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HDAC4 promotes the growth and metastasis of gastric cancer
via autophagic degradation of MEKK3
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BACKGROUND: Histone deacetylases (HDACs) have been shown to be involved in tumorigenesis, but their precise role and
molecular mechanisms in gastric cancer (GC) have not yet been fully elucidated.
METHODS: Bioinformatics screening analysis, qRT-PCR, and immunohistochemistry (IHC) were used to identify the expression of
HDAC4 in GC. In vitro and in vivo functional assays illustrated the biological function of HDAC4. RNA-seq, GSEA pathway analysis,
and western blot revealed that HDAC4 activated p38 MAPK signalling. Immunofluorescence, western blot, and IHC verified the
effect of HDAC4 on autophagy. ChIP and dual-luciferase reporter assays demonstrated that the transcriptional regulation
mechanism of HDAC4 and ATG4B.
RESULTS: HDAC4 is upregulated in GC and correlates with poor prognosis. In vitro and in vivo assays showed that HDAC4
contributes to the malignant phenotype of GC cells. HDAC4 inhibited the MEF2A-driven transcription of ATG4B and prevented
MEKK3 from p62-dependent autophagic degradation, thus activating p38 MAPK signalling. Reciprocally, the downstream
transcription factor USF1 enhanced HDAC4 expression by regulating HDAC4 promoter activity, forming a positive feedback loop
and continuously stimulating HDAC4 expression and p38 MAPK signalling activation.
CONCLUSION: HDAC4 plays an oncogenic role in GC, and HDAC4-based targeted therapy would represent a novel strategy for GC
treatment.
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BACKGROUND
Gastric cancer (GC) is now the fifth most common malignant
cancer globally, and the number of GC cases in China accounts for
>40% of all new cases of GC in the world [1]. Most patients have a
definite diagnosis of GC only in the advanced phase and miss the
chance to undergo radical surgical treatment [2]. The prognosis of
patients with GC remains poor. Therefore, it has become an urgent
need to conduct in-depth research on the pathogenesis of GC and
to identify effective therapeutic targets.
Mitogen-activated protein kinase (MAPK) is a class of serine/

threonine protein kinases that can be activated by various
intracellular and extracellular stimuli, including growth factors,
hormones, oxidative stress, and endoplasmic reticulum stress [3].
The MAPK signal transduction pathway consists of three types of
sequentially activated protein members: MAP kinase kinase kinase
(MAPKKK or MEKK), MAP kinase kinase (MAPKK or MEK), and
MAPK, which play a role in enhancing the expression of target
genes or directly acting on cytoplasmic downstream kinases,
regulating cell proliferation, differentiation, stress response and

cell apoptosis, and other physiological activities [4]. Each MEK can
be activated by at least one MEKK, and each MAPK can be
activated by different MEKs, forming a complex regulatory
network of MAPK [5, 6]. MAPK consists of three main subgroups:
extracellular signal-regulated kinase (ERK), c-Jun amino-terminal
kinase (JNK), and p38 [7, 8]. Abnormal expression or over-
expression of MAPK members plays an important role in the
malignant transformation and evolution of cells.
Histone deacetylases (HDACs) are a hotspot in the field of

cancer drug development. Inhibition of histone deacetylation has
become a recognised approach for tumour therapy [9–11]. HDACs
are involved in the regulation of tumour proliferation, invasion,
and migration [12, 13]. Until now, 18 HDAC subtypes have been
found in the human body, which can be further subdivided into
four categories: Class I HDACs (HDAC1–3 and 8) mainly exist in the
nucleus, and their main function is the deacetylation of histones.
Class II HDACs are further divided into Class IIA (HDAC4, 5, 7, and
9) and Class IIB (HDAC6 and 10). Class IV HDAC11 is only expressed
in the brain, kidney, and testes. Class III HDAC (SIRT1–7) is
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associated with the yeast protein SIR2 [14, 15]. Different types of
HDACs have different structures, and their effects are also
different. Different subtypes of HDACs also have great differences
in their baseline expression levels as well as the mechanism of
action in different tumour tissues [16–18]. The role of HDACs in GC
development has been studied but the mechanisms are
inadequately understood [19, 20]. Therefore, it is of great
significance to clarify the role and specific mechanism of action
of HDACs in the progression of GC.
This study analysed the expression of HDACs in GC tissues and

its influence on the prognosis of patients with GC. By using cell
and animal models, the key molecular mechanisms were
delineated to determine the therapeutic value of HDACs in GC.

