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MRI radiomics independent of clinical baseline characteristics
and neoadjuvant treatment modalities predicts response to
neoadjuvant therapy in rectal cancer
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BACKGROUND: To analyse the performance of multicentre pre-treatment MRI-based radiomics (MBR) signatures combined with
clinical baseline characteristics and neoadjuvant treatment modalities to predict complete response to neoadjuvant (chemo)
radiotherapy in locally advanced rectal cancer (LARC).
METHODS: Baseline MRI and clinical characteristics with neoadjuvant treatment modalities at four centres were collected. Decision
tree, support vector machine and five-fold cross-validation were applied for two non-imaging and three radiomics-based models’
development and validation.
RESULTS: We finally included 674 patients. Pre-treatment CEA, T stage, and histologic grade were selected to generate two non-
imaging models: C model (clinical baseline characteristics alone) and CT model (clinical baseline characteristics combining
neoadjuvant treatment modalities). The prediction performance of both non-imaging models were poor. The MBR signatures
comprising 30 selected radiomics features, the MBR signatures combining clinical baseline characteristics (CMBR), and the CMBR
incorporating neoadjuvant treatment modalities (CTMBR) all showed good discrimination with mean AUCs of 0.7835, 0.7871 and
0.7916 in validation sets, respectively. The three radiomics-based models had insignificant discrimination in performance.
CONCLUSIONS: The performance of the radiomics-based models were superior to the non-imaging models. MBR signatures
seemed to reflect LARC’s true nature more accurately than clinical parameters and helped identify patients who can undergo organ
preservation strategies.
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INTRODUCTION
Rectal cancer accounts for 3.4% of all cancer-related deaths
globally [1]. More than 700,000 new cases of rectal cancer are
diagnosed annually worldwide, with ≥30% accounting for locally
advanced rectal cancers (LARCs) [1, 2]. Neoadjuvant (chemo)
radiotherapy combined with total mesorectal excision (TME) is one
of the standard treatments for LARC [3, 4]. LARC is known to be a
heterogeneous disease with wide variations in response to
neoadjuvant (chemo)radiotherapy. Clinical individual-level surro-
gate response to neoadjuvant (chemo)radiotherapy is evaluated
using pathological tumour regression grade (TRG) and down-
staging [5, 6], and both of them can be used as treatment
monitoring and prognostic parameters [7, 8]. Approximately
15–27% of patients show a pathologic complete response (pCR),
which has been demonstrated to be a favourable prognostic

marker [9]. For patients with clinical complete response (cCR),
organ preservation strategies, such as the “wait-and-see” strategy
and local excision, can achieve a similar survival rate with pCR
compared to TME, thus reducing TME-related morbidity and
functional complications [10, 11]. Therefore, accurately predicting
tumour response in a timely and non-invasive manner before
administering neoadjuvant (chemo)radiotherapy is urgently
needed in individualised medical treatment for LARC, especially
for identifying patients who can benefit from organ preservation
strategies.
Previous studies have developed a non-imaging clinical risk

model to predict complete response (CR) to neoadjuvant (chemo)
radiotherapy with the area under the curve (AUC) between 0.609
and 0.706 [12–14]. Modern imaging techniques, such as conven-
tional magnetic resonance imaging (MRI) and functional MRI, have
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facilitated the recognition of different responses [15]. However,
accurate detection of CR using visual judgment imaging
techniques remains challenging in clinical practice [15, 16].
Radiomics focuses on improvements in image analysis using an
automated high-throughput extraction of large amounts of
quantitative features of medical images [17]. Considering the
improvement in computational capabilities, radiomics has
emerged a promising tool that may serve as an imaging
biomarker for tumour response in rectal cancer [18, 19]. Several
studies comparing radiomics with conventional imaging showed
that radiomics outperformed qualitative subjective analysis on
MRI [20, 21]. However, the application of previous models is
limited by the relatively small samples or a single-centre cohort
and the use of post-treatment imaging features or clinical
variables to assess therapeutic responses [22, 23]. Moreover, the
exact region of interest (ROI) delineation of the tumour post-
(chemo)radiotherapy is difficult and less reproducible than that in
pre-treatment analysis, especially in diffusion-weighted imaging
(DWI) [24]. More importantly, different neoadjuvant treatment
modalities might change the tumour response, but the possible
effect of neoadjuvant treatment modalities on response predic-
tion is seldom considered. For a patient to receive optimal
treatment with the highest success rate, developing a response
prediction model that considers various factors that may affect the
outcome is imperative before initiating treatment.
Because of extensive attention on the high prevalence and

