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BACKGROUND: Immunotherapy with immune checkpoint inhibitors (ICIs) is being explored to improve cholangiocarcinoma (CCA)
therapy. However, it remains difficult to predict which ICI will be effective for individual patients. Therefore, the aim of this study is
to develop a co-culture method with patient-derived CCA organoids and immune cells, which could represent anti-cancer
immunity in vitro.
METHODS: CCA organoids were co-cultured with peripheral blood mononuclear cells or T cells. Flow cytometry, time-lapse
confocal imaging for apoptosis, and quantification of cytokeratin 19 fragment (CYFRA) release were applied to analyse organoid
and immune cell behaviour. CCA organoids were also cultured in immune cell-conditioned media to analyse the effect of soluble
factors.
RESULTS: The co-culture system demonstrated an effective anti-tumour organoid immune response by a decrease in live organoid
cells and an increase in apoptosis and CYFRA release. Interpatient heterogeneity was observed. The cytotoxic effects could be
mediated by direct cell–cell contact and by release of soluble factors, although soluble factors only decreased viability in one
organoid line.
CONCLUSIONS: In this proof-of-concept study, a novel CCA organoid and immune cell co-culture method was established. This can
be the first step towards personalised immunotherapy for CCA by predicting which ICIs are most effective for individual patients.

British Journal of Cancer (2022) 127:649–660; https://doi.org/10.1038/s41416-022-01839-x

BACKGROUND
Cholangiocarcinoma (CCA) is the second most prevalent type of
primary liver cancer. It is an aggressive malignancy that originates
from the biliary tract [1–3]. As CCA is often asymptomatic until late
stages, at the time of diagnosis, 70–80% of the patients have non-
curable disease and receive a palliative treatment regimen
consisting of chemotherapeutics. Marked heterogeneity makes
CCA difficult to treat successfully and the prognosis for CCA
patients is poor, with 5-year survival rates of 7–20% [4, 5].
Immunotherapy is one of the avenues that is being explored to
improve CCA treatment. Immune checkpoint inhibitors (ICIs) have
been shown to be highly effective in activating pre-existing anti-
cancer T cell responses in patient subsets with several types of
advanced malignancies [6, 7]. Clinical data on the efficacy of these
inhibitors in CCA is limited. In phase 2 studies, anti-programmed
cell death protein 1 (anti-PD-1) antibody nivolumab demonstrated
complete or partial remission (objective response) in 22% of biliary
tract cancer patients [8], and nivolumab combined with anti-
cytotoxic T lymphocyte antigen 4 antibody ipilimumab induced an

objective response in 31% of patients with intrahepatic CCA [9].
Nevertheless, the majority of CCA patients do not respond well to
these antibody treatments and it has proven difficult to predict
which patients will benefit. Therefore, it would be of great benefit
to develop an in vitro model that predicts a patient’s response to
specific ICI in order to provide optimal immunotherapy.
The establishment of cancer organoids has had a significant

impact on the cancer research field by providing a patient-specific
three-dimensional (3D) model designed to better represent the
tumour than conventional two-dimensional cell cultures [10–16].
However, cancer organoids only represent the epithelial compart-
ment of the tumour, limiting their utility in several fields of cancer
research, including immunotherapy. Therefore, combining tumour
organoids with immune cells has become an important objective
to create an in vitro model suitable to study their interactions and
for the evaluation of immunotherapies. Co-cultures of organoids
and immune cells have already been reported for several types of
cancer, including gastric cancer organoids co-cultured with
autologous CD8+ T cells and dendritic cells [17], pancreatic cancer
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with allogeneic T cells [18], autologous peripheral blood mono-
nuclear cells (PBMCs) [19], and autologous CD8+ T cells and
dendritic cells [20], rectal cancer with autologous tumour-
infiltrating lymphocytes (TILs) [21], and non-small cell lung cancer
and colorectal cancer co-cultured with T cells [22].
Patient-derived CCA organoids were established from resected

tissue specimens [11, 23–25] and from needle biopsies [26, 27].
Both were shown to largely recapitulate gene expression and
mutational patterns of the patient tumour [11, 23, 25–27] and
were suitable for high-throughput compound screens that
identified several potential treatment options for CCA patients
[11, 23, 27]. However, even though CCA organoids have been in
use for several years, no co-culture method combining CCA
organoids with immune cells has been reported so far.
Therefore, the aim of the current study is to establish and

optimise an in vitro 3D co-culture model of patient-derived CCA
tumour organoids with PBMCs and purified T cells and to study
growth inhibition and induction of organoid cell death by these
cells. We performed several readouts for cytotoxicity, including
flow cytometry, injury marker release in supernatant, and time-
lapse confocal imaging. Furthermore, we investigated the
mechanism of cell death induced by T cells and described
patient-specific differences in sensitivity to immune cell cytotoxi-
city. Applications of this novel culture system for screening of new
immunotherapeutic antibodies and precision medicine will be
discussed.

MATERIALS AND METHODS
Human subjects
Fresh tumour tissue samples were collected from seven liver cancer
patients after surgical tumour resection at the Erasmus Medical Center
Rotterdam. None of the patients received chemotherapy or immunosup-
pressive therapy at least 3 months prior to the surgery. The use of tumour
tissue samples for research purposes was approved by the Erasmus MC
medical ethics committee (MEC-2012–331; MEC-2013-143; MEC-2016-375).
All patients consented to donate resected materials for research purposes.
Peripheral blood buffy coat was obtained from four healthy donors
(provided by Sanquin, Amsterdam, the Netherlands). PBMCs were isolated
by Ficoll density gradient centrifugation (600 × g, 20 min, 20 °C) as
described previously [28] and frozen at −150 °C for later use.

