ARTICLE OPEN

Genetics and Genomics

Check for updates

BRCA1 and *BRCA2* pathogenic variants and prostate cancer risk: systematic review and meta-analysis

Tommy Nyberg $\mathbb{D}^{1,2^{\bowtie}}$, Marc Tischkowitz \mathbb{D}^3 and Antonis C. Antoniou \mathbb{D}^1

© The Author(s) 2021

BACKGROUND: *BRCA1* and *BRCA2* pathogenic variants (PVs) are associated with prostate cancer (PCa) risk, but a wide range of relative risks (RRs) has been reported.

METHODS: We systematically searched PubMed, Embase, MEDLINE and Cochrane Library in June 2021 for studies that estimated PCa RRs for male *BRCA1/2* carriers, with no time or language restrictions. The literature search identified 27 studies (*BRCA1*: n = 20, *BRCA2*: n = 21).

RESULTS: The heterogeneity between the published estimates was high (*BRCA1*: $l^2 = 30\%$, *BRCA2*: $l^2 = 83\%$); this could partly be explained by selection for age, family history or aggressive disease, and study-level differences in ethnicity composition, use of historical controls, and location of PVs within *BRCA2*. The pooled RRs were 2.08 (95% CI 1.38–3.12) for Ashkenazi Jewish *BRCA2* carriers, 4.35 (95% CI 3.50–5.41) for non-Ashkenazi European ancestry *BRCA2* carriers, and 1.18 (95% CI 0.95–1.47) for *BRCA1* carriers. At ages <65 years, the RRs were 7.14 (95% CI 5.33–9.56) for non-Ashkenazi European ancestry *BRCA2* and 1.78 (95% CI 1.09–2.91) for *BRCA1* carriers.

CONCLUSIONS: These PCa risk estimates will assist in guiding clinical management. The study-level subgroup analyses indicate that risks may be modified by age and ethnicity, and for *BRCA2* carriers by PV location within the gene, which may guide future risk-estimation studies.

British Journal of Cancer (2022) 126:1067-1081; https://doi.org/10.1038/s41416-021-01675-5

INTRODUCTION

Pathogenic variants (PVs) in *BRCA1* and *BRCA2* are associated with prostate cancer (PCa) risk, but a wide range of relative risk (RR) estimates has been reported [1–26]. A systematic review and metaanalysis on PCa risks for men with germline *BRCA1/2* PVs (henceforth, *"BRCA1/2* carriers") was published in 2019, and estimated pooled RRs of 1.35 (95% CI 1.03–1.76) for *BRCA1* and 2.64 (95% CI 2.03–3.47) for *BRCA2* carriers [27]. However, that meta-analysis did not consider variation in the RRs by age, PCa family history, ethnicity or PV location despite evidence of variation by these factors [1–8, 10–12, 14–17, 23, 28–33], and did not include two subsequent studies that reported prospective RR estimates for *BRCA1/2* carriers: the IMPACT screening trial [20] and the EMBRACE study [23].

Study aims

This systematic review and meta-analysis aimed to synthesise the available evidence on the RRs of PCa for male *BRCA1* and *BRCA2* carriers, overall and by age groups, and to explore potential explanatory factors for the variation in the reported estimates by study-level covariates. Secondarily, we aimed to estimate RRs of PCa applicable to *BRCA1/2* carriers with a PCa family history, and RRs of aggressive PCa.

METHODS

We sought to identify all available estimates of the RRs of PCa for *BRCA1/2* carriers, based on valid study designs [34]. On June 19, 2021, the first author (TN) searched PubMed, Embase, MEDLINE and Cochrane Library with no time or language restrictions. The search query is available in the Supplementary Material. The first author removed duplicates, conference abstracts and publications that did not report original data, and screened the remaining publications based on their titles and abstracts to identify those potentially relevant. The first author thereafter screened these articles in their entirety. We contacted the authors of five articles to ask for clarifications.