personalised treatment for LARC but limited knowledge on the
effect of neoadjuvant treatment modalities on CR (pCR and cCR)
prediction, we aimed to develop and validate a multicentred
prediction model that incorporated the pre-treatment (baseline)
MRI radiomics features based on T2-weighted images (T2WIs),
clinical baseline characteristics, and neoadjuvant treatment
modalities for stratifying patients with LARC.

METHODS
Patient selection
A total of 735 patients with rectal cancer who underwent neoadjuvant
(chemo)radiotherapy at one of four centres (Peking University Cancer
Hospital, The Sixth Affiliated Hospital of Sun Yat-sen University, Peking
Union Medical College Hospital, and Tianjin Union Medical Centre)
between January 2012 and January 2019 were retrospectively recruited.
The inclusion criteria were histologically confirmed rectal adenocarcinoma
with biopsy sample, patients aged at least 18 years, clinical stage T3–T4 or
any stage T and N+ tumours without distant metastasis (based on the 7th
edition of the American Joint Committee on Cancer [AJCC]), pre-treatment
magnetic resonance (MR) examination (including a T2-weighted [T2W]
sequence), and availability of either histology after radical surgery or long-
term (>2 years) follow-up in case of a “wait-and-see” program for those
with cCR [25]. The reference criteria for assessment of cCR included the Sao
Paulo Schema, European Society for Medical Oncology (ESMO) Schema,
and Memorial Sloan Kettering Regression Schema [3, 26, 27].
The exclusion criteria were patients lost to follow-up, poor-quality

images or incomplete imaging data, short-course radiotherapy with
surgery within 1 week, occurrence of distant failure before surgery,

previous recurrent rectal cancer, incomplete neoadjuvant (chemo)radio-
therapy, double primary cancer, and history of pelvic radiation.
The final cohort included 674 patients. Clinical baseline characteristics

included age, sex, pre-treatment carcinoembryonic antigen (CEA) levels,
histologic grade, tumour location, and MRI-predicted T stage (MRI-T stage).
This multicentre study was conducted in accordance with the Declaration
of Helsinki and was approved by the Ethics Committee of the Peking
University Beijing Cancer Hospital and Institute (2018KT78), and the
requirement for individual informed patient consent was waived owing to
the retrospective nature of the study.

Neoadjuvant treatment
The intensity-modulated radiation therapy regimen consisted of two
schedules: short-course radiotherapy (25 Gy total dose at 5 Gy per fraction)
and long-course chemoradiation (22–25 fractions of 2–2.3 Gy [gross tumour
volume] and 1.8–2.0 Gy [clinical target volume]) [28]. Neoadjuvant treatment
modalities included short-course radiotherapy followed by neoadjuvant
chemotherapy, long-course chemoradiation, neoadjuvant chemotherapy
followed by long-course chemoradiation, and long-course chemoradiation
followed by neoadjuvant chemotherapy. For short-course radiotherapy
regimen, surgery should be delayed at 6–8 weeks. Although there were
some differences among the different centres, the treatment protocol and
the interval to TME followed the ESMO/National Comprehensive Cancer
Network guidelines combined with patient/surgeon choice [3, 4].

Pathologic assessment of response
Every surgical specimen underwent standardised pathologic examination
by two dedicated gastrointestinal pathologists who were blinded to
clinical and MRI findings. Tumours were staged according to the seventh
edition of the AJCC tumour-node-metastasis (TNM) classification. TRG was
evaluated using the four-tier AJCC system.