MATERIALS AND METHODS
All the experimental methods and data analysis involved in this paper are
described in the Supplementary Materials, and primer sequences are
shown in Table 1.

RESULTS
HDAC4 is upregulated in GC tissues and correlated with a
poor outcome
To identify HDACs associated with GC, we first screened the
differentially expressed genes from 18 members of HDACs, which
met the criterion of P value <0.05 in the Oncomine (Cho) and
GEPIA databases (Fig. 1a, b and Supplementary Fig. 1A–Q).
Subsequently, we selected the intersection of the above two
databases and found only HDAC2 and HDAC4 to be associated
with GC (Fig. 1c). Next, we detected the expression of HDAC2 and
HDAC4 in 20 pairs of GC tissues by quantitative reverse
transcriptase polymerase chain reaction (qRT-PCR), and the results
showed that only HDAC4 is upregulated in GC tissues (Fig. 1d, e).
We also verified this finding in the GSE79973 and GSE81948 data
set (Supplementary Fig. 1R, S). Therefore, we chose HDAC4 for
subsequent experiments. Then, we analysed HDAC4 expression by
immunohistochemistry (IHC) in GC tissue microarrays with
matched normal tissue samples (n= 110). HDAC4 expression
was higher in 73.6% (81/110) of GC tissues than in normal gastric
tissues (P < 0.01; Fig. 1f, g). Next, we analysed HDAC4 expression
by IHC in GC tissue microarrays with matched normal tissue
samples (n= 110). HDAC4 expression was higher in 73.6% (81/
110) of GC tissues than in normal gastric tissues (P < 0.01; Fig. 1f,
g). Then, we analysed the relationship between different
clinicopathological aspects and HDAC4 expression level in 110
patients with GC (Table 2). HDAC4 expression was positively
correlated with lymph node metastasis (P= 0.005), tumour, node,
metastasis (TNM) stage (P= 0.002), and depth of invasion (P=
0.001). Furthermore, multiple logistic regression analysis showed
that HDAC4 expression is significantly correlated with invasion
depth (P= 0.039, odds ratio= 0.308, 95% confidence interval [CI]:
0.101–0.949). In addition, high HDAC4 expression in GC patients
was significantly correlated with a shortened overall survival (OS)
and disease-free survival (DFS) (Fig. 1h). Moreover, Cox multi-
variate analysis showed that high expression of HDAC4 is an
independent predictor of OS and DFS (Table 3). The Kaplan–Meier
Plotter database predicted the same result (Fig. 1I). Overall, our
results showed an obvious correlation of augmented HDAC4
expression with GC progression and survival.

HDAC4 promotes GC cell proliferation, migration, and
invasion in vitro and in vivo
The expression of HDAC4 was found to be increased in GC cell
lines compared with the GES-1 cell line by qRT-PCR and western
blotting (Supplementary Fig. 2A, B). To explore whether HDAC4
regulated the biological behaviours of GC cells, we stably
transfected HDAC4 with three HDAC4 knockdown lentiviruses

(Sh-HDAC4, Sh-HDAC4#2, and Sh-HDAC4#3) in SGC7901 and
BGC823 cells. The efficiency was measured by western blotting
(Supplementary Fig. 2C). HDAC4 knockdown in both SGC7901 and
BGC823 cells significantly suppressed cell proliferation, migration,
and invasion in vitro (Supplementary Fig. 2D–I). Therefore, the Sh-
HDAC4 lentivirus with the highest knockdown efficiency was
selected for subsequent experiments.
To further verify the role of HDAC4 in GC cell proliferation and

metastasis in vivo, we established a xenograft tumour model. The
tumour growth was slower and tumour volume and weight were
lower in the Sh-HDAC4 group than in the control group (Fig. 2a–c).
In addition, IHC analysis revealed decreased expression of Ki-67 in
the subcutaneous tumours in HDAC4 knockdown GC cells (Fig. 2d).
In the mouse model of lung and abdominal metastasis, we
observed that the number of metastatic tumour nodules is lower
in the Sh-HDAC4 group than in the control group (Fig. 2e–h).
Together, these results demonstrated that HDAC4 plays a pro-
oncogenic role in GC by promoting tumour cell growth and
migration.