We included case-control, prospective cohort and family-based retrospective cohort studies [34] that estimated the RR and 95% CI of diagnosed PCa (regardless of histopathology) for carriers of rare PVs in *BRCA1* and/or *BRCA2* compared to the general population or to non-carriers, or studies where RRs and/or CIs were not reported but the study provided sufficient information to allow calculation of the missing measures. Whenever available, we used estimates adjusted for age and/or ancestry as reported in the publications. PVs were defined as any deleterious variants as determined by the study investigators or in a clinical setting to be clinically actionable based on established clinical guidelines. Studies that only reported on PVs in the two genes together, without providing separate risk estimates for *BRCA1* and *BRCA2* PVs, were not included. We did not include retrospective cohort studies that

Received: 25 August 2021 Revised: 28 November 2021 Accepted: 10 December 2021 Published online: 28 December 2021

¹Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. ²MRC Biostatistics Unit, University of Cambridge, Cambridge, UK. ³Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK. ^{Sent} Cambridge, UK. ^{Sen}

recruited PV carriers in clinical settings and assessed association with previous cancer diagnoses, because of the likely ascertainment bias associated with such study designs; [34] nor cross-sectional studies that compared frequencies of prevalent PCa between PV carriers and non-carriers, because prevalence ratios are unbiased RR estimates only under strong assumptions about the population incidence [35]. When data from the same study had been published more than once, we only included the most recent publication.

Statistical analysis

We used the DerSimonian—Laird method for the between-study variance [36] and derived pooled estimates according to both fixed-effects and random-effects models. To assess heterogeneity between RR estimates, we used the DerSimonian—Laird heterogeneity of effects chi-square test and reported the corresponding l^2 statistic [37]. We assessed whether the study estimates varied by covariate moderators using nested chi-square tests for categorical moderators or meta-regression for quantitative moderators [38]. To assess potential publication bias, we used funnel plots and tested for funnel plot asymmetry using the rank correlation test [39]. To assess the impact of individual studies on the results, we performed leave-one-out sensitivity analyses by omitting one of the included studies at a time and refitting the models.

For the meta-analysis by age groups, we initially considered all reported estimates by age at diagnosis with no restriction on age cutpoints considered, and also specifically those that used an age cutpoint of 65 years. For the meta-analysis of aggressive PCa, we considered studies that had exclusively or preferentially included participants with aggressive PCa, or studies that reported aggressive PCa-specific RRs, with PCa aggressiveness as defined by the study authors. In addition, when no RR of aggressive PCa had been reported but sufficient data were available within a study (e.g. Gleason score frequencies for PCa cases by PV status), we estimated the RR of Gleason score \geq 7 PCa. We explored whether the variability between the estimates could be explained by the following study-level covariates (defined in Supplementary Table S1): study design; the majority ethnic ancestry of the study participants; age-adjustment approach; participant, case or control selection; use of historical or external controls; and the proportion of observed BRCA2 PVs that were located within the wide definition ovarian cancer cluster region (OCCR) [8, 16, 23, 29, 30, 32, 40]. We performed the meta-analyses using R software [41], with the meta [42] and metafor [38] packages.

RESULTS

The literature search identified 27 studies that reported PCa RR estimates for *BRCA1* (n = 20) and/or *BRCA2* carriers (n = 21; Fig. 1). These included 20 case–control studies from 19 publications [1, 3, 4, 6, 7, 10–15, 17–19, 21, 22, 24–26], two prospective cohort studies [20, 23], and five family-based retrospective cohort studies [2, 5, 8, 9, 16] (Tables 1 and 2). Full details are available in the Supplementary Material.

The reported RR estimates showed a high degree of variability, particularly those for *BRCA2* carriers (*BRCA1*: $l^2 = 30\%$, *BRCA2*: $l^2 = 83\%$; Figs. 2 and 3). The funnel plots indicated both high and low RR estimates as outliers and that smaller *BRCA2* studies generally reported lower RR estimates than larger studies. However, there was no statistically significant funnel plot asymmetry (Supplementary Figs. S1 and S2).

The RR estimates from studies that selected participants for PCa diagnosis at a young age, PCa family history or aggressive PCa were higher than estimates from studies in unselected participants (*BRCA1*: test for subgroup differences, P = 0.056, *BRCA2*: test for subgroup differences, P < 0.001; Supplementary Table S2). We restricted the main meta-analysis to studies unselected for age at PCa diagnosis, PCa family history or aggressive PCa, but separately analysed these subgroups. Table 3 summarises the pooled RR estimates from the further restrictions, subgroup analyses and adjustments made in the meta-analysis.