Organoid culture
Organoids were initiated and cultured from three CCA patients (Supple-
mentary Table S1) as described previously [11]. A brief description can be
found in Supplementary Materials. Tumorigenicity of CCA organoids was
confirmed by tumour formation after subcutaneous injection in mice.
Animal experiments were done in accordance to the Dutch law on
laboratory animal use and performed under license number
AVD101002017867—protocol 17-867-19. Organoid fragments were
injected into the flanks of female NOD.Cg-PrkdcSCID Il2rgtm1Wjl/SzJ (NSG)
mice (Charles River). Mice were checked weekly for tumour growth and
tumours were harvested when tumour volume was >2 cm3 or organoid
fragments were injected >6 months ago. CCA1 tumour formation was
found in 3/3 injection sites, CCA2 tumour formation in 4/4 injection sites,
and CCA3 in 4/5 injection sites. Tumours were harvested and histology was
assessed to confirm CCA-like tissue morphology. Moreover, mutation
analysis was performed by targeted next-generation sequencing for 65
cancer-related genes.

Optimisation of basement membrane extract (BME)
concentration in co-culture assay
PBMC or purified CD3+ T cells were thawed 1–2 days in advance and pre-
activated with anti-human CD3/CD28 dynabeads at a 1:100 bead:cell ratio
in T cell medium (TM: RPMI 1640 (Lonza, Breda, The Netherlands)
supplemented with 2mM L-glutamine/Ultraglutamine (Invitrogen, Wal-
tham, MA, USA), 50 mM Hepes Buffer (Lonza), 1% penicillin–streptomycin
(Life Technologies), 5 mM sodium pyruvate (Gibco), 1% minimum essential
medium non-essential amino acids (Gibco, Waltham, MA, USA), and 10%
human AB serum (Invitrogen)). One well of organoids was dissociated into
single cells and counted to determine the effector:target cell ratio.

Organoids used for co-culture were harvested, washed, and mechanically
fragmented. For co-culture without BME, organoid fragments were plated
in a flat-bottom 96-well plate. PBMC were added at a 5:1 effector:target cell
ratio. For co-culture with BME domes, organoid fragments were plated in a
75% BME dome in a flat-bottom 96-well plate, T cells were resuspended in
the medium and were added 1–2 h later around the BME dome at a 20:1
effector:target cell ratio. For co-culture in 10% BME suspension, organoid
fragments and PBMCs were resuspended in medium with 10% BME and
plated in a flat bottom 96-well plate.

Bright field and fluorescence imaging
Bright field and fluorescence imaging was performed using an EVOS FL
Cell Imaging System outfitted with red fluorescent protein and 4′,6-
diamidino-2-phenylindole (DAPI) light cubes. To analyse cell death,
organoids and co-cultures were stained before imaging by adding 12.5
µg/ml propidium iodide (Sigma-Aldrich, Saint Louis, MO, USA) and 100 µg/
ml Hoechst 33342 to the culture medium for 1 h.

ATP quantification cell viability assay
ATP quantification was performed to determine the effect of medium
composition adjustments on the organoids. Therefore, organoids were
mechanically disrupted and split into 5 µl droplets plated in a white-wall
96-well plate. Organoids were maintained in organoid expansion medium,
supplemented with 0, 2.5, 5, 7.5, or 10% human serum, supplemented with
0, 20 IU/ml (4 ng/ml) or 100 IU/ml (20 ng/ml) IL-2 or deprived of
nicotinamide and/or forskolin for 6–7 days. CellTiter-Glo® 3D Cell Viability
Assay (Promega, Madison, WI, USA) was used to quantify ATP content in
accordance with the manufacturer’s instructions.

PBMC proliferation and activity measurement
PBMCs from healthy donors were cultured in TM, organoid medium (OM)
with 10% human serum, or OM with 10% human serum without one of the
following reagents: A8301, recombinant human [Leu15]-Gastrin I, recom-
binant human epidermal growth factor, recombinant human hepatocyte
growth factor, forskolin, recombinant human FGF10, N2 supplement, N-
acetyl-L-cysteine, B27 supplement, nicotinamide, Rspo-1 conditioned
medium. Anti-human CD3/CD28 dynabeads (Gibco) were added in all
conditions except ‘TM’ and ‘OM’ at a bead:cell ratio of 1:100. Cells were
cultured in 96-well round-bottom culture plates at 37 °C.
After 4, 7, and 10 days, respectively, PBMCs were harvested and stained

with fixable viability dye eFluor 506 (1:500 in phosphate-buffered saline
(PBS), eBioscience, Waltham, MA, USA). Cell surface staining was then
performed in the dark at 4 °C for 20min with anti-CD45, anti-CD8, anti-CD4,
anti-CD3, anti-HLA-DR, and anti-CD137 antibodies (Supplementary
Table S3). Cells were washed and resuspended in fluorescence-activated
cell sorting FACS buffer (PBS with 0.1% EDTA, 0.5% NaN3, and 1% foetal
calf serum). For Ki-67 staining, cells were fixed and permeabilised using the
Foxp3 staining buffer set (eBioscience). PBMCs were measured using a
FACSCanto II flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and
analysed using the FlowJo software (version 10.0, LLC).

HepG2 killing assay
The HepG2 killing assay was performed as described previously [29].
PBMCs were activated with anti-human CD3/CD28 dynabeads at a 1:100
bead:cell ratio for 3 days. PBMC and HepG2-RFPs were combined at a 30:1
PBMC:HepG2-RFP ratio. They were resuspended in either TM or OM
without nicotinamide and co-cultured for 7 days.

Co-culture assay
Organoid preparation. Seven days before co-culture, organoids were
harvested, mechanically broken, and dissociated into small, 1–4 cell-sized
fragments by Trypsin-EDTA (Gibco) dissociation alternated with mechan-
ical disruption (3 cycles of 3 min Trypsin-EDTA at 37 °C). Later, they were
plated in 25 µl droplets of 75% BME and maintained in organoid expansion
medium, which was refreshed on days 3–4.