HDAC4 promotes malignant biological behaviours of GC cells
via the p38 MAPK signalling pathway
To uncover the molecular mechanism by which HDAC4 regulates
GC tumour progression, we compared the transcriptome profiles
of SGC7901 cells with stable HDAC4 knockdown with controls by
RNA-seq analysis. Differentially expressed genes were mainly

Table 1. Sequences of primers used for amplification of target genes.

Gene Primer nucleotide sequence

HDAC4 Forward: 5′-CGCCTCTGTTCAACTTGTGG-3′

Reverse: 5′-GTGAGAACTGGTGGTCCAGG-3′

HDAC2 Forward: 5′-CGTGTAATGACGGTATCATTCC-3′

Reverse: 5′-ACCAGATAATGAGTCTGCACC-3′

MEF2A Forward: 5′-AGCAGCCCTCAGCTCTCTTG-3′

Reverse: 5′-GGTGAAATCGGTTCGGACTTG-3′

MEKK1 Forward: 5′-AGGTTGGCATCAAAAGGAAC-3′

Reverse: 5′-GGCGAGATGATTGGAGTGTT-3′

MEKK2 Forward: 5′-TTTCCTCAAACGGATTT-3′

Reverse: 5′-TGTCTTCCCATCGTCA-3′

MEKK3 Forward: 5′-AATGTGCCAACCAAGTCTCC-3′

Reverse: 5′-TCCAGAGCACTCACCTCCTT-3′

MEKK4 Forward: 5′-CCCTCCTAACCCACACCTCATT-3′

Reverse: 5′-CAGCACAGAGTCACCACCAGAG-3′

ATG4B Forward: 5′-TCGGACAGCAGAACCAGC-3′

Reverse: 5′-CCTCACCTGCGTCCATCT-3′

ATG3 Forward: 5′-ACATGGCAATGGGCTACAGG-3′

Reverse: 5′-CTGTTTGCACCGCTTATAGCA-3′

ATG5 Forward: 5′-AAGCAACTCTGGATGGGATT-3′

Reverse: 5′-GCAGCCACAGGACGAAAC-3′

ATG7 Forward: 5′-CAGTCCGTTGAAGTCCTC-3′

Reverse: 5′-TCAGTGTCCTAGCCACATTAC-3′

ATG12 Forward: 5′-TGAATCAGTCCTTTGCCCCT-3′

Reverse: 5′-CATGCCTGGGATTTGCAGT-3′

BECN1 Forward: 5′-TTTTCTGGACTGTGTGCAGC-3′

Reverse: 5′-GCTTTTGTCCACTGCTCCTC-3′

ULK1 Forward: 5′-AGTGCAGACGGTATCATGGG-3′

Reverse: 5′-TCTCCACCTGGGAGTGATCC-3′

GDPDH Forward: 5′-GAGTCAACGGATTTGGTCGT-3′

Reverse: 5′-TGGGTGGAATCATATTGGAA-3′
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Fig. 1 HDAC4 upregulation predicts unfavourable prognosis for patients with GC. a Heatmap of differentially expressed HDACs in GC
based on microarray data sets (Cho). b The expression of HDAC4 between GC and normal tissues in TCGA target GTEx (N, normal tissue; T,
tumour tissue). c Venn diagram displaying only HDAC2 and HDAC4 in both Cho, GSE79973, and GEPIA. d, e qRT-PCR was used to detect the
expression of HDAC2 and HDAC4 in 20 matched GC samples. f Typical tissue microarray image analysis of HDAC4 expression in 110 patients.
Scale bar, 50 μm. g Quantification of HDAC4 expression by immunohistochemistry analysis. h OS and DFS of GC patients related to HDAC4
expression by Kaplan–Meier survival curve analysis (P < 0.001). i OS of GC patients related to HDAC4 expression based on Kaplan–Meier Plotter
database. *P < 0.05, **P < 0.01.
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Table 3. Univariate and multivariable analyses of OS and DFS in GC patients (*P < 0.05).