Magnetic resonance imaging (MRI) acquisition
MRI was all performed with a 3.0-T scanner at the four centres. The
imaging protocol included a T2W turbo spin-echo sequence in the axial,
sagittal, and coronal planes. T2 weighted MR imaging acquisition
parameters of the four centres are shown in Table 1. All patients
underwent MR examination in the supine position within 2 weeks before
the start of treatment, and no special bowel preparation was performed.

Tumour segmentation
The entire region of interests (ROIs) of rectal cancer, which covered the
entire volume of the tumour, were manually drawn along the contour of
the tumour on T2WI containing the surrounding chords and burrs on each
slice, and the intestinal lumen was excluded (detailed ROI segmentation is
shown in Fig. 1). All manual tumour segmentations were separately
performed by four independent radiation oncologists with ≥5 years of
experience in radiotherapy of rectal cancer. They were manually adjusted
where deemed necessary by one abdominal radiologist and finally
validated by one radiation oncologist with ≥20 years of experience in
rectal cancer radiotherapy.

Standardisation of MRI and extraction of radiomics features
Regarding the inhomogeneity among different MR system vendors and
acquisition protocols from the four centres, we performed standardisation
of MRI signal intensity to reduce the effect of the scanner. The ROIs were
then extracted from the T2W sequence, and three-dimensional

Table 1. T2 weighted MR imaging acquisition parameters of the four centres.

Parameter Scanner TR (ms) TE (ms) FOV(mm) Flip Angle Matrix Slice thickness/
gap (mm)

Pixel
size (mm)

Centre 1 SIEMENS 3.0 T
(Magnetom Skyra)

4000 107 400 × 400 150–175° 640 × 640 4/0 0.625 × 0.625

Centre 2 GE 3.0 T (Signa HDX) 5160 151 220 × 220 90° 320 × 258 3/0.3 0.688 × 0.853

Centre 3 GE 3.0 T (OPTIMA) 4300 104 100 × 100 90° 288 × 256 3/6 0.347 × 0.391

Centre 4 SIEMENS 3.0 T
(Magnetom Skyra)

4000 107 400 × 400 150–175° 640 × 640 4/0 0.625 × 0.625

TR repetition time, TE echo time, FOV field of view.
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reconstruction was performed. Subsequently, each ROI image was
resampled into 1 × 1 × 1-mm voxels, which could reduce the difference
between image pixels and form a three-dimensional ROI.
Four groups of imaging features were extracted from the T2W sequence

in the three-dimensional ROI: 540 histograms of oriented gradient (HOG)
features, 42 texture features, 48 wavelet features, and 156 statistical
features, resulting in a total of 786 features per patient. Next, invalid
radiomics features (such as infinite value, null value, feature with zero
variance) were removed from 786 features. Subsequently, we used the
min–max normalisation method, which transformed the data into
standardised intensity ranging from 0 to 1, normalising the extracted
features.

Selection of radiomics features and construction of radiomics
signatures
We used the principal component analysis (PCA) method which is a
multivariate statistical technique commonly applied to systematically
reduce the number of dimensions needed to describe radiomics features
through a decomposition process that filters features from the largest to
smallest spatial scales.
The grid-search method was used to optimise the PCA parameters.

When the number of retained features is 30, the optimal prediction model
will be generated; hence, we chose the largest 30 eigenvalues and ignored
the rest. Next, the corresponding 30 eigenvectors are used as column
vectors to form the eigenvector matrix. Transformed the radiomics features
of 674 patients into a new space constructed by 30 feature vectors which
are the principal components after dimensionality reduction, and
incorporated them into the model as effective features.

Development and evaluation of radiomics models
Based on the results of our preliminary experiments, we finally chose the
decision tree classifier to build two non-imaging prediction models. One was
based on the selected clinical baseline characteristics alone termed the C
model, while the other combined the selected clinical baseline characteristics

and neoadjuvant treatment modalities and was termed the CT model. A
support vector machine (SVM) classifier was applied to construct the MRI-
based radiomics (MBR) signatures, which could identify a hyperplane that best
separated CR and incomplete response, and the grid-search method was used
to optimise the parameters. Similarly, a clinical individualised model was built
by combining the constructed MBR signatures and the selected clinical
baseline characteristics termed the CMBR model. Another individualised model
based on MBR signatures, clinical baseline characteristics, and neoadjuvant
treatment modalities was named the CTMBR model. Each of the selected
clinical baseline characteristics and neoadjuvant treatment modalities were
incorporated into these models as separate features, and their contributions to
the established model were evaluated using their respective coefficients.
The 674 patients were randomly divided into five equal size subgroups