BRCA1

Studies on *BRCA1* carriers that relied on historical controls reported higher RR estimates than other studies (test for subgroup differences, P = 0.044; Supplementary Table S3).

BRCA1: studies without historical controls. Restricted to studies of *BRCA1* carriers that did not use historical controls, the heterogeneity between estimates was low ($l^2 = 8\%$; Supplementary Figs. S3 and S4; Supplementary Table S4). A leave-one-out analysis identified the prospective EMBRACE study [23] as a high outlier (P = 0.013; Supplementary Table S5). The EMBRACE study reported a screening-bias-corrected estimate; [23] Table 3 shows the pooled RR when this estimate was used instead (Supplementary Figs. S3 and S4 and Table 3).

BRCA2

BRCA2 studies in Ashkenazi Jewish men reported lower RR estimates than studies in other populations (test for subgroup differences, P = 0.011). The RR estimates were lower in studies where $\geq 50\%$ of the reported PVs were located in the OCCR (test for subgroup differences, P = 0.002; Supplementary Table S3).

BRCA2: prostate cancer risk by ethnicity. Table 3 shows pooled RR estimates based on studies in Ashkenazi Jewish populations (Supplementary Figs. S5 and S6), where the heterogeneity between estimates was low ($l^2 = 0\%$; Supplementary Tables S6 and S7).

For studies of *BRCA2* carriers in non-Ashkenazi European ancestry populations (Supplementary Figs. S5 and S6), the heterogeneity between estimates was high ($l^2 = 66\%$). A leaveone-out analysis identified three outliers (Supplementary Table S7): a UK family-based retrospective cohort study (P = 0.010) [16], the IMPACT screening trial (P = 0.013) [20], and a Dutch kin-cohort study (P = 0.017) [8]. Table 3 shows pooled RR estimates after excluding these studies. Notably, the main estimate from the EMBRACE study [23] was not an outlier among the estimates for *BRCA2* carriers (P = 0.6), and if instead a screening-effect-adjusted estimate was used, the RR estimate was an outlier and significantly lower than the other estimates (P = 0.025).

BRCA2: prostate cancer risk by pathogenic variant location. Table 3 shows pooled RR estimates in studies split by OCCR proportion, before and after exclusion of the IMPACT study [20] which was a low outlier among studies with <50% OCCR PVs (P = 0.002; Supplementary Figs. S7 and S8; Supplementary Tables S8 and S9), and after restriction to the available OCCR- or non-OCCR-specific estimates.

Furthermore, a meta-regression model showed a trend towards linearly decreasing log-RR estimates with the increasing proportion of OCCR PVs in a study (P < 0.001). The regression model had low residual heterogeneity ($l^2 = 5\%$), and predicted RRs of 2.31 (95% CI 2.20–2.42) from studies with 100% OCCR PVs and 6.50 (95% CI 6.14–6.87) from studies with 0% OCCR PVs (Supplementary Fig. S9).

Prostate cancer risk by age group

Supplementary Figs. S10 and S11 show all reported RR estimates by the age cutpoints used to define age groups. Restricted to RR estimates by age groups younger or older than 65 years, the RRs were heterogeneous for both *BRCA1* (age <65 years $l^2 = 47\%$, age ≥ 65 years $l^2 = 65\%$; Supplementary Figs. S12 and S13) and *BRCA2* carriers (age <65 years $l^2 = 63\%$, age ≥ 65 years $l^2 = 0\%$; Supplementary Figs. S14 and S15).

BRCA1. The age-specific estimates from a large international kincohort study [5] were somewhat lower at age≥65 years than estimates from other studies (age <65 years P = 0.4, age ≥65 years P = 0.019; Supplementary Tables S10 and S11). However, we could not identify any likely methodological explanation for this outlying estimate and therefore retained the study. The age-specific RR estimates from one case–control study in Ashkenazi Jewish men [11] were somewhat lower at younger ages and somewhat higher at older ages than estimates from other studies (age <65 years P = 0.073, age ≥65 years P = 0.15; Supplementary Table S11) and the RR estimates from the EMBRACE study [23] were somewhat

^aNo carriers in controls: n = 2. Controls not genotyped: n = 1. ^bNo confidence interval reported.