Variable OS DFS

Univariate analysis Multivariable analysis Univariate analysis Multivariable analysis

P > |z| P > |z| HR (95% CI) P > |z| P > |z| HR (95% CI)

HDAC4 expression

Low (n= 28) vs. high (n= 82) 0.001* 0.037* 2.419 (1.057–5.536) 0.001* 0.033* 2.473 (1.075–5.694)

Gender

Male (n= 69) vs. female
(n= 41)

0.107 0.130

Age (years)

<63 (n= 57) vs. ≥54 (n= 53) 0.244 0.270

Tumour differentiation

Poor (n= 43) vs. well/
moderate (n= 67)

0.016* 0.017*

Tumour diameter (cm)

<5 (n= 60) vs. ≥5 (n= 50) 0.090 0.106

CEA level (ng/ml)

≤2 (n= 49) vs. >2 (n= 61) 0.524 0.511

Depth of invasion

T1+ T2 (n= 40) vs. T3+ T4
(n= 70)

<0.001* 0.002* 4.024 (1.663–9.734) <0.001* 0.001* 4.265 (1.758–10.345)

Lymph node metastasis

Negative (n= 59) vs. positive
(n= 51)

<0.001* <0.001* 7.527 (3.609–15.698) <0.001* <0.001* 8.074 (3.842–16.965)

Tumour location

Up (n= 18) vs. down/middle
(n= 92)

0.879 0.858

Table 2. Relationships between HDAC4 expression and clinicopathological characteristics of GC patients (*P < 0.05).

Clinicopathological parameter HDAC4 level Total P value

High (n= 81) Low (n= 29)

Gender 0.327

Male 53 (76.8%) 16 (23.2%) 69

Female 28 (68.3%) 13 (31.7%) 41

Age (years) 0.656

<63 43 (75.4%) 14 (24.6%) 57

≥63 38 (71.7%) 15 (28.3%) 53

Tumour diameter (cm) 0.069

<5 40 (66.7%) 20 (33.3%) 60

≥5 41 (82.0%) 9 (18.0%) 50

Tumour location 0.307

Up 15 (83.3%) 3 (16.7%) 18

Down/middle 66 (71.7%) 26 (28.3%) 92

Tumour differentiation 0.881

Poor 32 (74.4%) 11 (25.6%) 43

Well/moderate 49 (73.1%) 18 (26.9%) 67

CEA level (ng/ml) 0.638

≤2 35 (71.4%) 14 (28.6%) 49

>2 46 (75.4%) 15 (24.6%) 61

TNM stage 0.002*

I/II 31 (59.6%) 21 (40.4%) 52

III/IV 50 (86.2%) 8 (13.8%) 58

Depth of invasion 0.001*

T1+ T2 22 (55.0%) 18 (45.0%) 40

T3+ T4 59 (84.3%) 11 (15.7%) 70

Lymph node metastasis 0.005*

Negative 37 (62.7%) 22 (37.3%) 59

Positive 44 (86.3%) 7 (13.7%) 51
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enriched in the top 20 signalling pathways according to the Q-
value (Fig. 3a) and the top 20 signalling pathways with statistical
significance in geneset enrichment analysis (GSEA) pathway
analysis according to the TCGA STAD database (Fig. 3b). The
MAPK signalling pathway was the only signalling pathway in the
top 20 transcriptome sequencing and GSEA pathway analysis of
TCGA STAD (Supplementary Fig. 3A). We further investigated
which of the three subgroups of MAPK signalling is responsible for
the carcinogenic function of HDAC. We found that p-p38 is
remarkably downregulated in HDAC4-knockdown cells compared
to control cells (Fig. 3c). To understand the importance of the p38
MAPK pathway in HDAC4-mediated GC, we performed rescue
experiments using the p38 MAPK activator anisomycin (Supple-
mentary Fig. 3B). Anisomycin restored the tumour suppression
caused by HDAC4 knockdown (Fig. 3d–g and Supplementary
Fig. 3C–F), suggesting that HDAC4 acts as an upstream effector of
p38.
We next examined which major upstream components of the

