Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular Diagnostics

Circulating tumour DNA: a challenging innovation to develop “precision onco-surgery” in pancreatic adenocarcinoma

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the third leading cause of cancer-related mortality within the next decade. Management of PDAC remains challenging with limited effective treatment options and a dismal long-term prognosis. Liquid biopsy and circulating biomarkers seem to be promising to improve the multidisciplinary approach in PDAC treatment. Circulating tumour DNA (ctDNA) is the most studied blood liquid biopsy analyte and can provide insight into the molecular profile and individual characteristics of the tumour in real-time and in advance of standard imaging modalities. This could pave the way for identifying new therapeutic targets and markers of tumour response to supplement diagnostic and provide enhanced stratified treatment. Although its specificity seems excellent, the current sensitivity of ctDNA remains a limitation for clinical use, especially in patients with a low tumour burden. Increasing evidence suggests that ctDNA is a pertinent candidate biomarker to assess minimal residual disease after surgery but also a strong independent prognostic biomarker. This review explores the current knowledge and recent developments in ctDNA as a screening, diagnostic, prognostic and predictive biomarker in the management of resectable PDAC but also technical and analytical challenges that must be overcome to move toward “precision onco-surgery.”

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Genetic progression model of pancreatic adenocarcinoma.
Fig. 2

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10:10–27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferlay J, Partensky C, Bray F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol. 2016;55:1158–60.

    CAS  Article  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  5. Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379:2395–406.

    CAS  Article  PubMed  Google Scholar 

  6. Ballehaninna UK, Chamberlain RS. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J Gastrointest Oncol. 2012;3:105–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goggins M. Molecular markers of early pancreatic cancer. J Clin Oncol. 2005;23:4524–31.

    CAS  Article  PubMed  Google Scholar 

  8. Kondo N, Murakami Y, Uemura K, Nakagawa N, Takahashi S, Ohge H, et al. Comparison of the prognostic impact of pre- and post-operative CA19-9, SPan-1, and DUPAN-II levels in patients with pancreatic carcinoma. Pancreatology. 2017;17:95–102.

    CAS  Article  PubMed  Google Scholar 

  9. Ishii H, Okada S, Sato T, Wakasugi H, Saisho H, Furuse J, et al. CA 19-9 in evaluating the response to chemotherapy in advanced pancreatic cancer. Hepato Gastroenterol. 1997;44:279–83.

    CAS  Google Scholar 

  10. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.

    CAS  Article  PubMed  Google Scholar 

  11. Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic—implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18:297–312.

    Article  PubMed  Google Scholar 

  12. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2:897–909.

    CAS  Article  PubMed  Google Scholar 

  13. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

    CAS  Article  PubMed  Google Scholar 

  14. Bournet B, Buscail C, Muscari F, Cordelier P, Buscail L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: hopes and realities. Eur J Cancer. 2016;54:75–83.

    CAS  Article  PubMed  Google Scholar 

  15. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol. 2008;3:157–88.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39:91–100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hruban RH, Maitra A, Schulick R, Laheru D, Herman J, Kern SE, et al. Emerging molecular biology of pancreatic cancer. Gastrointest Cancer Res. 2008;2(Suppl):S10–5.

    PubMed  PubMed Central  Google Scholar 

  19. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Puleo F, Nicolle R, Blum Y, Cros J, Marisa L, Demetter P, et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology. 2018;155:1999–2013 e3.

    Article  PubMed  Google Scholar 

  21. Cancer Genome Atlas Research Network. Electronic address aadhe, Cancer Genome Atlas Research N. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2017;32:185–203 e13.

    Article  CAS  Google Scholar 

  22. de Santiago I, Yau C, Heij L, Middleton MR, Markowetz F, Grabsch HI, et al. Immunophenotypes of pancreatic ductal adenocarcinoma: meta-analysis of transcriptional subtypes. Int J Cancer. 2019;145:1125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015;6:7686.

    Article  PubMed  Google Scholar 

  24. Sugimori M, Sugimori K, Tsuchiya H, Suzuki Y, Tsuyuki S, Kaneta Y, et al. Quantitative monitoring of circulating tumor DNA in patients with advanced pancreatic cancer undergoing chemotherapy. Cancer Sci. 2020;111:266–78.

    CAS  Article  PubMed  Google Scholar 

  25. Zill OA, Greene C, Sebisanovic D, Siew LM, Leng J, Vu M, et al. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov. 2015;5:1040–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Shapiro B, Chakrabarty M, Cohn EM, Leon SA. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer. 1983;51:2116–20.