Immune cell preparation. The CCA organoid cultures used were typed for
HLA-A, -B, -C, -DRB1, -DRB345, and DQB1. PBMCs were isolated from
donors that were selected based on HLA mismatching with the CCA
organoids. In case of PBMC co-culture, PBMCs were thawed 2–3 days in
advance at 37 °C, then resuspended and cultured in TM with anti-human
CD3/CD28 dynabeads (Gibco-Life Technologies) at a 1:100 bead:cell ratio.
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In case of T cell co-culture, HLA-mismatched PBMCs were thawed 2–3 days
in advance at 37 °C, then T cells were isolated by CD3-positive selection by
microbeads according to the manufacturer’s instructions (Miltenyi,
Bergisch Gladbach, Germany). Live T cell purity was ≥95%. T cells were
cultured for 2–3 days in TM with anti-human CD3/CD28 dynabeads at a
1:20 bead:cell ratio and 20 IU/ml (4 ng/ml) interleukin (IL)-2.

Co-culture. On the day of co-culture, one well of organoids was
harvested, mechanically broken, and dissociated into single cells by
Trypsin-EDTA incubation (15min at 37 °C). Quantification of single cells
from this well was used to determine effector:target cell ratio between
immune cells and organoid cells. Immune cells were harvested, counted,
and combined with organoids at 20–30:1 (PBMCs) or 25–50:1 (T cells)
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ratios. Together, they were resuspended in 200 µl organoid expansion
medium without nicotinamide (OM-nic) with 10% BME (suspension
coating) and 10% human serum and plated in a 96-well flat-bottom
suspension plate. In some conditions, 25 IU/ml (5 ng/ml) IL-2, 50 IU/ml (10
ng/ml) IL-2, or 100 IU/ml (20 ng/ml) IL-2 was added. On day 3–4, 100 µl of
pre-warmed OM-nic with 10% human serum was carefully added.
Readouts were performed on day 7 of co-culture.

Live cell quantification by flow cytometry
Organoids and immune cells were harvested, washed, and dissociated into
single cells by incubation with TrypLE Express (Thermofisher, 3–5 cycles of
5 min at 37 °C), combined with regular resuspension and vortexing. An
aliquot was checked microscopically after cycle 3, 4, and 5 to determine
when the organoids were fully dissociated. Cells were washed first in PBS
and then in Annexin V binding buffer (eBioscience Annexin V apoptosis
detection kit), and stained with anti-EpCAM, anti-CD45, anti-CD3, anti-CD8,
anti-CD56, anti-CD14, and Annexin V (Supplementary Table S3) for 10–15
min at room temperature in the dark. Cells were washed and resuspended
in Annexin V binding buffer and stained with DAPI to mark dead cells.
Counting beads (Invitrogen, 123count eBeads) were added to each well
prior to flow cytometric recording (MACSQuant, Miltenyi). A strict gating
strategy was made to distinguish live CD45+ immune cells and live
EpCAM+ organoid cells (Supplementary Fig. 3A). The analysis was done
using the FlowJo software (version 10.0, LLC).

Cytokeratin subunit 19 fragment (CYFRA) quantification
Culture supernatants were collected on day 7 of the co-culture assay and
stored frozen at −20 °C. CYFRA concentration was measured by the
Lumipulse® G1200 (Fujirebio, Tokyo, Japan) automated immunoassay
analyser using the Lumipulse® G CYFRA immunoreaction cartridges
(Fujirebio) according to the manufacturer’s instructions.

Confocal time-lapse imaging and analysis
T cells were isolated and pre-activated as described above for co-culture
assays. On the day of co-culture, they were stained with 1 µM of CellTrace
Far Red (Invitrogen) in PBS for 15min at 37 °C. Organoids were pre-stained
with 0.1 µg/ml Hoechst 33342 (Thermofisher) for 3.5 h. Co-cultures were
prepared as described above, with addition of 1:1000 caspase 3/7
detection reagent (Invitrogen) and 0.1 µg/ml Hoechst 33342 to the
medium. Co-cultures were imaged in time using a Perkin Elmer confocal
Opera Phenix High Content screening system equipped with a ×10 air
objective (NA 0.3). Imaging settings and analysis details can be found in
Supplementary Materials.

Conditioned medium assay
TIL isolation and preparation of conditioned media from PBMC and TIL is
described in Supplementary Materials. Organoids were harvested,
mechanically broken, and dissociated into small, 1–4 cell-sized fragments
by Trypsin-EDTA dissociation alternated with mechanical disruption (3
cycles of 3 min Trypsin-EDTA at 37 °C). In all, 5 µl droplets of 75% BME
(diluted in organoid base medium) with 1500 organoid fragments were
plated in a 96-well flat-bottom plate. Each droplet was covered with 100 µl
of OM-nic supplemented with 0, 2.5, 5, 7.5, or 10% concentrated control
medium, concentrated conditioned medium from stimulated PBMCs or
TILs, or concentrated conditioned medium from unstimulated TILs.

Medium was refreshed on day 4. ATP quantification by CellTiter-Glo® 3D
Cell Viability Assay (Promega) was performed on day 7.

Analysis of co-stimulatory and co-inhibitory molecules by flow
cytometry
Organoids were harvested and dissociated into single cells with TrypLE
Express (3 cycles of 5 min at 37 °C), combined with regular resuspension
and vortexing. A half of organoid cells were stimulated with 100 ng/ml
interferon (IFN)-γ for 2 days, while the other half without stimulation. The
culture was in OM in 96-well round-bottom plates at 37 °C. After 2 days,
cells were harvested and stained with fluorochrome-conjugated antibodies
against different immune molecules in the presence of Fc receptor block
(Supplementary Table S3). DAPI was used to mark dead cells, and minus
controls were used for gating purposes.