p38 MAPK signalling pathway might be regulated by HDAC4.
When p38 MAPK signalling is activated, the signal transduction
first occurs via MEKK. Therefore, we investigated whether HDAC4
was upstream of MEKK. Moreover, it is well known that the
acetylation reaction catalysed by HDAC4 plays an important role
in the transcriptional regulation of MEEK2 [21]. Therefore, we first
detected the mRNA expression of MEKK1, 2, 3, and 4 (Supple-
mentary Fig. 3G, H) but found no change in the expression after
HDAC4 knockdown. Unexpectedly, we found decreased protein
expression of MEKK3 in HDAC4 knockdown cells rather than
MEKK1, 2, and 4 (Fig. 3h). IHC staining further confirmed that
HDAC4 knockdown inhibits MEKK3 expression in the subcuta-
neous GC xenograft tumour model (Fig. 3i). In addition, MEKK3
overexpression reversed the effect of HDAC4 knockdown on
p38 signalling (Fig. 3j). Taken together, these results showed that
HDAC4 knockdown attenuates p38 MAPK signalling by promoting
the protein expression of MEKK3, which is involved in the
suppression of oncogenic properties in GC.

HDAC4 knockdown-induced autophagy contributes to the
degradation of MEKK3 in a p62-dependent manner
To identify the protein degradation pathways that might be
regulated by MEKK3 stability upon HDAC4 knockdown, we first
examined the protein stability of MEKK3 in HDAC4 knockdown
cells in the presence of the proteasome inhibitor MG132, the
autophagy inhibitor 3-methyladenine (3-MA), or dimethyl sulfoxide
as control. We found that 3-MA restores the levels of MEKK3 protein
but not MG132 (Fig. 4a and Supplementary Fig. 4A, B). Therefore,
we hypothesised that HDAC4 mediates MEKK3 degradation
through the autolysosome pathway. Autophagy can degrade
cargos using autophagy cargo receptor proteins that bind to and
bring substrates to the autophagosome for degradation. p62 is a
well-known autophagy cargo receptor that interacts with substrates
for their degradation. To identify whether p62 was involved in
MEKK3 degradation in GC cells, we used the STRING database and
found an interaction between MEKK3 and p62 (Fig. 4b). Co-
immunoprecipitation assay further confirmed a direct interaction
between p62 and MEKK3 in GC cells (Fig. 4c). Importantly, si-p62
could rescue MEKK3 protein level in HDAC4 knockdown GC cells
(Fig. 4d). These results indicated that p62 is critical for the HDAC4-
mediated autophagic degradation of MEKK3.
Next, to examine whether HDAC4 could inhibit autophagy in GC

cells to prevent MEKK3 from p62-mediated autophagic degrada-
tion, we measured the protein expression levels of autophagy-
related markers. We found that HDAC4 knockdown potently
increases LC3-II protein level but downregulates p62 protein
level (Fig. 4e). In addition, transmission electron microscopy
(TEM) revealed that HDAC4 knockdown cells contain abundant
autophagic vacuoles (Fig. 4f). After GFP-mRFP-LC3 lentivirus
transfection, the numbers of red puncta (autolysosomes) were

increased in HDAC4-knockdown GC cells, which indicated an
increased autophagic flux. More yellow dots (autophagosomes)
were observed when the autophagic flux was blocked by
bafilomycin A1 (autophagosome/lysosomal fusion inhibitor)
(Fig. 4g, h). In addition, we studied the effect of HDAC4
knockdown on GC autophagy in vivo. TEM revealed that HDAC4
knockdown significantly increases the number of autophago-
somes (double-membrane structures) (Fig. 4i). IHC staining of
LC3B was increased in xenografts of HDAC4-knockdown cells
(Fig. 4j). Together, the results suggest that HDAC4 knockdown
suppresses the level of autophagy in GC cells to increase MEKK3
degradation via p62-dependent selective autophagic degradation.