    CAS  Article  PubMed  Google Scholar 

  27. Diaz LA Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–76.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177:428–45.e18.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Yong E. Cancer biomarkers: written in blood. Nature. 2014;511:524–6.

    CAS  Article  PubMed  Google Scholar 

  31. Taly V, Pekin D, El Abed A, Laurent-Puig P. Detecting biomarkers with microdroplet technology. Trends Mol Med. 2012;18:405–16.

    CAS  Article  PubMed  Google Scholar 

  32. Pecuchet N, Zonta E, Didelot A, Combe P, Thibault C, Gibault L, et al. Base-position error rate analysis of next-generation sequencing applied to circulating tumor DNA in non-small cell lung cancer: a prospective study. PLoS Med. 2016;13:e1002199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newman AM, Bratman SV, Wynne J, Eclov JF, Modlin NC. LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

  34. Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34:547–55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Dabritz J, Preston R, Hanfler J, Oettle H. Follow-up study of K-ras mutations in the plasma of patients with pancreatic cancer: correlation with clinical features and carbohydrate antigen 19-9. Pancreas. 2009;38:534–41.

    Article  CAS  PubMed  Google Scholar 

  36. Maire F, Micard S, Hammel P, Voitot H, Levy P, Cugnenc PH, et al. Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. Br J Cancer. 2002;87:551–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Kinugasa H, Nouso K, Miyahara K, Morimoto Y, Dohi C, Tsutsumi K, et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015;121:2271–80.

    CAS  Article  PubMed  Google Scholar 

  38. Takai E, Totoki Y, Nakamura H, Morizane C, Nara S, Hama N, et al. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci Rep. 2015;5:18425.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Hadano N, Murakami Y, Uemura K, Hashimoto Y, Kondo N, Nakagawa N, et al. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016;115:59–65.

  40. Pietrasz D, Pecuchet N, Garlan F, Didelot A, Dubreuil O, Doat S, et al. Plasma circulating tumor DNA in pancreatic cancer patients is a prognostic marker. Clin Cancer Res. 2017;23:116–23.

    CAS  Article  PubMed  Google Scholar 

  41. Earl J, Garcia-Nieto S, Martinez-Avila JC, Montans J, Sanjuanbenito A, Rodriguez-Garrote M, et al. Circulating tumor cells (Ctc) and kras mutant circulating free Dna (cfdna) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer. 2015;15:797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buscail E, Chauvet A, Quincy P, Degrandi O, Buscail C, Lamrissi I, et al. CD63-GPC1-positive exosomes coupled with CA19-9 offer good diagnostic potential for resectable pancreatic ductal adenocarcinoma. Transl Oncol. 2019;12:1395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Le Calvez-Kelm F, Foll M, Wozniak MB, Delhomme TM, Durand G, Chopard P, et al. KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-control. Oncotarget. 2016;7:78827–40.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Van Paemel R, De Koker A, Caggiano C, Morlion A, Mestdagh P, De Wilde B, et al. Genome-wide study of the effect of blood collection tubes on the cell-free DNA methylome. Epigenetics. 2020:16;797–807.

  45. Greytak SR, Engel KB, Parpart-Li S, Murtaza M, Bronkhorst AJ, Pertile MD, et al. Harmonizing cell-free DNA collection and processing practices through evidence-based guidance. Clin Cancer Res. 2020;26:3104–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Eissa MAL, Lerner L, Abdelfatah E, Shankar N, Canner JK, Hasan NM, et al. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clin Epigenetics. 2019;11:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Singh N, Rashid S, Rashid S, Dash NR, Gupta S, Saraya A. Clinical significance of promoter methylation status of tumor suppressor genes in circulating DNA of pancreatic cancer patients. J Cancer Res Clin Oncol. 2020;146:897–907.

    CAS  Article  PubMed  Google Scholar 

  48. Feinberg AP, Cui H, Ohlsson R. DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol. 2002;12:389–98.

    CAS  Article  PubMed  Google Scholar 

  49. Liggett T, Melnikov A, Yi Q-l, Replogle C, Brand R, Kaul K, et al. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 2010;116:1674–80.

    CAS  Article  PubMed  Google Scholar 

  50. Melnikov AA, Scholtens D, Talamonti MS, Bentrem DJ, Levenson VV. Methylation profile of circulating plasma DNA in patients with pancreatic cancer. J Surg Oncol. 2009;99:119–22.