because five-fold cross-validation was applied. Each subgroup was
regarded as a validation set and the remaining four-fifths of the patients
as the training set. This process was repeated five times with different
subgroups to form five training sets and five corresponding validation sets.
Evaluation of the above models included discrimination, calibration,

and clinical usefulness. Discrimination performance was quantified
based on the AUC of the receiver operating characteristic (ROC) curve.
The Delong test was performed to estimate whether the difference
between two arbitrary ROC curves was statistically significant. Classifica-
tion accuracy, positive predictive value (PPV), and negative predictive
value (NPV) were also calculated to quantify the discrimination ability of
the prediction models in both cohorts. Calibration curves were assessed
based on the agreement between the predicted and actual CR/TRG 0
rates. Decision curve analysis was used to identify the range of threshold
probabilities in which a model was of value, the magnitude of benefit,
and which of the several models was optimal [29]. Study workflow
describing the image segmentation, radiomics feature extraction, and
radiomics-based prediction model building steps is detailed in Fig. 1.

Statistical analyses
Sample size calculation is detailed in Supplemental Material eAppendix I.
Categorical variables were compared using the χ2 or Fisher’s exact test. The
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Fig. 1 Study workflow describing the image segmentation, radiomics feature extraction, and radiomics-based prediction model building
steps. The region of interest (ROI) in each transverse section manually segmented on T2 weighted magnetic resonance images (MRI). After
three-dimensional reconstruction and resampling of the ROI, 786 features were extracted, and the top 30 were selected via the principal
component analysis method. In addition to the MRI-based radiomics signatures, another two radiomics models based on the selected
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method, and five-fold cross-validation was applied. The performance of all three models were evaluated using receiver-operating
characteristic and calibration and decision curves.
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independent-samples t-test was used to analyse continuous variables.
Univariate and multivariate logistic regression analyses were performed to
identify clinical baseline characteristics associated with TRG. Variables with
P < 0.05 were selected as candidates for the model construction. A two-
tailed P-value <0.05 was considered a statistically significant difference.
The above analyses were performed using the SPSS version 23.0 (IBM,
Armonk, NY, USA). The ROI, MRI signal-intensity standardisation, radiomics
feature extraction, and model training were performed using the Precision
Medicine Open Platform version 2.0.1 (https://www.blothealth.com).
Radiomics feature selection and prediction model construction were
performed using PyCharm version 2017.3.2 (https://www.jetbrains.com).
Code availability: The code might be made available upon request.

RESULTS
Patient characteristics
Patients were divided into the “CR” (TRG 0, n= 174) (including 29
patients with cCR and 145 with radical surgery) and “incomplete
response” (TRG 1–3, n= 500) groups. Clinical baseline character-
istics and neoadjuvant treatment modalities of the two groups are
shown in Table 2. Pre-treatment CEA, MRI-T stage, and tumour
histologic grade were significantly different between the two
groups. Univariate and multivariate analyses of clinical baseline
characteristics identified elevated pre-treatment CEA levels (P=
0.015) and MRI-T3/4 stage (P < 0.001) as risk factors for TRG 1–3,

whereas a poorly differentiated adenocarcinoma (P= 0.002) was a
protective factor for TRG 1–3 (Supplemental Material eTable 1).

Selection of radiomics features and construction of radiomics
signatures
A total of 47 invalid radiomics features, including 4 with infinite
values, 15 with null values, and 28 with variances of zero, were
removed. Among the remaining 739 radiomics features, 30
features were selected for constructing the MBR signatures. Five-
fold cross-validation was applied, and a total of 150 radiomics
features were collected for validating the application: 77 HOG
features, 8 texture features, 16 wavelet features, and 49 statistical
features. The distribution of the selected radiomics features is
shown in Supplemental Material (eTable 2).