Fig. 1 Flowchart. Flowchart detailing the identification of original research articles on the relative risk of prostate cancer for carriers of BRCA1 and BRCA2 pathogenic variants.

higher than estimates from other studies at both younger and older ages (age <65 years P = 0.14, age ≥ 65 years P = 0.11; Supplementary Table S11), but these differences were not significant. Table 3 shows the results when excluding the study in Ashkenazi men, including screening-effect-adjusted estimates from EMBRACE, or restricting to studies that did not rely on external population frequency estimates.

BRCA2. The RR estimate for younger *BRCA2* carriers from one study of Ashkenazi Jewish men [11] was a low outlier (age <65 years P = 0.005, age ≥65 years P = 0.5; Supplementary Fig. S14; Supplementary Tables S12 and S13). Table 3 shows pooled RR estimates by age group before and after excluding this study.

Prostate cancer risk by family history of prostate cancer

The pooled RR estimate for *BRCA1* carriers with PCa family history was 2.79 (95% CI 1.33–5.88; $l^2 = 0$ %). Only one study reported a RR specifically for *BRCA2* carriers with a family history, of 7.31 (95% CI 3.40–15.7).

Risk of aggressive prostate cancer

The pooled random-effects RRs of aggressive PCa (any definition) were 1.98 (1.35–2.90; $l^2 = 0\%$) for *BRCA1* carriers and 6.08 (3.44–10.8; $l^2 = 82\%$) for *BRCA2* carriers (Supplementary Fig. S16). For *BRCA2* carriers, the RR estimates differed significantly by the definition of aggressive PCa (P < 0.001), with higher RR estimates reported for metastatic or Gleason score≥8 PCa than Gleason score≥7 PCa. For *BRCA1*, there was no significant heterogeneity by the definition of aggressive PCa (P = 0.3). Restricted to estimates of the RR of Gleason score ≥7 PCa, the pooled random-effects RRs were 1.59 (95% CI 1.02–2.49; $l^2 = 0\%$) for *BRCA1* carriers and 4.94 (95% CI 3.51–6.96; $l^2 = 0\%$) for *BRCA2* carriers.

DISCUSSION

A wide range of PCa RR estimates have been reported for *BRCA1* and *BRCA2* carriers. The results of this meta-analysis suggest that the heterogeneity may in part be explained by selection for age, family history or aggressive disease, and study-level differences in