RNA sequencing analysis
Sample preparation, RNA sequencing details, and data preparation can be
found in Supplementary Materials. Data are stored in the GEO repository
under accession number GSE179601. Differentially expressed genes were
determined by R package Limma (version 3.46.0) comparing CCA1 against
CCA2 and CCA3. Gene set enrichment analysis was performed for the 1000
genes with the highest 2log(fold change) using the publicly available
online analysis tool DAVID [30, 31] with the Gene Ontology: Biological
Processes database. Processes with false discovery rate (FDR)-adjusted
p value <0.25 were deemed significantly enriched.

Statistical analysis
Differences among multiple matched groups of data were analysed by
either one-way analysis of variance or mixed-effects analysis depending on
missing values. Differences between two matched groups of data were
analysed by two-tailed paired t test. Differences between two unmatched
groups of data were analysed by two-tailed unpaired t test. The statistical
analyses were performed using GraphPad Prism 9 (GraphPad Software).
p Values <0.05 were considered statistically significant (*p < 0.05; **p < 0.01;
***p < 0.001).

RESULTS
Establishment and optimisation of 3D co-culture conditions
To set up a 3D co-culture model, we used established patient CCA
organoid lines and PBMCs from healthy donors to establish co-
culture conditions in which both could survive and function. First,
we compared co-culture of organoid fragments and PBMC
without BME to co-culture in which organoid fragments were
cultured in BME domes while PBMCs were in the medium around
the dome (Fig. 1a). Without BME, organoids adhered to the plastic
did not propagate well and could not retain their 3D morphology.
Loss of the 3D self-organisation of organoids limits cellular
interactions and changes cellular behaviour. Therefore, co-
culture without BME was not feasible. Culture in BME domes
limited interaction between organoids and PBMC, as only a small
part of the PBMC could infiltrate into the BME dome over a short
distance in this setting. To overcome this, we suspended the

Fig. 1 Optimisation of the co-culture setup for CCA organoids and immune cells. Bright field images on days 4–5 show that CCA organoids
lose 3D morphology in culture without BME and PBMCs are not able to interact well with CCA organoids in BME domes (a). Co-culture in a
10% BME in medium suspension (b) can sustain 3D organoid morphology and allows PBMC–organoid interaction. CCA organoids and PBMCs
were exposed to different medium compositions to find a medium in which both survive and function. Flow cytometry for Ki-67, HLA-DR, and
CD137 protein expression in CD4+ and CD8+ T cells after 7 days of culture in T cell medium without and with anti-CD3/CD28 coated beads
(TM, TM+), organoid medium without and with anti-CD3/CD28 coated beads (OM, OM+), and organoid medium without specified
components in the presence of anti-CD3/CD28 coated beads (c) demonstrates an inhibitory effect of forskolin and nicotinamide on T cells
(n= 3 different PBMC donors). Statistical significance is depicted for OM+, -forsk and -nic compared to TM+. ATP quantification shows that
CCA organoid survivability is not affected by removal of forskolin or nicotinamide from the organoid medium, but removal of both decreases
viability (d) (n= 3 technical replicates). CCA viability was not affected by the addition of human serum to organoid medium as determined by
ATP quantification assay (e) (n= 3 technical replicates). Overlay of bright field (grey scale) and RFP (red) demonstrates that the killing potency
of anti-CD3/CD28 bead pre-activated PBMCs in both T cell medium (TM) and organoid medium without nicotinamide (OM-nic) is comparable
(f). Scale bar: 500 µm (a and left panel of b), 100 µm (right panel of b), 200 µm (f). All values with error bars represent mean with SEM. *p < 0.05,
**p < 0.01, ***p < 0.001.
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organoid fragments and PBMCs in medium with 10% BME
(Fig. 1b). This way, CCA organoids kept their 3D morphology
and PBMCs gathered around the organoids.
Consecutively, we examined the influence of TM on organoid

morphology and that of OM on T cell proliferation and activation.
CCA organoids were not able to retain their 3D morphology in TM

(Supplementary Fig. S1A), while CD4+ and CD8+ T cells displayed
reduced proliferation (Ki-67+ cells) and activation (HLA-DR+ cells)
when cultured in OM (CD4+ Ki-67+ 8.6% in OM+ vs 47.7% in TM+,
p < 0.001 and HLA-DR+ 1.7 vs 12.8%, p < 0.001; CD8+ Ki-67+ 1.1 vs
46.8%, p < 0.001 and HLA-DR+ 0.6 vs 13.4%, p < 0.001) (Fig. 1c). So,
we eliminated components of the OM to identify their
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contribution to the observed suppression of T cell activity. Of all
the components investigated, removal of forskolin partially and
removal of nicotinamide almost completely abolished the
suppressive effect of OM on T cells and removal of nicotinamide
even increased the number of CD137+ cells (CD4+ CD137+ 10.4%
in OM-nic vs 3.3% in TM+, p < 0.01; CD8+ CD137+ 8.6 vs 2.9%, p <
0.05) (Fig. 1c and Supplementary Fig. S2). The morphology and
viability of all three CCA organoid lines were not affected by
removing either nicotinamide or forskolin from the medium
(Fig. 1e and Supplementary Fig. S1B), but removal of both reduced
organoid viability as expressed by ATP quantification (fold
decrease CCA1: 0.23, CCA2: 0.43, CCA3: 0.80; Fig. 1d). The other
factor new to T cell culture is BME. In all, 10% BME did not increase
the expression of activation markers HLA-DR, CD137, and
proliferation marker Ki-67 in both CD4+ and CD8+ T cells, thereby
not leading to unwanted T cell reactivity (Supplementary Fig. S1C).
As human serum is a key component in TM, we investigated
whether addition to organoid culture would have harmful effects.
Human serum did not suppress growth or viability of CCA
organoids as shown by stable ATP content at concentrations up to
10% (Fig. 1e).
We tested the cytotoxic properties of PBMCs in OM without the

addition of nicotinamide in our previously established model of
immune cell-mediated killing of tumour cell line HepG2 [29].
PBMCs were pre-activated with anti-CD3/CD28-coated beads, then
co-cultured for 7 days with HepG2 cells that were genetically
labelled with RFP. Figure 1f shows that HepG2 cell number was
decreased in PBMC co-culture compared to HepG2 alone in both
OM without nicotinamide and TM, indicating similar killing
efficiency. All together, we determined that culture conditions
for the 3D co-culture of CCA organoids and PBMC should consist
of OM without nicotinamide, supplemented with 10% human
serum, in a 10% BME suspension.