Evaluation and comparison of different prediction models
When considering the C model generated from the selected
clinical baseline characteristics alone (pre-treatment CEA levels,
MRI-T stage, and tumour histologic grade), the mean AUCs of
0.7053(95% confidence interval [CI], 0.6667–0.7440) in the training
set and 0.6103(95% CI, 0.5983–0.6286) in the validation set
(Fig. 2a) were obtained. Then, we combined those 3 clinical
baseline characteristics and neoadjuvant treatment modalities to
generate the CT model, the mean AUCs of 0.7512(95% CI,

Table 2. Clinical baseline characteristics and neoadjuvant treatment modalities in the TRG 0 and TRG 1–3 groups.

Characteristic TRG 0 (n= 174) TRG 1-3 (n= 500) P

Age, mean ± SD, years 55.41 ± 11.50 56.84 ± 10.92 0.145

Sex (%) 0.250

Male 118(67.8) 362(72.4)

Female 56(32.2) 138(27.6)

Pre-treatment CEA(ng/ml)(%) 0.012

<5 105(60.3) 252(50.4)

≥5 58(33.4) 223(44.6)

NA 11(6.3) 25(5.0)

Distance from anal verge(cm)(%) 0.658

<5 82(47.1) 217(43.4)

5–10 90(51.7) 275(55.0)

>10 2(1.2) 8(1.6)

MRI-T stage(%) <0.001

1 1(0.6) 1(0.2)

2 15(8.6) 8(1.6)

3 129(74.1) 377(75.4)

4 29(16.7) 114(22.8)

Tumour histologic grade(%) 0.012

Well differentiated adenocarcinoma 15(8.6) 58(11.6)

Moderately differentiated adenocarcinoma 115(66.1) 303(60.6)

Poorly differentiated adenocarcinoma 21(12.1) 30(6.0)

Signet ring cell cancer or mucinous adenocarcinoma 1(0.6) 6(1.2)

Uncertain differentiation type 22(12.6) 103(20.6)

Time interval between neoadjuvant (chemo)radiotherapy and surgery, median (IQR) (weeks) 9.57(8.00–11.50) 9.57(7.86–13.14) 0.344

Neoadjuvant treatment modalities(%) 0.173

Short-Course Radiotherapy+ Neoadjuvant chemotherapy 6(3.5) 32(6.4)

Long-Course Chemoradiation 58(33.3) 192(38.4)

Neoadjuvant chemotherapy+ Long-Course Chemoradiation 13(7.5) 41(8.2)

Long-Course Chemoradiation+ Neoadjuvant chemotherapy 97(55.7) 235(47.0)

TRG tumour regression grade, SD standard deviation, CEA carcinoembryonic antigen, MRI-T stage MRI-predicted T stage, IQR interquartile range.
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0.6761–0.8256) in the training set and 0.6294 (95% CI,
0.6036–0.6552) in the validation set (Fig. 2b) were obtained.
The MBR signatures yielded mean AUCs of 0.9841 (95% CI,

0.9766–0.9914) in the training set and 0.7835 (95% CI,
0.6984–0.8686) in the validation set (Fig. 2c). The selected clinical
baseline characteristics including pre-treatment CEA levels, MRI-T
stage, and tumour histologic grade were integrated into the MBR
signatures as independent clinical baseline risk characteristics and
the CMBR model was generated. The selected radiomics features,
including clinical baseline characteristics with their coefficients of
the CMBR model, are listed in order from the highest to lowest in
the Supplemental Material (eTables 3–7). The area under the ROC
curve of the CMBR model achieved mean AUCs of 0.9891 (95% CI,
0.9854–0.9929) and 0.7871 (95% CI, 0.7057–0.8686) in the training
and validation sets (Fig. 3d), respectively. The CTMBR model, which
incorporated the MBR signatures, clinical baseline characteristics,
and neoadjuvant treatment modalities, also demonstrated a
satisfactory discrimination, with mean AUCs of 0.9907 (95% CI,
0.9869–0.9944) and 0.7916 (95% CI, 0.7570–0.8263) in the training
and validation sets (Fig. 3e), respectively. The selected radiomics
features including clinical baseline characteristics and neoadjuvant
treatment modalities with their coefficients are listed in order from
the highest to lowest in the Supplemental Material (eTables 8–12).
The lower coefficient of clinical baseline characteristics and
neoadjuvant treatment modalities indicated that their contributions
to the models were lower than those of most of the radiomics
features. In the above models, the MBR vs. CMBR model (P= 0.840),
the MBR vs. CTMBR model (P= 0.890), and the CMBR vs. CTMBR
model (P= 0.820) all performed similarly in the ROC analysis using
the Delong test. The AUC, accuracy, PPV, and NPV of the five
mentioned models are listed in Table 3.
The calibration curves of the non-imaging C vs. CT models vs.

