Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ultra-processed foods and cancer risk: from global food systems to individual exposures and mechanisms

Abstract

Ultra-processed foods (UPFs) have become increasingly dominant globally, contributing to as much as 60% of total daily energy intake in some settings. Epidemiological evidence suggests this worldwide shift in food processing may partly be responsible for the global obesity epidemic and chronic disease burden. However, prospective studies examining the association between UPF consumption and cancer outcomes are limited. Available evidence suggests that UPFs may increase cancer risk via their obesogenic properties as well as through exposure to potentially carcinogenic compounds such as certain food additives and neoformed processing contaminants. We identify priority areas for future research and policy implications, including improved understanding of the potential dual harms of UPFs on the environment and cancer risk. The prevention of cancers related to the consumption of UPFs could be tackled using different strategies, including behaviour change interventions among consumers as well as bolder public health policies needed to improve food environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Popkin BM. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am J Clin Nutr. 2006;84:289–98.

    Article  CAS  PubMed  Google Scholar 

  2. El Kinany K, Mint Sidi Deoula M, Hatime Z, Boudouaya HA, Huybrechts I, El Asri A, et al. Consumption of modern and traditional Moroccan dairy products and colorectal cancer risk: a large case control study. Eur J Nutr. 2020;59:953–63.

    Article  PubMed  Google Scholar 

  3. Deoula MS, El Kinany K, Huybrechts I, Gunter MJ, Hatime Z, Boudouaya HA, et al. Consumption of meat, traditional and modern processed meat and colorectal cancer risk among the Moroccan population: a large-scale case-control study. Int J Can. 2020;146:1333–45.

    Article  Google Scholar 

  4. Baker P, Machado P, Santos T, Sievert K, Backholer K, Hadjikakou M, et al. Ultra‐processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes Rev. 2021;21:e13126.

    Google Scholar 

  5. Popkin BM. Measuring the nutrition transition and its dynamics. Public Health Nutr. 2021;24:318–20.

    Article  PubMed  Google Scholar 

  6. Monteiro CA, Moubarac J-C, Cannon G, Ng SW, Popkin B. Ultra-processed products are becoming dominant in the global food system. Obes Rev. 2013;14:21–8.

    Article  PubMed  Google Scholar 

  7. Baker P, Friel S. Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Glob Health. 2016;12:80.

    Article  Google Scholar 

  8. Vilar-Compte M, Burrola-Méndez S, Lozano-Marrufo A, Ferré-Eguiluz I, Flores D, Gaitán-Rossi P, et al. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: a global systematic literature review. Int J Equity Health. 2021;20:40.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cediel G, Reyes M, Corvalán C, Levy RB, Uauy R, Monteiro CA. Ultra-processed foods drive to unhealthy diets: evidence from Chile. Public Health Nutr. 2020;27:1–10.

    Google Scholar 

  10. Steele EM, Popkin BM, Swinburn B, Monteiro CA. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metr. 2017;14:15.

    Google Scholar 

  11. Rauber F, da Costa Louzada ML, Steele EM, Millett C, Monteiro CA, Levy RB. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients. 2018;9:10.

  12. Moubarac JC, Batal M, da Costa Louzada ML, Steele EM, Monteiro CA. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite. 2017;1:512–20.

    Article  Google Scholar 

  13. da Costa Louzada ML, Ricardo CZ, Steele EM, Levy RB, Cannon G, Monteiro CA. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr. 2018;21:94–102.

    Article  Google Scholar 

  14. Machado PP, Steele EM, Levy RB, Sui Z, Rangan A, Woods J, et al. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: evidence from a nationally representative cross-sectional study. BMJ Open. 2019;9:e029544.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vandevijvere S, Jaacks LM, Monteiro CA, Moubarac JC, Girling-Butcher M, Lee AC, et al. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes Rev. 2019;20:10–19.

    Article  PubMed  Google Scholar 

  16. Chang K, Khandpur N, Neri D, Touvier M, Huybrechts I, Millett C, et al. Association between childhood consumption of ultraprocessed food and adiposity trajectories in the avon longitudinal study of parents and children birth cohort. JAMA Pediatr. 2021;14:e211573.

    Article  Google Scholar 

  17. Juul F, Martinez-Steele E, Parekh N, Monteiro CA, Chang VW. Ultra-processed food consumption and excess weight among US adults. Br J Nutr. 2018;120:90–100.