CCA organoids show interpatient variation in PBMC-mediated
cytotoxicity
Next, CCA organoids were co-cultured with HLA-mismatched anti-
CD3/CD28 bead pre-activated PBMCs for 7 days. IL-2 is known to
stimulate T cell proliferation and activation, so we investigated
whether the addition of three concentrations of IL-2 could
enhance the effect of immune cells in co-culture, as IL-2 alone
did not affect the viability of CCA organoids (Supplementary
Fig. S3B). In co-culture, morphological changes in CCA2 like loss of
3D structural integrity indicated cytotoxicity of PBMCs, which
seems to aggravate upon addition of 5 and 10 ng/ml IL-2 (Fig. 2a).
Flow cytometry (Fig. 2b) shows that co-culture with PBMCs
seemed to lower the number of live organoid cells (EpCAM+

DAPI− cells) in CCA2 (fold decrease 0.89, p > 0.05), although not
significantly. Addition of 10 or 20 ng/ml IL-2 significantly lowered
the number of live organoid cells (fold decrease 0.50, p < 0.05 and
0.51, p < 0.01). The number of live cells in CCA1 and CCA3 was not
significantly reduced by co-culture with PBMCs alone (Fig. 2c, d).
While IL-2 also potentiated PBMC cytotoxicity in these organoid
lines, their decrease in live cells was not significant. IL-2 increased

the live cell count of CD4+ T cells, CD8+ T cells and CD56+ natural
killer (NK) cells in both the co-culture and the single PBMC culture
(Fig. 2e). The number of CD8+ T cells was over 100-fold higher and
the number of CD4+ T cells was about 200-fold higher than the NK
cell counts. After pre-activation with anti-CD3/CD28 beads, CD4+

and CD8+ T cells clearly produced IFN-γ and tumour necrosis
factor (TNF)-α compared to non-pre-activated T cells (Fig. 2f). Co-
culture with CCA organoids for 19 h seemed to already further
enhance the production of these effector cytokines by CD4+ and
CD8+ T cells, although at a low level. Greater effects might be
observed if the timeline of the co-culture is prolonged before IFN-
γ and TNF-αmeasurement. These data suggest that this optimised
co-culture system allows for studying the interaction between CCA
organoids and PBMCs and for quantification of immune cell
cytotoxicity of the cancerous organoid cells.

Purified T cells recapitulate the PBMC-mediated cytotoxicity
As PBMC are a mixed population of cells, we subsequently
investigated whether purified T cells were able to kill CCA
organoids. CD3+ T cells (purity ≥95%) were isolated from HLA-
mismatched PBMCs, pre-activated with anti-CD3/CD28-coated
beads and co-cultured with CCA organoids. After 7 days of co-
culture, CCA1 organoids were not affected morphologically, while
CCA2 and CCA3 organoids were smaller and partially disintegrated
(Fig. 3a), suggesting cell death. Quantification of live cells showed
significant CCA organoid cell death in co-culture with T cells in
both CCA2 (fold decrease 0.30, p < 0.001) and CCA3 (fold decrease
0.39, p < 0.01) co-cultures, whereas CCA1 organoid live cell counts
were not affected (Fig. 3b). Co-culture with CCA organoids did not
reduce the live cell count of cytotoxic (CD8+) and CD8- T cells
compared to their single culture (Fig. 3c). CYFRA is a cytokeratin 19
fragment that is usually determined in serum or plasma as a
(potential) biomarker for a range of different solid tumours,
including CCA [32, 33]. It is released from apoptotic and necrotic
cholangiocytes, while it is not released by immune cells [34].
Hence, we hypothesised that it might serve as a simple and
scalable readout in our co-culture system. CYFRA concentration
was higher in the culture supernatant of CCA2 co-culture than in
the culture supernatant of only organoids (fold increase 1.56, p <
0.05), while it was not significantly increased in CCA1 and CCA3
co-cultures (Fig. 3d and Supplementary Fig. S3C). Confocal time-
lapse imaging showed that more CCA2 organoid cells were
caspase 3/7 probe positive in the co-culture with T cells compared
to the culture of only organoids (Fig. 3e and Supplementary
Video S1 vs S2), indicating increased apoptotic cell death in co-
cultured organoids. T cell only culture also showed that a large
number of T cells is caspase 3/7 probe positive (Fig. 3e and
Supplementary Video S3), which could be due to apoptosis, but is
also seen upon T cell activation with anti-CD3 [35]. Quantitative
analysis of the confocal images confirmed that the apoptotic cell
area in the organoid region was increased about sevenfold after
7 days of co-culture with T cells compared to the single culture of
organoids (Fig. 3f). The number of T cells was similar in the co-
culture and in single culture (Fig. 3g). Together, these data