MBR models (Fig. 3a, b) and MBR vs. CMBR vs. CTMBR models

(Fig. 3c, d) demonstrated that the radiomics-based three predic-
tion models showed good agreement between predicted and
actual TRG 0 rates both in the training and validation sets. The
decision curve analysis for the C vs. CT vs. MBR models and
the MBR vs. CMBR vs. CTMBR models are presented in Fig. 3e, f.
The decision curves showed that if the threshold probability
ranged from 58% to 91% for the C model and 63% to 91% for the
CT model, it could add more benefit (a net benefit could be
derived) than a treat-all or treat-none scheme; if the threshold
probability ranged from 13% to 99%, the radiomics models added
more benefit than a treat-all or treat-none scheme as approxi-
mately more than 15% of patients underwent a CR [9].

DISCUSSION
Various factors seem to affect the pathologic response to
neoadjuvant (chemo)radiotherapy in LARC. Clinical baseline
characteristics including CEA levels, histologic and differentiation
grade, and clinical stages showed close association with the
degree of tumour regression [13, 30, 31]. Our data revealed that
pre-treatment CEA levels, MRI-T stage, and tumour histologic
grade were associated with CR, which was in accordance with
the results of previous studies. Moreover, treatment modalities,
such as concurrent chemoradiotherapy, the total radiation dose,
and the total neoadjuvant therapy played an important role in
this process [31–33]. However, there had been almost no
consideration of treatment modalities in the prediction models
of previous studies. Our real-world multicentre study explored
the performance of the pre-treatment MBR signatures as well as
the clinical baseline characteristics and neoadjuvant treatment
modalities for tumour response prediction in patients with LARC.
The performance of the radiomics based models were superior
to the non-imaging models. Additionally, the performance of the
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clinical individualised models (CMBR and CTMBR) integrating the
radiomics signatures, clinical baseline characteristics, and
neoadjuvant treatment modalities could be improved to some
extent, but it did not show significantly better discrimination
than radiomics signatures alone. Meanwhile, features with the
highest contribution to the model were mainly from MBR. Our
results provided evidence that pre-treatment MBR signatures
could be independent predictors of CR and seemed to reflect the
true nature and extent of the tumour heterogeneity in LARC
more accurately than clinical parameters.
Recently established MBR models for predicting tumour response

were mainly from studies on relatively small or single-centre cohorts
[20, 22, 34–36]. Because a wide variety of MR imagers exists not only
among different facilities but also within the same institution,
multicentre MRI-based and large-scale radiomics studies were
previously difficult to conduct. With advancements in technology

to minimise variability in acquisition parameters, multicentre
radiomics has been attempted in rectal cancer [35, 37]. Liu et al.
successfully developed and validated MBR signatures to predict
distant metastasis within a multicentre and large-scale dataset [38].
The present study is in general accord with a previous study in that
research based on high-quality MRI-based multicentre radiomics is
practicable as we have shown a model with high accuracy in
predicting treatment response using multicentre real-world data
from a considerably large sample of patients.
According to our study, both the two non-imaging models had