    Article  PubMed  Google Scholar 

  51. Henriksen SD, Madsen PH, Larsen AC, Johansen MB, Pedersen IS, Krarup H, et al. Cell-free DNA promoter hypermethylation in plasma as a predictive marker for survival of patients with pancreatic adenocarcinoma. Oncotarget. 2017;8:93942–56.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pedersen KS, Bamlet WR, Oberg AL, de Andrade M, Matsumoto ME, Tang H, et al. Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS ONE. 2011;6:e18223.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Majumder S, Taylor W, Foote PH, Berger CK, Wu CW, Mahoney DW, et al. High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA 19-9. Clin Cancer Res. 2021;27:2523–32.

  54. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Springer S, Wang Y, Dal Molin M, Masica DL, Jiao Y, Kinde I, et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;149:1501–10.

    CAS  Article  PubMed  Google Scholar 

  56. Singhi AD, McGrath K, Brand RE, Khalid A, Zeh HJ, Chennat JS, et al. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut. 2018;67:2131–41.

    CAS  Article  PubMed  Google Scholar 

  57. Berger AW, Schwerdel D, Costa IG, Hackert T, Strobel O, Lam S, et al. Detection of hot-spot mutations in circulating cell-free DNA from patients with intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2016;151:267–70.

    CAS  Article  PubMed  Google Scholar 

  58. Hata T, Mizuma M, Motoi F, Omori Y, Ishida M, Nakagawa K, et al. GNAS mutation detection in circulating cell-free DNA is a specific predictor for intraductal papillary mucinous neoplasms of the pancreas, especially for intestinal subtype. Sci Rep. 2020;10:17761.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Buscail E, Maulat C, Muscari F, Chiche L, Cordelier P, Dabernat S, et al. Liquid biopsy approach for pancreatic ductal adenocarcinoma. Cancers. 2019;11;852.

  60. Cohen JD, Javed AA, Thoburn C, Wong F, Tie J, Gibbs P, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci USA. 2017;114:10202–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Guo S, Shi X, Shen J, Gao S, Wang H, Shen S, et al. Preoperative detection of KRAS G12D mutation in ctDNA is a powerful predictor for early recurrence of resectable PDAC patients. Br J Cancer. 2020;122:857–67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V, et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol. 2017;28:741–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Kato S, Honda K. Use of biomarkers and imaging for early detection of pancreatic cancer. Cancers. 2020;12:1965.

  64. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563:579–83.

    CAS  Article  PubMed  Google Scholar 

  65. Fujimoto Y, Suehiro Y, Kaino S, Suenaga S, Tsuyama T, Matsui H, et al. Combination of CA19-9 and blood free-circulating methylated RUNX3 may be useful to diagnose stage I pancreatic cancer. Oncology. 2021;99:234–9.

    CAS  Article  PubMed  Google Scholar 

  66. Shinjo K, Hara K, Nagae G, Umeda T, Katsushima K, Suzuki M, et al. A novel sensitive detection method for DNA methylation in circulating free DNA of pancreatic cancer. PLoS ONE. 2020;15:e0233782.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–30.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Delpero JR, Sauvanet A. Vascular resection for pancreatic cancer: 2019 French Recommendations Based on a Literature Review From 2008 to 6-2019. Front Oncol. 2020;10:40.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cassinotto C, Cortade J, Belleannee G, Lapuyade B, Terrebonne E, Vendrely V, et al. An evaluation of the accuracy of CT when determining resectability of pancreatic head adenocarcinoma after neoadjuvant treatment. Eur J Radiol. 2013;82:589–93.

    Article  PubMed  Google Scholar 

  70. Ferrone CR, Marchegiani G, Hong TS, Ryan DP, Deshpande V, McDonnell EI, et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg. 2015;261:12–7.

    Article  PubMed  Google Scholar 

  71. Wagner M, Antunes C, Pietrasz D, Cassinotto C, Zappa M, Sa Cunha A, et al. CT evaluation after neoadjuvant FOLFIRINOX chemotherapy for borderline and locally advanced pancreatic adenocarcinoma. Eur Radiol. 2017;27:3104–16.