1070	1											
		OR (95% CI) ^a	6.6 (0.81–56.9)	Not reported	Not reported	Not reported	Not reported	Not reported	2.02 (0.89–4.56)	Not reported	Not reported	7.78 (1.80–9.37)
		Controls PV carriers/total (%)	2/499 (0.40%)	2/87 (2.30%)	1/87 (1.15%)	61/5318 (1.15%)	59/5087(1.16%)	11/1344 (0.82%)	10/1344 (0.74%)	109/9371 (1.16%)	119/9514 (1.25%)	Population frequency: 0.1%
		Cases PV carriers/ total (%)	2/75 (2.67%)	2/87 (2.30%)	1/87 (1.15%)	4/87 (4.60%)	1/86 (1.16%)	16/940 (1.70%)	14/940 (1.49%)	0/146 (0.00%)	2/146 (1.37%)	2/257 (0.78%)
		% PVs located in BRCA2 OCCR	0% by design		100% by design		100% by design		100% by design		100% by design	2/2 (100%)
		Considered PVs	c.771_775del	c.68_69delAG	c.5946delT	c.68_69delAG	c.5946delT	c.68_69delAG and c.5266dupC	c.5946deIT	c.68_69delAG and c.5266dupC	c.5946delT	c.3847_3848del and c.4398_4402del
		Gene	BRCA2	BRCA1	BRCA2	BRCA1	BRCA2	BRCA1	BRCA2	BRCA1	BRCA2	BRCA2
		Age-adjustment	None	None, but cases and controls	were of comparable ages	None		None		None		None
		Controls average age	Not stated	Median: 72		Not stated (historical	controls)	Not stated (historical	controls)	Not stated (historical	controls)	1
		Cases average age	Not stated (all <65)	Median: 71		Median: 66		Mean: 73.6		Mean: 67.9		Median: 49.5
		Selection	Cases: men diagnosed with Page age c65 at a single clinic (University Hospital of Iceland). Controls: participants in an unaleted bublic health study.	Cases: unselected men diagnosed	with PCa at a single clinic (sharet linitute, Hadassah Hebrew University Hospita). Controls: recruited from homes for the elderly.	Cases: unselected men diagnosed	with PCa at three clinics (Rabin, Sheba or the Wolfson Medical Centers). Controls: historical US Ashtenazi controls [50].	Cases: unselected men diagnosed	with PCa at 16 (linics. Controls: historical controls from the US Ashkenazi Ashkenazi and an Israeli colorectal cancer case-control study [51].	Cases: unselected Ashkenazi men	diagnosed with diagnosed with clinics in Montreal. Controls: historical controls from five studies with Ashkenazi general population or study control groups.	Cases: men diagnosed with Pica grase <55 in two case-control studies. No controls: controls: controls: diffequency frequency contration BRCA2 frequency contration Cauracian
		Study design	Cases vs controls from the same population	Cases vs controls from	the same population	Cases vs historical	controls	Cases vs historical	controls	Cases vs historical	controls	Cases vs population frequency estimate
		Period	1983–1992	Not stated		1998		1994–1995		1991–2002		1993–1996, 2002–2005
	e-control studies.	Population, dataset	Iceland	Israel		Israel		Israel		Canadian Ashkenazi		USA (predominantly European ancestry)
	Table 1. Cas	Publication	Johannesdottir [1]	Hubert [3]		Vazina [4]		Giusti [6]		Hamel [7] ^b		Agalliu(10)

	ls PV OR (95% s/total (%) CI) ^a	7 (0.88%) 1.39 (0.60–3.22)	0 (0.97%) 1.92 (0.91-4.07)		0.88%) 0.38 (0.05-2.75)	0.88% 0.38 (0.05-2.75) 0.66% 3.18 (1.52-6.66)	0.89%) 0.38	0.88%) 0.38
	Cases PV Contro carriers/ carrien total (%)	12/978 11/124 (1.23%)	18/969 12/124 (1.86%)	6/832 4/454 ((0.72%)	20/832 3/454 ((2.40%)	1/905 3/936 ((0.11%)	19/1832 Popula (1.04%) frequei	4/886 Popula (0.45%) frequei
	% PVs located in <i>BRCA2</i> OCCR		100% by design		100% by design		11/19 (58%)	
	Considered PVs	c.68_69delAG and c.5266dupC	c.5946delT	c.68_69delAG	c.5946delT	c.211 A > G	Any pathogenic variant	Any pathogenic variant
	Gene	BRCA1	BRCA2	BRCA1	BRCA2	BRCA1	BRCA2	BRCA1
	Age-adjustment	Covariate adjustment	for age	Covariate adjustment	for age	Covariate adjustment for age	ene	en over all the second s
	Controls average age	Mean: 68.3		Median: 42		Median: 60	I	1
	Cases average age	Mean: 69.4		Median: 68		Median: 68	Not stated (87% <65)	Not stated (90% <65)
	Selection	Cases and controls: self-	selected Ashkenazi volunteers who were recruited atvough atvough atvough atvouged self- provided self- reported case/ control status.	Cases: unselected Ashkenazi men	trated with Pca at a single clinic (Memorial Sloan- Kettering Cancer Center, New York). Controls: Ashkenazi healthy volunteers from a volunteers from a volunteers from a volunteers from a	Cases: unselected men treated for PCa at one clinic (Santiago de Compostela). Controls: healthy men aged >44 men aged >44 unclear).	Cases: men with Pca recruited nationwide due to being Pca at age <65 years (87% of the years (87% of the anily history of framily history of framily history of study sample). No controls: comparison to a previous UK population <i>BRCA2</i> frequency estimate.	Cases: men with Pca recruited nationwide due to being vears (90% of the years (90% of the years (90% of the years (90% of the to having a family history of FCa (10% of the study sample), or controls: controls: previous UK population <i>BRCA1</i> frequency estimate.
	Study design	Cases vs controls from	the same population	Cases vs controls from	the same population	Cases vs controls from the same population	Gases vs population frequency estimate	Gases vs frequency estimate
	Period	1998–2005		1988–2007		20062009	Not stated	Not stated
ntinued	Population, dataset	US Ashkenazi		US Ashkenazi, MSKCC		Spain	UK, UKGPCS	UK, UKGPCS
Table 1. cor	Publication	Agalliu [11]		Gallagher [12]		Fachal [13]	Kote-Jarai [14]	Leongamomlert [15]