Fig. 2 Pre-activated PBMCs co-cultured with CCA organoids and IL-2 show patient-specific killing. CCA2 organoids were co-cultured with
anti-CD3/CD28 pre-activated PBMCs for 7 days. Bright field imaging (a) shows that CCA2 organoids lose their regular morphology and become
fragmented, especially upon addition of IL-2. Flow cytometry cell count for EpCAM-positive and CD45- and DAPI-negative cells (b)
demonstrates that CCA2 organoids sustain significant cell death in the presence of 50 IU/ml (10 ng/ml, mid) or 100 IU/ml (20 ng/ml, high) IL-2,
but not with 25 IU/ml (5 ng/ml, low) IL-2. CCA1 (c) and CCA3 (d) organoids do not show a significant decrease in live cells in the same co-culture
setting (n ≥ 3 biological replicates for each organoid line; n= 2 different PBMC batches). Flow cytometry cell count for live (DAPI-negative) CD4+

and CD8+ T cells and CD56+ NK cells demonstrates that the number of live cells is comparable between solo culture and co-culture and
addition of 100 IU/ml IL-2 increases the number of live cells (e). Flow cytometry for intra-cellular staining of IFN-γ and TNF-α in non-pre-
activated and 3-day pre-activated PBMC cultures, and co-cultures of CCA organoids with pre-activated PBMCs, either with or without 100 IU/ml
IL-2 (f). The percentage of cytokine-positive CD4+ and CD8+ T cells was determined after 19 h of (co-)culture in the presence of brefeldin and
monensin (n= 3 technical replicates). Scale bar: 500 µm (a). All values with error bars represent mean with SEM. *p < 0.05, **p < 0.01.
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indicate that strong killing of CCA organoids mediated by T cells is
possible in our co-culture system and the degree of cytotoxicity is
different between CCA organoid lines.

Soluble immune cell-mediated factors exert pleiotropic effects
on CCA organoids
In the co-culture experiments in which organoids were cultured in
BME domes, while T cells were added in the medium around the

dome, T cells were hardly able to infiltrate. Still, CCA2 organoids
were killed after 7 days of co-culture in this setting (Fig. 4a). This
suggests that T cells might be able to kill CCA organoids without
direct contact, possibly mediated by soluble factors produced by
T cells. Therefore, we also studied the indirect effect of soluble
factors produced by immune cells on CCA organoids. For this,
supernatant was collected from stimulated PBMC (stimulated
PBMC-conditioned medium) and control medium (OM-nic with

b

c d

a
O

rg
an

o
id

s 
o

n
ly

C
o

-c
u

lt
u

re

Live T cell count

T ce
lls

 al
one

CCA1 c
o-c

ultu
re

CCA2 c
o-c

ultu
re

CCA3 c
o-c

ultu
re

0

1

2

3

F
o

ld
 in

cr
ea

se

F
o

ld
 in

cr
ea

se

CD8+

CD8-

CCA1 CCA2
Live organoid cell count

Only organoids

Co-culture with T cells

CCA1 CCA2 CCA3
0.0

0.5

1.0

1.5

2.0

F
o

ld
 d

ec
re

as
e/

in
cr

ea
se

CCA3

CYFRA

CCA1

CCA1 c
o-c

ultu
re

CCA2

CCA2 c
o-c

ultu
re

CCA3

CCA3 c
o-c

ultu
re

0.0

0.5

1.0

1.5

2.0

e f

g

t = 0 h

T
 c

el
ls

 o
n

ly
O

rg
an

o
id

s 
o

n
ly

C
o

-c
u

lt
u

re

t = 90 h t = 180 h

0

0

50,000

100,000

150,000

200,000

2000

4000

6000

8000

10,000

10 2 3 4

Days

T cells number

Organoid region-dead cells area

T cells

Co-culture with T cells

Co-culture unstained

CCA2

T cells

Co-culture with T cells

Co-culture unstained

CCA2

N
u

m
b

er
 o

f 
o

b
je

ct
s

5 6 7

10 2 3 4

Days

[μ
m

2 ] 
- 

S
u

m
 p

er
 w

el
l

5 6 7

G. Zhou et al.

655

British Journal of Cancer (2022) 127:649 – 660



10% human serum) and concentrated 10 times by centrifugal
filtration before adding to the culture. CCA organoids were
cultured in BME domes surrounded by medium supplemented
with different amounts (2.5, 5, 7.5, and 10%) of concentrated
conditioned medium or control medium. The viability of CCA2
organoids was significantly suppressed by stimulated PBMC-
conditioned medium compared to control medium (fold decrease
0.33 vs 1.22 at 10%, p < 0.05) after 7 days (Fig. 4b). Yet, CCA1 and
CCA3 organoids did not show growth inhibition. Next, specific TIL-
derived soluble factors were tested by adding concentrated
conditioned media from unstimulated and stimulated TIL to CCA
organoid cultures. Similarly, stimulated TIL-conditioned medium
suppressed the viability of CCA2 organoids compared to both
unstimulated TIL-conditioned medium and control medium (fold
decrease stim. TIL: 0.60 vs unstim. TIL: 1.05 vs control: 1.22 at 10%,
p < 0.01) (Fig. 4c). Interestingly, both unstimulated and stimulated
TIL-conditioned media increased the viability and/or proliferation
of CCA1 (fold increase stim. TIL: 1.54 vs unstim. TIL: 1.44 vs. control:
0.60 at 10%, p < 0.01) and CCA3 (fold increase stim TIL: 2.74 vs
unstim. TIL: 1.84 vs control: 1.38 at 10%, p < 0.05) organoids. These
data reveal that the soluble factors secreted by stimulated TIL and
PBMC show CCA organoid line-specific effects, ranging from the
induction of cell death in CCA2, through TIL-specific stimulation in
CCA1 and CCA3.