ATG4B activity is essential for HDAC4-induced autophagic
MEKK3 degradation
To detect whether the underlying mechanism of HDAC4-induced
GC cell autophagy was attributed to its ability to repress the
transcription of key genes that regulated autophagy, we further
analysed the differentially expressed autophagy-related genes in
the transcriptome sequencing and found that the expression of
only ATG4B is significantly increased in HDAC4-knockdown cells,
which was verified by qRT-PCR (Fig. 5a and Supplementary
Fig. 4C). ATG4B serves as a priming and delipidation enzyme
whose fine regulation is essential for autophagy [22, 23]. To verify
the reliability of the transcriptome sequencing, we examined the
effect of HDAC4 on the expression of ATG4B. Western blot analysis
showed that HDAC4 knockdown increases the expression of
ATG4B in SGC7901 and BGC823 cells (Fig. 5b). Notably, IHC
showed that ATG4B expression is upregulated in the xenografts of
HDAC4-knockdown cells (Fig. 5c). When ATG4B was knocked
down, the expression of autophagy-related markers was reduced
and MEKK3 degradation induced by HDAC4 knockdown was
blocked (Fig. 5d). The silencing of ATG4B also completely reversed
the autophagic flux induced by HDAC4 knockdown (Fig. 5e, f).
Histone acetylation is one of the key mechanisms of gene

transcriptional regulation [24], but we found that, after knocking
down HDAC4, the histone H3 acetylation level of the ATG4B
promoter did not change (Fig. 5g). HDAC4 binds to the
transcription factor MEF2A, thereby inhibiting its transcriptional
regulating ability [21, 25, 26]. We sought to determine whether
HDAC4 repressed ATG4B expression via MEF2A. Then, we found
that MEF2A has only one potential binding site in the ATG4B
promoter region based on the JASPAR database (Fig. 5h). To
further study the direct regulation of ATG4B by MEF2A combined
with the promoter of ATG4B, we conducted a chromatin
immunoprecipitation (ChIP) assay (Fig. 5i). Luciferase reporter
assays suggested that MEF2A activates ATG4B transcription, and
overexpression of MEF2A can improve ATG4B expression in
SGC7901 and BGC823 cells (Fig. 5j, k). After silencing MEF2A
expression, HDAC4 knockdown had little effect on ATG4B
expression in GC cells (Fig. 5l, m). The above results suggest that
knockdown of HDAC4 expression induces GC cell autophagy by
reducing the transcriptional activation of MEF2A on ATG4B.

HDAC4/ATG4B/p38/USF1 forms a positive feedback loop
To investigate the molecular mechanism by which HDAC4 is
upregulated in GC, we first detected whether there was any
potential transcription factor that could bind to the promoter of
HDAC4 to elevate its expression. According to the intersection of
candidate transcription factors for HDAC4 in PROMO, PAZAR, and
JASPAR databases, Upstream Stimulatory Factor 1 (USF1) was
identified as the only transcription factor that could bind to the
HDAC4 promoter in all three databases (Fig. 6a). By analysing the
TCGA STAD data set, we found that the expression of USF1 in GC is
significantly upregulated (Fig. 6b) and is positively correlated with
the expression of HDAC4 (R= 0.180, P < 0.001; Fig. 6c). The ectopic
expression of USF1 could increase HDAC4 mRNA expression in GC
cells (Fig. 6d). Dual-luciferase reporter assays showed that
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overexpression of USF1 enhances the luciferase activity driven by
the HDAC4 promoter. However, when the potential binding site of
USF1 in the HDAC4 promoter region was mutated, overexpression
of USF1 could not affect the luciferase activity driven by mutated
HDAC4 promoter (Fig. 6e, f). ChIP assays further demonstrated
that USF1 could bind the HDAC4 promoter (Fig. 6g). These results

indicated that USF1 interacts with the HDAC4 promoter and
elevates HDAC4 mRNA expression in GC cells. Interestingly, it has
been reported that USF1 is a downstream target of p38 MAPK
signalling [27]. Western blot confirmed that SB203580 could
inhibit the phosphorylation level of USF1 and HDAC4 mRNA
expression in GC cells, whereas the upregulation of USF1 partially
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reverses this phenomenon (Fig. 6h, i). We then revealed a positive
regulatory feedback loop formed by the HDAC4/ATG4B/MEKK3/
p38 axis, which results in the continuous stimulation of HDAC4
expression and the sustainable activation of p38 MAPK signalling.