    Article  CAS  PubMed  Google Scholar 

  18. Mendonca RD, Pimenta AM, Gea A, de la Fuente-Arrillaga C, Martinez-Gonzalez MA, Lopes AC, et al. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am J Clin Nutr. 2016;104:1433–40.

    Article  PubMed  Google Scholar 

  19. Rauber F, Chang K, Vamos EP, da Costa Louzada ML, Monteiro CA, Millett C, et al. Ultra-processed food consumption and risk of obesity: a prospective cohort study of UK Biobank. Eur J Nutr. 2020;60:2169–80.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Canhada SL, Luft VC, Giatti L, Duncan BB, Chor D, Fonseca M, et al. Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2020;23:1076–86.

    Article  PubMed  Google Scholar 

  21. Canella DS, Levy RB, Martins APB, Claro RM, Moubarac J-C, Baraldi LG, et al. Ultra-processed food products and obesity in Brazilian households (2008-2009). PLoS ONE. 2014;9:e92752.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Beslay M, Srour B, Méjean C, Allès B, Fiolet T, Debras C, et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: a prospective analysis of the French NutriNet-Santé cohort. PLoS Med. 2020;17:1003256.

    Article  Google Scholar 

  23. Nardocci M, Leclerc B-S, da Costa Louzada ML, Monteiro CA, Batal M, Moubarac J-C. Consumption of ultra-processed foods and obesity in Canada. Can J Public Health. 2018;110:4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lavigne-Robichaud M, Moubarac J-C, Lantagne-Lopez S, Johnson-Down L, Batal M, Laouan Sidi EA, et al. Diet quality indices in relation to metabolic syndrome in an Indigenous Cree (Eeyouch) population in northern Québec, Canada. Public Health Nutr. 2018;21:172–80.

    Article  PubMed  Google Scholar 

  25. Mendonca RD, Lopes AC, Pimenta AM, Gea A, Martinez-Gonzalez MA, Bes-Rastrollo M. Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra Project. Am J Hyper. 2017;30:358–66.

    Google Scholar 

  26. Srour B, Touvier M. Processed and ultra-processed foods: coming to a health problem? Int J Food Sci Nutr. 2020;6:653–5.

    Article  Google Scholar 

  27. Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Debras C, Druesne-Pecollo N, et al. Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé Prospective Cohort. JAMA Intern Med. 2020;2:283.

    Article  Google Scholar 

  28. Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Méjean C, Andrianasolo RM, et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ. 2019;365:I1451.

    Article  Google Scholar 

  29. Adjibade M, Julia C, Alles B, Touvier M, Lemogne C, Srour B, et al. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Sante cohort. BMC Med. 2019;17:78.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baraldi LG, Steele EM, Canella DS, Monteiro CA. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: evidence from a nationally representative cross-sectional study. BMJ Open. 2018;8:e020574.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, Méjean C, et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ. 2018;360:k322.

    Article  PubMed  PubMed Central  Google Scholar 

  32. EFSA. Titanium dioxide: E171 no longer considered safe when used as a food additive. 2021. https://www.efsa.europa.eu/en/news/titanium-dioxide-e171-no-longer-considered-safe-when-used-food-additive.

  33. Cole MB, Augustin MA, Robertson MJ, Manners JM. The science of food security. npj Sci Food. 2018;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Knorr D, Watzke H. Food processing at a crossroad. Front Nutr. 2019;6:85.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Food and Agriculture Organization of the United Nations (FAO). Sustainable Food Systems. Concept and framework. 2021. http://www.fao.org/3/ca2079en/CA2079EN.pdf.

  36. Stuckler D, Nestle M. Big food,food systems, and global health. PLoS Med. 2012;9:e1001242.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Michels N, Specht IO, Heitmann BL, Chajès V, Huybrechts I. Dietary trans-fatty acid intake in relation to cancer risk: a systematic review and meta-analysis. Nutr Rev. 2020;79:758–76.

    Article  Google Scholar 

  38. Makarem N, Nicholson JM, Bandera EV, McKeown NM, Parekh N. Consumption of whole grains and cereal fiber in relation to cancer risk: a systematic review of longitudinal studies. Nutr Rev. 2016;74:353–73.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bleiweiss-Sande R, Chui K, Evans EW, Goldberg J, Amin S, Sacheck J. Robustness of food processing classification systems. Nutrients. 2019;11:1344.