poor performance when compared with the radiomics signatures.
Besides, when integrating radiomics signatures on the basis of
non-imaging clinical models could significantly improve the
performance of the model, which is similar to the results of other
studies [39]. On the one hand, rectal tumours exhibit a remarkable
heterogeneity that is significantly associated with disease stage
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and lymph node metastases [40, 41]. On the other hand, the
genomic heterogeneity could translate to an intra-tumoural
expression heterogeneity that could be assessed through radio-
mics [42]. Our results also indicated that the minor contribution
degree of clinical baseline characteristics to the prediction model
might be attributed to the correlation between radiomics and
clinical baseline characteristics, which is in agreement with a
previous study [36, 43]. In addition, radiomics signatures replaced
the clinical macroscopic tumour details from multidimensions;
thus, pre-treatment radiomics without clinical variables could
achieve a good prediction of tumour shrinkage after neoadjuvant
(chemo)radiotherapy in our study, which is consistent with the
results of recent studies [34, 35].
More importantly, the discriminatory power of the prediction

model integrating neoadjuvant treatment modalities could not be
significantly improved. Neoadjuvant treatment modalities cur-
rently applied in the clinic are well known to have variable effects
on CR. Addition of oxaliplatin to fluorouracil-based neoadjuvant
chemoradiotherapy showed inconclusive results in terms of CR in
clinical trials [33, 44]. Moreover, the recent intensification of 6
cycles chemotherapy using FOLFIRINOX before preoperative
chemoradiotherapy significantly improved the pCR rate compared
with preoperative chemoradiotherapy [45], and induction CAPEOX
followed by chemoradiotherapy might not result in substantial
tumour regression [46]. Furthermore, the chemotherapy cycles of
consolidation therapy and radiotherapy modalities used were
different in various studies, and the enrolled population was
unequally targeted, perhaps resulting in the lack of consensus on
the effect of CR in a large general population [47, 48]. Dose-
escalated radiotherapy can also be associated with higher pCR
rates, but this has not yet been confirmed in a randomised
controlled trial [49]. The inconclusive results of the randomised
clinical trials and recent meta-analysis could be attributed to
factors including heterogeneous patient cohorts [50]. It suggested
that intra-tumoural heterogeneity and histologic subtypes rather
than conventional baseline characteristics, such as pre-treatment
CEA, TNM staging, and tumour histologic type, were not well
balanced between the experimental and control groups and thus
might not be detected using the clinical method. Pre-treatment
tumour intrinsic properties might have a greater impact on
prognosis than neoadjuvant treatment modalities because intra-
tumoural heterogeneity with distinct molecular and microenvir-
onmental differences is more likely to foster treatment resistance
and have poorer prognosis [51]. Therefore, determining the
tumour intrinsic property and histological subtypes pre-treatment
has great implications in choosing neoadjuvant treatment
modalities to avoid overtreatment.
This study has several limitations. First, the collection of

radiomics features was performed only on T2WI because the
image features differed significantly between centres with more
substantial variations in DWI [52]; T1-weighted (non-enhanced
and contrast-enhanced) and dynamic contrast-enhanced
sequences were not routinely recommended [53, 54]. We
anticipated that the performance of our model might increase
diagnostic accuracy with the inclusion of other standardised pre-
processing pipeline MRI sequences. Second, no central review
procedure was performed to determine reproducibility of the TRG
classification. Third, since the variations in methodology concern-
ing patient selection, image processing, outcome definition and
statistics may have contributed to inconsistent findings between
reports [55], the model also needs to be further optimised using
better international standard engineering design with multilabel
classification methods as well as further developed with more
comprehensive integration of other molecular data, such as
genomic and transcriptomic results. Finally, because the current
treatment strategies are based on the TNM staging system,
determining whether tumour response could significantly influ-
ence subsequent treatment strategies remains difficult.Ta
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We developed and validated multicentre prediction models
based on pre-treatment MRI radiomics signatures, clinical baseline
characteristics, and neoadjuvant treatment modalities to prelimi-
narily screen CR to neoadjuvant (chemo)radiotherapy in patients
with LARC. Pre-treatment MBR signatures seemed to reflect the
true nature and extent of the tumour heterogeneity more
accurately than clinical parameters, which could help identify
LARC patients who can be offered organ preservation strategies
and avoid overtreatment. The clinical usefulness of our radiomics
model should be validated in larger, well-designed prospective
multicentre studies in the future.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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