Table 1. con	tinued												
Publication	Population, dataset	Period	Study design	Selection	Cases average age	Controls average age	Age-adjustment	Gene	Considered PVs	% PVs located in BRCA2 OCCR	Cases PV carriers/ total (%)	Controls PV carriers/total (%)	OR (95% CI) ^a
Cybulski [17]	Poland	1999–2012	Cases vs controls from the same population	Cases: unselected men with PCa from 14 centres. Controls: population controls from four sources (a record sample, record sample, population-based study, PSA-screen negative men, colonoscopy screening participants).	Mean: 68.8	Mean: 61.2	None	BRCA1	c.181 T > G, c.4035del and c.5266dupC		(0.37%) (0.37%)	17/3956 (0.4.3%)	0.9 (0.4-1.8)
Akbari [18]	Canada (predominantly European ancestry)	1998-2010	Cases vs controls from the same population	Cases and controls: controls: who had a biopsy because of because of because of two clinics; cases wor clinics; cases biopsy-positive, controls were hose biopsy- negative.	Mean: 65	Not stated	None, but cases and controls were likely of comparable ages	BRCA2	Any pathogenic variant	Not specified	26/1904 (1.37%)	9/2283 (0.39%)	3.5 (1.63-748)
Pritchard [19]	UK and USA (predominantly	Not stated	Cases vs population	Cases: men with metastatic PCa	Not stated	Not stated (external	None	BRCA1	Any pathogenic variant		6/692 (0.87%)	104/53105 (0.20%)	3.9 (1.4–8.5)
	European ancestry)		frequency estimate	from seven case series. No controls; comparison to carrier frequency in the Exome Agregation Consortium database.		estimate)		BRCA2	Any pathogenic variant	24/37 (65%)	37/692 (5.35%)	153/53105 (0.29%)	18.6 (13.2–25.3)
Matejcic [21]	US African Americans (AA)	1993–2015	Cases vs controls from	Cases: men with PCa "overselected	Mean: 66.71	Mean: 71.52	Covariate adjustment for	BRCA1	Any pathogenic variant		3/1447 (0.21%)	1/995 (0.10%)	2.84 (0.26–30.59)
			the same population	tor high stage and from incident cases from a US prospective cohort study and African America			age and genetic ancestry	BRCA2	Any pathogenic variant	Not stated	9/1447 (0.62%)	3,995 (0.30%)	1.91 (0.48-7.59)
	Uganda	2010-2016	Cases vs controls from	Cases: men with prostate cancer	Mean: 70.77	Mean: 65.04	Covariate adjustment for	BRCA1	Any pathogenic variant		2/651 (0.31%)	1/486 (0.21%)	1.11 (0.09–13.54)
			the same population	from 13 clinics in Uganda. Controls: patients recruited from non- urologic clinics in Uganda.			age and genetic ancestry	BRCA2	Any pathogenic variant	Not stated	12/651 (1.84%)	1/486 (0.21%)	10.30 (1.28–82.58)
Momozawa [22]	Japan, BioBank Japan	2003-2018	Cases vs controls from	Cases: unselected men with PCa from a	Mean: 71.0	Mean: 70.4	None, but cases and controls	BRCA1	Any pathogenic variant		14/7636 (0.18%)	10/12366 (0.08%)	2.27 (0.94–5.71)