    Article  PubMed  Google Scholar 

  72. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee B, Lipton L, Cohen J, Tie J, Javed AA, Li L, et al. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann Oncol. 2019;30:1472–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    CAS  Article  PubMed  Google Scholar 

  75. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  CAS  Google Scholar 

  76. Groot VP, Mosier S, Javed AA, Teinor JA, Gemenetzis G, Ding D, et al. Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin Cancer Res. 2019;25:4973–84.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Nakano Y, Kitago M, Matsuda S, Nakamura Y, Fujita Y, Imai S, et al. KRAS mutations in cell-free DNA from preoperative and postoperative sera as a pancreatic cancer marker: a retrospective study. Br J Cancer. 2018;118:662–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Watanabe F, Suzuki K, Tamaki S, Abe I, Endo Y, Takayama Y, et al. Longitudinal monitoring of KRAS-mutated circulating tumor DNA enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer. PLoS ONE. 2019;14:e0227366.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Mohan S, Ayub M, Rothwell DG, Gulati S, Kilerci B, Hollebecque A, et al. Analysis of circulating cell-free DNA identifies KRAS copy number gain and mutation as a novel prognostic marker in Pancreatic cancer. Sci Rep. 2019;9:11610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim MK, Woo SM, Park B, Yoon KA, Kim YH, Joo J, et al. Prognostic implications of multiplex detection of KRAS mutations in cell-free DNA from patients with pancreatic ductal adenocarcinoma. Clin Chem. 2018;64:726–34.

    CAS  Article  PubMed  Google Scholar 

  81. Patel H, Okamura R, Fanta P, Patel C, Lanman RB, Raymond VM, et al. Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer. J Hematol Oncol. 2019;12:130.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Wang SE, Shyr BU, Shyr BS, Chen SC, Chang SC, Shyr YM. Circulating cell-free DNA in pancreatic head adenocarcinoma undergoing pancreaticoduodenectomy. Pancreas. 2021;50:214–8.

    CAS  Article  PubMed  Google Scholar 

  83. Kruger S, Heinemann V, Ross C, Diehl F, Nagel D, Ormanns S, et al. Repeated mutKRAS ctDNA measurements represent a novel and promising tool for early response prediction and therapy monitoring in advanced pancreatic cancer. Ann Oncol. 2018;29:2348–55.

    CAS  Article  PubMed  Google Scholar 

  84. Strijker M, Soer EC, de Pastena M, Creemers A, Balduzzi A, Beagan JJ, et al. Circulating tumor DNA quantity is related to tumor volume and both predict survival in metastatic pancreatic ductal adenocarcinoma. International journal of cancer. J Int du Cancer. 2020;146:1445–56.

    CAS  Article  Google Scholar 

  85. Yamaguchi T, Uemura K, Murakami Y, Kondo N, Nakagawa N, Okada K, et al. Clinical implications of pre- and postoperative circulating tumor DNA in patients with resected pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2021;28:3135–44.

  86. Hussung S, Akhoundova D, Hipp J, Follo M, Klar RFU, Philipp U, et al. Longitudinal analysis of cell-free mutated KRAS and CA 19-9 predicts survival following curative resection of pancreatic cancer. BMC Cancer. 2021;21:49.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Chen K, Sun J, Zhao H, Jiang R, Zheng J, Li Z, et al. Non-invasive lung cancer diagnosis and prognosis based on multi-analyte liquid biopsy. Mol Cancer. 2021;20:23.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hofmann L, Sallinger K, Haudum C, Smolle M, Heitzer E, Moser T, et al. A multi-analyte approach for improved sensitivity of liquid biopsies in prostate cancer. Cancers. 2020;12;2247.

  89. Buscail E, Alix-Panabières C, Quincy P, Cauvin T, Chauvet A, Degrandi O, et al. High clinical value of liquid biopsy to detect circulating tumor cells and tumor exosomes in pancreatic ductal adenocarcinoma patients eligible for up-front surgery. Cancers. 2019;11:1656.

  90. Lee B. Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Early Stage Pancreatic Cancer: A Multicentre Randomised Study (DYNAMIC- Pancreas): ANZCTR. 2018. https://anzctr.org.au/ACTRN12618000335291.aspx.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception/design of the work: DP, AP, RS, CB. Literature review: DP, ES, FL. Analysis of the selected data: DP, ES, FL, AP. Drafting the work: DP, ES, FL, AP, CL, RS, CB. Revising it critically: all. Final approval of the version to be published: all.

Corresponding author

Correspondence to Daniel Pietrasz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethic approval

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pietrasz, D., Sereni, E., Lancelotti, F. et al. Circulating tumour DNA: a challenging innovation to develop “precision onco-surgery” in pancreatic adenocarcinoma. Br J Cancer 126, 1676–1683 (2022). https://doi.org/10.1038/s41416-022-01745-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01745-2

Search

Quick links