi M, Nakajima M, Kuwano H. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer. 2003;103:657–63.

    Article  CAS  PubMed  Google Scholar 

  37. Mudali SV, Fu B, Lakkur SS, Luo M, Embuscado EE, Iacobuzio-Donahue CA. Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clin Exp Metastasis. 2006;23:357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng G, Hu Z, Kinch MS, Pan CX, Flockhart DA, Kao C, et al. High-level expression of EphA2 receptor tyrosine kinase in prostatic intraepithelial neoplasia. Am J Pathol. 2003;163:2271–6. https://doi.org/10.1016/S0002-9440(10)63584-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Zhang X, Qiu Y, Huang D, Zhang S, Xie L, et al. Clinical significance of EphA2 expression in squamous-cell carcinoma of the head and neck. J Cancer Res Clin Oncol. 2011;137:761–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wang LF, Fokas E, Juricko J, You A, Rose F, Pagenstecher A, et al. Increased expression of EphA7 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. BMC Cancer. 2008;8:151–6.

    Article  Google Scholar 

  41. Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN, et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res. 2004;10:5145–50.

    Article  CAS  PubMed  Google Scholar 

  42. Abraham S, Knapp DW, Cheng L, Snyder PW, Mittal SK, Bangari DS, et al. Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clin Cancer Res. 2006;12:353–60.

    Article  CAS  PubMed  Google Scholar 

  43. Kamoun W, Swindell E, Pien C, Luus L, Cain J, Pham M, et al. Targeting epha2 in bladder cancer using a novel antibody-directed nanotherapeutic. Pharmaceutics. 2020;12:1–18.

    Article  Google Scholar 

  44. Mo J, Zhao X, Dong X, Liu T, Zhao N, Zhang D, et al. Effect of EphA2 knockdown on melanoma metastasis depends on intrinsic ephrinA1 level. Cell Oncol. 2020;43:655–67.

    Article  CAS  Google Scholar 

  45. Hess AR, Seftor EA, Gardner LMG, Carles-Kinch K, Schneider GB, Seftor REB, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/Epha2). Cancer Res. 2001;61:3250–5.

    CAS  PubMed  Google Scholar 

  46. Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8:1–11. https://doi.org/10.1038/ncomms15728

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sadamu Ozaki, Takahiro Nishibu and Shigeaki Nakazawa for their help in constructing the ELISA and Mutsumi Tsuchiya and Atsuko Yasumoto for their technical support.

Funding

This study was supported by the Japan Society for the Promotion of Science under KAKENHI (grant numbers: 17K16788 and 20K18140) and the Japan Agency for Medical Research and Development under Translational Research (grant number: A102).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: ET and KF; data acquisition: ET, KM and RN; data analysis: ET, KM, RN, AY, TU, GY, YK, MM and YH; provision of resources: ET, KM, YH, MH, EB, RU, TT and ST; drafting the manuscript and figures: ET and KF; reviewing the manuscript: TK, KH, AK, MU, HU, JA, TT and NN. All authors have read and approved the final draft for submission.

Corresponding author

Correspondence to Kazutoshi Fujita.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Approval was obtained from the Institutional Review Board (Osaka University Hospital Institutional Review Board, Protocol Number: 13397-11) before initiating the study, and all patients provided written informed consent. The study was performed in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomiyama, E., Fujita, K., Matsuzaki, K. et al. EphA2 on urinary extracellular vesicles as a novel biomarker for bladder cancer diagnosis and its effect on the invasiveness of bladder cancer. Br J Cancer 127, 1312–1323 (2022). https://doi.org/10.1038/s41416-022-01860-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01860-0

This article is cited by

Search

Quick links