    Article  CAS  PubMed Central  Google Scholar 

  40. Crino M, Barakat T, Trevena H, Neal B. Systematic review and comparison of classification frameworks describing the degree of food processing. Nutr Food Technol. 2017;3:1–12.

    Google Scholar 

  41. Moubarac J-C, Parra DC, Cannon G, Monteiro CA. Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep. 2014;3:256–72.

    Article  PubMed  Google Scholar 

  42. Monteiro CA, Cannon G, Levy RB, Moubarac JC, da Costa Louzada ML, Rauber F, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019;22:936–41.

    Article  PubMed  Google Scholar 

  43. Popkin BM. Ultra-processed foods’ impacts on health. Santiago de Chile: Food and Agriculture Organization of the United Nations; (2030: Food, Agriculture and rural development in Latin America and the Caribbean). 2019. Report No.: 34.

  44. Monteiro CA. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome: FAO: 2019.

  45. Moodie R, Stuckler D, Monteiro C, Sheron N, Neal B, Thamarangsi T, et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet. 2013;381:670–9.

    Article  PubMed  Google Scholar 

  46. World Cancer Research Fund/ American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: a Global Perspective. 2021. https://www.wcrf.org/wp-content/uploads/2021/02/Summary-of-Third-Expert-Report-2018.pdf.

  47. Chazelas E, Srour B, Desmetz E, Kesse-Guyot E, Julia C, Deschamps V, et al. Sugary drink consumption and risk of cancer: results from NutriNet-Santé prospective cohort. BMJ. 2019;366:l2408.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chang VC, Cotterchio M, De P, Tinmouth J. Risk factors for early-onset colorectal cancer: a population-based case–control study in Ontario, Canada. Cancer Causes Control. 2021;32:1063–83.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pagliai G, Dinu M, Madarena MG, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr. 2021;125:308–18.

    Article  CAS  PubMed  Google Scholar 

  50. Elizabeth L, Machado P, Zinöcker M, Baker P, Lawrence M. Ultra-processed foods and health outcomes: a narrative review. Nutrients. 2020;12:1955.

    Article  CAS  PubMed Central  Google Scholar 

  51. Queiroz SA, de Sousa IM, Silva FRM, Lyra CO, Fayh APT. Nutritional and environmental risk factors for breast cancer: a case-control study. Sci Med. 2018;28:287239.

    Article  Google Scholar 

  52. Romaguera D, Fernández-Barrés S, Gracia-Levadán E, Vendrell,. E, Azpiri M, Ruiz-Moreno E, et al. Consumption of ultra-processed foods and drinks and colorectal, breast and prostate cancer. Clin Nutr. 2021;40:1537–45.

    Article  CAS  PubMed  Google Scholar 

  53. Solans M, Fernández-Barrés S, Romaguera D, Benavente Y, Marcos-Gragera R, Gracia-Lavedan E, et al. Consumption of ultra-processed food and drinks and chronic lymphocytic leukemia in the MCC-spain study. Int J Environ Res Public Health. 2021;18:5457.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Trudeau K, Rousseau M-C, Parent M-É. Extent of food processing and risk of prostate cancer: The PROtEuS Study in Montreal, Canada. Nutrients. 2020;12:637.

    Article  CAS  PubMed Central  Google Scholar 

  55. Fardet A, Rock E. Ultra-processed foods: a new holistic paradigm? Trends Food Sci Technol. 2019;93:174–84.

    Article  CAS  Google Scholar 

  56. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30:67–77.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Friedman M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Func. 2015;6:1752–72.

    Article  CAS  Google Scholar 

  58. Yammine S, Huybrechts I, Biessy C, Dossus L, Aglago EK, Naudin S, et al. Dietary and circulating fatty acids and ovarian cancer risk in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomark Prev. 2020;29:1739–49.

    Article  CAS  Google Scholar 

  59. Matta M, Huybrechts I, Biessy C, Casagrande C, Yammine S, Fournier A, et al. Dietary intake of trans fatty acids and breast cancer risk in 9 European Countries. BMC Med. 2021;19:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pouzou JG, Costard S, Zagmutt FJ. Probabilistic assessment of dietary exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from consumption of meats and breads in the United States. Food Chem Toxicol. 2018;114:361–74.