Variation in immune checkpoint expression in CCA organoids
The described results demonstrate clear distinctions in the
response of different patient-derived organoid lines to direct
and indirect contact with immune cells. CCA1 organoids were
resistant to inhibitory effects in both direct co-culture and indirect
conditioned media experiments. In contrast, CCA2 organoids were
sensitive to killing in both assays. CCA3 organoids were sensitive
to T cell-mediated cytotoxicity in co-culture but were in fact
stimulated by TIL-conditioned media. In order to understand the
marked variation in CCA organoid response to direct and indirect
immune cell contact, the heterogeneity of expression of co-
inhibitory and co-stimulatory immune molecules and RNA
expression patterns were assessed.
The three CCA organoid lines express similar levels of

checkpoint molecule B7-H3 (CD276) and CD155 (possible ther-
apeutic immunological target), which was expressed on almost
every cell (B7-H3: 94.2–99.9%, CD155: 94.3–98.1%), while major
histocompatibility complex (MHC) class 2 molecules (2.6–5.0%),
B7-H5 (0.5–1.4%), and co-stimulatory molecule CD80 (0.1–2.2%)
were hardly present on CCA organoids (Fig. 5a, b and
Supplementary Fig. S4). Co-stimulatory MHC class 1 molecules
(5.9%) and CD86 (42.1%) expression was lower in CCA2 organoids
than in CCA1 and CCA3. Almost 40% of CCA3 organoid cells are
CD112-positive, while CCA1 and CCA2 cells hardly express it
(0–3.8%). Co-inhibitory PD-L1 (13.8%) and PD-L2 (6.0%) showed
lower expression on CCA3 organoids than in CCA1 and CCA2.
Galectin 9 was most present in CCA1 organoids (25.4%), followed
by CCA2 (16.6%). After IFN-γ stimulation (Fig. 5a, b and

Supplementary Fig. S4), CCA2 and CCA3 organoids upregulated
multiple co-stimulatory and co-inhibitory molecules, including PD-
L1, PD-L2, MHC class 2 molecules, and galectin 9, and CCA2
organoids also upregulated MHC class 1 molecules and CD86. In
turn, CCA1 organoids did not respond to IFN-γ stimulation with
upregulation of any of these molecules.
To identify differences in the transcriptome of CCA1 that could

potentially explain its resistance to immune-mediated cell death
compared to the other CCA organoid lines, we performed gene
set enrichment analysis for the 1000 most differentially expressed
genes when compared to CCA2 and CCA3. As shown in Fig. 5c,
three cell adhesion-related processes were significantly enriched
in the gene set, with enrichment scores of 4.2 (GO:0007156, FDR <
0.001), 2.0 (GO:0007155, FDR < 0.01), and 7.1 (GO:0016339, FDR <
0.01). The main type of cell adhesion-related genes found was
(proto)cadherins (Supplementary Table S4). Together, these data
demonstrate the marked heterogeneity among different patients’
liver tumour organoids in the expression of co-stimulatory and co-
inhibitory molecules and RNA expression patterns.

DISCUSSION/CONCLUSION
CCA is a heterogeneous cancer with a poor prognosis and limited
treatment options. Immune therapy is a promising new strategy,
and the limited number of clinical trials performed suggest that a
subpopulation of CCA patients could benefit from ICI treatment.
However, stratification of these patients is challenging. Here we
are the first to establish a co-culture model of CCA organoids and
immune cells that could potentially serve as an in vitro
personalised model to test ICI. This novel 3D co-culture system
allows for (1) maintaining the morphology and growth of CCA
organoids, (2) survival and function of immune cells, (3)
interaction between organoids and immune cells, and (4)
quantifiable patient-specific cytotoxic effects of immune cells in
CCA organoids. Our work is also the first to demonstrate both
cellular contact-based cytotoxicity and soluble factor-mediated
cytotoxicity of tumour organoids induced by immune cells.
CCA organoids were cultured with mismatched PBMCs, which

resulted in a variable cytotoxic effect. Addition of IL-2 to the
cultures enhanced organoid cell death, demonstrating that
immune cell function can be modulated in the newly developed
co-culture system. The number of CD4+ and CD8+ T cells far
exceeded the number of NK cells in these cultures. We suspected
that T cells might be responsible for the majority of the cytotoxic
effect, despite different expression levels of MHC class 1 molecules
on the three organoid lines. Therefore, CCA organoids were
combined with purified CD3+ T cells to analyse their specific
effect. This confirmed that T cells have potent cytotoxic effects on
most but not all CCA organoid lines. The stronger killing effect of
T cells compared to PBMCs was probably caused by higher actual
effector cell (T cell)/target cell ratios.
In addition to conventionally used flow cytometric and time-

lapse confocal analysis to quantify cell death, we aimed to find an

Fig. 3 Pre-activated T cells also kill CCA organoids in a patient-specific manner. Bright field images (a) of CCA organoids cultured with and
without T cells for 7 days demonstrate that CCA1 organoids are not inhibited by T cells while CCA2 and CCA3 organoids are smaller and
disintegrated, indicating cell death. Flow cytometric cell count for EpCAM-positive, CD45-negative, and DAPI-negative cells (b) shows that
CCA2 and CCA3 organoids sustain significant cell death after 7 days of co-culture with anti-CD3/CD28 bead pre-activated T cells, while CCA1
organoids are not affected (n ≥ 3 biological replicates for each organoid line; n= 2 different PBMC batches). Flow cytometric cell count for live
(DAPI-negative) CD8+ and CD8- T cells (c). Relative difference in CYFRA concentration in supernatant after 7 days of CCA organoid and T cell
co-culture (d) demonstrates a significant increase in CCA2 (n ≥ 3 biological replicates for each organoid line). Representative confocal images
of Cell Trace Far Red-stained T cells (red), Hoechst 33342-stained CCA2 organoids (blue), and co-cultures in the presence of a Caspase 3/7-
probe (green) at timepoints 0, 90, and 180 h (e). Quantification of dead cell surface (Caspase 3/7 probe-positivity) in organoid area (Hoechst
33342 labelled) (f) and number of T cells (g) in nine fields of view of confocal time-lapse imaging every 6 h for 180 h. Organoid death is higher
in co-cultures with T cells compared to CCA2 organoids alone. The number of T cells (Cell Trace Far Red labelled) is comparable between solo
culture and co-culture. Scale bar: 200 µm (left and middle panel of a), 50 µm (right panel of a), 100 µm (e). All values with error bars represent
mean with SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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easy, quick, and scalable readout by employing a CYFRA
quantification assay. The increase in CYFRA determined in the
co-culture supernatant of CCA2 with T cells indicates organoid cell
death in concordance with flow cytometry and confocal imaging.
However, even though similar levels of cell death were found for
CCA3 by flow cytometric analysis, there was no clear increase in
CYFRA concentration. A possible explanation could be that the
number of CCA3 organoid cells in (co-)culture on day 7 was too
low, which could be attributed to the lower proliferation rate of
these organoids or efficient killing by immune cells at an earlier
stage. Consequently, the amount of CYFRA released into the
supernatant was too low to measure a significant increase.
Besides the effect that immune cells have on cell viability when