DISCUSSION
HDAC4 belongs to class IIA HDAC and is located on chromosome
2q37.2. It is highly expressed in the brain, heart, and skeletal
muscle, as well as in various malignant tumours, including
oesophageal cancer, glioblastoma, multiple myeloma, epithelial
cancer, and colon cancer [28]. Its expression is associated with
poor prognosis and drug resistance to chemotherapy. Spaety et al.
found through biochemistry analysis that the high expression of
HDAC4 in GC tissues is related to the molecular typing and poor
prognosis of GC [29]. We demonstrate the same results using real
clinical data. Kang et al. found that HDAC4 promotes GC
progression via p21 repression [30]. We found a different
mechanism: HDAC4 facilitates the progression of GC mainly by
activating the p38 MAPK pathway. Our results suggest that high
expression of HDAC4 may be a poor predictor of GC.
As an important pathway of intracellular protein degradation,

the autophagy-lysosomal system plays an important role in both
nutrient cycling and scavenging and maintenance of stability [31].
Target proteins degraded by the autophagy-lysosomal system,
such as WNT and Keap1, first bind to the key autophagy protein
p62/LC3B and are recognised by the receptor proteins [32, 33].
Then they are wrapped by the autophagosome with a bilayer
membrane structure, after which they enter the autophagy
lysosomes to complete the autophagic degradation of the
proteins. We found that HDAC4 knockdown enhances the
autophagic degradation of MEKK3 and reduces the expression
of MEKK3 in cells, thus inhibiting the activation of the MAPK
pathway and the proliferation, migration, and invasion of GC cells.
HDAC4 plays different roles by regulating autophagy. After HDAC4

interacts with autophagy-related microtubule-associated protein 1S
(MAP1s), the acetylation level of MAP1s decreases, and it becomes
unstable. This inhibits autophagy and promotes the accumulation of
MHTT aggregates, causing the occurrence of Huntington’s disease.
The polyamine spermidine can improve MAP1s instability induced
by HDAC4 and inhibit the occurrence of cirrhosis and hepatocellular
carcinoma by promoting autophagy [34]. In diabetic nephropathy,
HDAC4 promotes the deacetylation of signal transduction and
transcriptional activator 1 (STAT1), and activated STAT1 inhibits
podocyte autophagy, thereby inducing podocyte injury [35, 36].
However, during vascular inflammation, the increased expression of
HDAC4 can reduce the acetylation of FoxO3a in vascular endothelial
cells, and activated FoxO3a can promote the transcription of
autophagy-related genes ATG5 and LC3B, thereby inducing the
autophagy of vascular endothelial cells [37]. In our study, HDAC4
inhibited the transcription of the autophagy-related gene ATG4B and
consequently autophagy in GC.
Traditional HDACs contain the amino acid tyrosine in their

enzyme active region; however, for type II HDACs, the tyrosine is
replaced by histidine, so that their activity is >1000 times lower
than that of type I HDACs. Class II HDACs have a type of protein
structure that has a specific amino acid sequence targeting the
acetyl modification of lysine and can recruit HDAC3. HDAC3 can
perform the deacetylase activity in case of class II HDAC deletion
and can continue to bind to the NCoR/SMRT transcription co-
inhibitory complex, remove the acetyl groups of histones and non-
histone proteins, and inhibit DNA transcription [38]. Non-histone
proteins studied in recent years mainly include runt-associated
transcription factor 2, hypoxic-inducible factor-1α, and STAT1 [39–
41]. Class II HDACs can also bind to transcription factors such as
MEF2s, thereby inhibiting the transcription of genes regulated by
these transcription factors [42]. Our study also confirmed that
HDAC4 in GC cells inhibits the expression level of ATG4B by

inhibiting the effect of MEF2A on the transcription of ATG4B, thus
inhibiting the autophagy of GC cells.
In conclusion, our study confirmed that HDAC4 plays an

important role in the development of GC, and high HDAC4
expression can be used as an independent predictor of poor
prognosis of GC. High expression of HDAC4 inhibits the
transcriptional activity of MEF2A, which in turn inhibits the
transcription of ATG4B, thereby inhibiting the autophagy of GC
cells, reducing the degradation of MEKK3, activating p38, and
promoting the growth and metastasis of GC. Therefore, HDAC4
can be used as a new potential GC therapeutic target.

DATA AVAILABILITY
The data that support the findings of this study are available on request from the
corresponding author.
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