    Article  CAS  PubMed  Google Scholar 

  61. Muncke J. Endocrine disrupting chemicals and other substances of concern in food contact materials: an updated review of exposure, effect and risk assessment. J Steroid Biochem. 2011;127:118–27.

    Article  CAS  Google Scholar 

  62. Chen ML, Chen JS, Tang CL, Mao IF. The internal exposure of Taiwanese to phthalate-an evidence of intensive use of plastic materials. Environ Int. 2008;34:79–85.

    Article  PubMed  Google Scholar 

  63. Buckley JP, Kim H, Wong E, Rebholz CM. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013-2014. Environ Int. 2019;131:105057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Caldwell JC. DEHP: genotoxicity and potential carcinogenic mechanisms-a review. Mutat Res. 2012;751:82–157.

    Article  CAS  PubMed  Google Scholar 

  65. Chen HP, Lee YK, Huang SY, Shi PC, Hsu PC, Chang CF. Phthalate exposure promotes chemotherapeutic drug resistance in colon cancer cells. Oncotarget. 2018;9:13167–80.

    Article  PubMed  Google Scholar 

  66. Carwile JL, Ye X, Zhou X, Calafat AM, Michels KB. Canned soup consumption and urinary bisphenol A: a randomized crossover trial. JAMA. 2011;306:2218–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Adeyi AA, Babalola BA. Bisphenol-A (BPA) in Foods commonly consumed in Southwest Nigeria and its Human Health Risk. Sci Rep. 2019;9:17458.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA. A review of the carcinogenic potential of bisphenol A. Reprod Toxicol. 2016;59:167–82.

    Article  CAS  PubMed  Google Scholar 

  69. Emfietzoglou R, Spyrou N, Mantzoros CS, Dalamaga M. Could the endocrine disruptor bisphenol-A be implicated in the pathogenesis of oral and oropharyngeal cancer? Metabolic considerations and future directions. Metabolism. 2019;91:61–9.

    Article  CAS  PubMed  Google Scholar 

  70. Soffritti M, Padovani M, Tibaldi E, Falcioni L, Manservisi F, Belpoggi F. The carcinogenic effects of aspartame: The urgent need for regulatory re-evaluation. Am J Ind Med. 2014;57:383–97.

    Article  CAS  PubMed  Google Scholar 

  71. Proquin H, Jetten MJ, Jonkhout MCM, Garduno-Balderas LG, Briede. JJ, de Kok TM, et al. Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171). Food Chem Toxicol. 2018;111:153–65.

    Article  CAS  PubMed  Google Scholar 

  72. Abnet CC. Carcinogenic food contaminants. Cancer Invest. 2007;25:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goldman R, Shields PG. Food mutagens. J Nutr. 2003;133:965S–973S.

    Article  CAS  PubMed  Google Scholar 

  74. Sindelar JJ, Milkowski AL. Sodium nitrite in processed meat and poultry meats: a review of curing and examining the risk/benefit of its use. 2016. http://info-nitrites.fr/wp-content/uploads/2016/06/nitrite_report.pdf.

  75. Song P, Wu L, Guan W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis. Nutrients. 2015;7:9872–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. IARC. Carbon Black, Titanium Dioxide, and Talc. International Agency for Research on Cancer; 2010. pp. 1–413. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans).

  77. Bettini S, Boutet-Robinet E, Cartier C, Coméra C, Gaultier E, Dupuy J, et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci Rep. 2017;7:40373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. EFSA Panel on Food Additives and Nutrient Sources Added to Food. Scientific Opinion on the re-evaluation of aspartame (E 951) as a food additive. EFSA J. 2013;11:3496.

    Google Scholar 

  79. Viennois E, Bretin A, Dubé PE, Maue AC, Dauriat CJG, Barnich N, et al. Dietary emulsifiers directly impact adherent-invasive E. coli gene expression to drive chronic intestinal inflammation. Cell Rep. 2020;33:108229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary emulsifier–induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 2017;77:27–40.

    Article  CAS  PubMed  Google Scholar 

  81. Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7:599–612.

    Article  CAS  PubMed  Google Scholar 

  82. Albano E. Alcohol, oxidative stress and free radical damage. Proc Nutr Soc. 2006;65:278–90.

    Article  CAS  PubMed  Google Scholar 

  83. Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7:149–56.