cultured in direct cellular contact with tumour organoids, we also
demonstrated that soluble factors produced by immune cells have
an effect on CCA organoid growth. In detail, one of the organoid
lines was susceptible to cell death by soluble factors, while the

other two organoid lines displayed induced proliferation by TIL
conditioned medium. CD8+ cytotoxic T cells are known to
produce granzymes and perforins to induce apoptosis in cancer
cells [36], which could explain the cytotoxic effects seen in the
organoids. In addition to this, T cells produce a range of cytokines
supported by CD4+ T helper cells, including TNF-α, IFN-γ, and IL-2
[37]. These cytokines could play a part in the inhibition or
stimulation of CCA organoids. It would be interesting to further
investigate what soluble factors specifically cause cell death in
some CCA organoids and what soluble factors cause the
acceleration of growth in others.
In general, both direct cellular contact with immune cells and

soluble factors produced by immune cells seem to induce a
marked heterogeneity in CCA patient organoid responses. CCA
tumours are known to be notoriously heterogeneous, displaying a
wide range of genomic and epigenetic abnormalities and
molecular patterns [4]. Therefore, their biological behaviour is
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diverse, and variation in immune cell interactions is to be
expected. Studies in which rectal cancer organoids were co-
cultured with TIL also showed patient-specific differences in
immune killing [21]. The factors determining effectivity of immune
cell-based killing and immunotherapy in patients are complex and
poorly understood. To identify contributing factors to the
differences in susceptibility to killing of organoids in our co-
culture system, we analysed the protein expression levels of
immune co-stimulatory and co-inhibitory molecules and differ-
ences in transcriptomes. Although considerable variation in
protein expression of immune molecules and response to IFN-γ
stimulation was found among the CCA organoid lines, we could
not find a direct link to the diversity in response. Gene set
enrichment analysis of genes that were expressed in higher levels
in CCA1 identified three cell adhesion processes. (Proto)cadherins
were the most abundant adhesion genes enriched in these
processes. E-cadherin is the best studied cadherin and is known to
interact with dendritic cells, macrophages, NK cells, and T cells
[38]. However, e-cadherin was not found to be overexpressed here
and it remains unclear whether the identified (proto)cadherins are
able to modify immune cells, and, if so, whether they would be
stimulatory or inhibitory. This does not provide further evidence
helping to explain the described differences in susceptibility to
immune cell-related cytotoxicity specifically. Thus, further studies
are needed using more patient-derived organoid lines to elucidate
mechanisms adopted by CCA organoid cells to evade immune cell
killing.
The implementation of immune cells in CCA organoid

cultures, which consist of epithelial cancer cells only, has
provided an important step towards a more complex represen-
tation of the tumour microenvironment. The combination of
patient-derived CCA organoids and autologous tumour-
infiltrating immune cells potentially provides a patient-specific
model to determine which ICI could benefit the patient.
Acquisition of matched CCA organoids and PBMC or TIL from
large patient cohorts remains challenging. CCA organoid
research is still at an early stage, and establishment of confirmed
CCA cultures is not successful for all patients, with a reported
establishment rate of approximately 36% [39]. Moreover, the
number of TIL required for the current co-culture protocol
demands larger pieces of tumour tissue for isolation, limiting TIL
co-cultures to the relatively small subset of CCA patients
undergoing surgical resection. Nonetheless, the feasibility of
autologous cancer organoid and TIL co-culture has been
demonstrated for rectal cancer organoids. In this study, three
co-cultures of rectal cancer organoids with TIL were treated with
PD-1 antibody pembrolizumab and marked differences in
effectivity were observed. No effect was found in one organoid
line, temporary improvement was shown for the second, and
improved cytotoxicity was only detected in the third organoid
line [21]. This study also revealed that organoids established
from patients with a complete pathological response to neo-
adjuvant chemoradiotherapy showed higher sensitivity to TIL-
mediated killing in vitro, showing evidence of clinical relevance
of organoid immune cell co-cultures. Subsequently, studies
need to be designed to investigate the predictive value of this
in vitro model by comparing patient response to ICI to the effect
of these ICI in co-cultures of CCA organoids and autologous TIL.
In conclusion, this study provides an optimised an innovative

in vitro 3D co-culture method in which patient-derived CCA
organoids are cultured with immune cells. Assessing cell death
using this method demonstrated quantifiable direct and indirect
anti-tumour organoid immune responses that vary between CCA
organoid lines. As proof of principle, and likely supplemented with
patient-specific immune cells, the co-culture method presented in
this study could serve as a useful tool to examine the efficacy of
new ICI and to predict which, if any, ICI would be most effective in
individual patients.
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