    Article  CAS  PubMed  Google Scholar 

  84. Alsaffar AA. Sustainable diets: the interaction between food industry, nutrition, health and the environment. Food Sci Technol Int. 2016;222:102–11.

    Article  Google Scholar 

  85. Fardet A, Rock E. Ultra-processed foods and food system sustainability: what are the links? Sustainability. 2020;12:6280.

    Article  Google Scholar 

  86. Moubarac J-C, Martins AP, Claro RM, Levy RB, Cannon G, Monteiro CA. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr. 2013;16:2240–8.

    Article  PubMed  Google Scholar 

  87. Poti JM, Mendez MA, Ng SW, Popkin BM. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am J Clin Nutr. 2015;101:1251–62.

  88. Slimani N, Deharveng G, Southgate DAT, Biessy C, Chajès V, van Bakel MME, et al. Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study. Eur J Clin Nutr. 2009;63:S206–225.

    Article  CAS  PubMed  Google Scholar 

  89. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body fatness and cancer-viewpoint of the IARC working group. N Engl J Med. 2016;375:794–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science. 2018;360:987–92.

    Article  CAS  PubMed  Google Scholar 

  91. McClements DJ, Barrangou R, Hill C, Kokini JL, Ann Lila. M, Meyer AS, et al. Building a resilient, sustainable, and healthier food supply through innovation and technology. Annu Rev Food Sci Technol. 2020;12:1–28.

    Article  PubMed  Google Scholar 

  92. Ozyurt VH, Ötles S. Effect of food processing on the physicochemical properties of dietary fibre. Acta Sci Pol Technol Aliment. 2016;15:233–45.

    Article  CAS  PubMed  Google Scholar 

  93. Seferidi P, Millett C, Laverty AA. Industry self-regulation fails to deliver healthier diets, again. BMJ. 2021;372:m4762.

    Article  PubMed  Google Scholar 

  94. Scrinis G. Reformulation, fortification and functionalization: Big Food corporations’ nutritional engineering and marketing strategies. J Peasant Stud. 2016;43:17–37.

    Article  Google Scholar 

  95. Scrinis G, Monteiro CA. Ultra-processed foods and the limits of product reformulation. Public Health Nutr. 2018;21:247–52.

    Article  PubMed  Google Scholar 

  96. Laverty AA, Kypridemos C, Seferidi P, Vamos EP, Pearson-Stuttard J, Collins B, et al. Quantifying the impact of the Public Health Responsibility Deal on salt intake, cardiovascular disease and gastric cancer burdens: interrupted time series and microsimulation study. J Epidemiol Community Health. 2019;73:881–7.

    Article  PubMed  Google Scholar 

  97. Seferidi P, Scrinis G, Huybrechts I, Woods J, Vineis P, Millett C. The neglected environmental impacts of ultra-processed foods. Lancet Planet Health. 2020;4:e437–8.

    Article  PubMed  Google Scholar 

  98. Xie L, Mo M, Jia H-X, Liang F, Yuan J, Zhu J. Association between dietary nitrate and nitrite intake and site-specific cancer risk: evidence from observational studies. Oncotarget. 2016;7:56915–32.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Singh N, Singh Lubana S, Arora S, Sachmechi I. A study of artificial sweeteners and thyroid cancer risk. J Clin Med Res. 2020;12:492–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gultekin F. Food additives of public concern for their carcinogenicity. J Nutriton Health Food Sci. 2015;3:1–6.

    Article  Google Scholar 

  101. Chazelas E, Deschasaux M, Srour B, Kesse-Guyot E, Julia C, Alles B, et al. Food additives: distribution and co-occurrence in 126,000 food products of the French market. Sci Rep. 2020;10:3980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Cancer Research UK [Ref: C33493/A29678] and World Cancer Research Fund International [Ref: IIG_FULL_2020_033].

Author information

Authors and Affiliations

Authors

Contributions

NK, AAN and IH conceived the content of the paper and wrote the paper. EPV, MT, EKG, MJG and CM critically reviewed it.

Corresponding author

Correspondence to Inge Huybrechts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kliemann, N., Al Nahas, A., Vamos, E.P. et al. Ultra-processed foods and cancer risk: from global food systems to individual exposures and mechanisms. Br J Cancer 127, 14–20 (2022). https://doi.org/10.1038/s41416-022-01749-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01749-y

This article is cited by

Search

Quick links