British Journal of Cancer (2022) 126:1067 - 1081

1072

	OR (95%) CI) ^a) 5.65 (3.55–9.32	: 2.20 (0.62–7.83	4.0 (0.5–34.3)	1	2.9 (0.66–12.5	3.9 (1.1–1
	Controls PV carriers/total (%	24/12366 (0.19%)	Not stated (total: 7711 non-PCa patients)	1/308 (0.32%)	0/308 (0.00%)	10/5356 (0.19%)	17/5356 (0.32%)
	Cases PV carriers/ total (%)	83/7636 (1.09%)	3/409 (0.73%)	5/390 (1.28%)	4/390 (1.03%)	5/833 (0.60%)	19/833 (2.28%)
	% PVs located in BRCA2 OCCR	Not specified			0/4 (0%)		6/21 (29%)
	Considered PVs	Any pathogenic variant	Any pathogenic variant	Any pathogenic variant	Any pathogenic variant	Any pathogenic variant	Any pathogenic variant
	Gene	BRCA2	BRCA1	BRCA1	BRCA2	BRCA1	BRCA2
	Age-adjustment	were of comparable ages	Covariate adjustment for age and genetic ancestry	None, but cases and controls	were of comparable ages	Covariate adjustment	for age
	Controls average age		Not stated	Mean: 59.4		Not stated (all ≥70)	
	Cases average age		Not stated	Mean: 61.6		Median: 65–69	
	Selection	nationwide hospital-based biobank Controls: male non-cancer patients from the same biobank older than 60 and with no personal or family listory of cancer in first- of cancer in first- of cancer in first- efatives.	Cases: men with PCa from a nationwide biobank. Controls: patients with non-prostate cancers from the same biobank.	Cases: men with PCa who had a	family history of FC in first- or Record-degree mearses (three or more relatives with PCa, or two affected relatives of whom at least of whom	Cases: men with aggressive	prostate cancer (T4, M1, N1 or Glasson score28) from four cohort studies and case series. Controls: male participants in an unrelated trial. ^c
	Study design	the same population	Cases vs controls from the same population	Cases vs controls from	the same population	Cases vs controls from	the same population
	Period		2005-2013	2000-2017		Not stated	
tinued	Population, dataset		USA (predominantly European ancestry), The Cancer Genome Atlas	Poland		Australia	
Table 1. cont	Publication		Oak [24]	Wokolorczyk [25]		Nguyen-Dumont [26]	

that did not report odds ratios, unadjusted odds ratio estimates calculated from the frequencies of case and control PV carriers were used in the meta-analysis (not shown in this descriptive table but included in the forest plots).

^bReported on both *BRCA1* and *BRCA2*, but is not included in the *BRCA1* meta-analysis due to observing no *BRCA1* PVs in the cases which hence did not enable estimation of a 95% CI for the RR. ^CThe main analysis in this study compared cases with aggressive prostate cancer to a combined comparison group comprising cases with non-aggressive prostate cancer and unaffected men. The meta-analysis includes the supplementary analysis of cases with aggressive prostate cancer versus unaffected men.

Table 2. Coho	rt studies.										074
Publication	Population, dataset	Period	Study design	Selection	Average age	Age- adjustment	Gene	Considered PVs	% PVs located in BRCA2 OCCR	2	RR (95% CI) ^a
BCLC [2]	Europe and North America (predominantly European ancestry), BCLC	Not stated	Kin-cohort	Families with a history of breast and/or ovarian cancer and at least one known <i>BRCA2</i> carrier, recruited through genetics clinics.	Not stated	Comparison to age- specific population incidence	BRCA2	Any pathogenic variant	Not specified	29 PCa in male BRCA2 carriers from 173 breast- ovarian cancer families	4.65 (3.48–6.22)
Thompson [5]	Europe and North America (predominantly European ancestry), BCLC	Until 1999	Kin-cohort	Families with a history of breast and/or ovarian cancer and at least one known BRCA1 carrier, recruited through genetics clinics.	Not stated	Comparison to age- specific population incidence	BRCA1	Any pathogenic variant		11 PCa in male BRCA1 carriers and 7 PCa in non- carriers from 699 families	1.07 (0.75–1.54)
van Asperen [3]	The Netherlands, GEO-HEBON	1998-2003	Kin-cohort	Relatives of breast or ovarian cancer cases who had undergone breast and ovarian cancer counselling in 8 clinics in the Netherlands and who tested positive for BRCA2 PVS.	Not stated	Comparison to age- specific population incidence	BRCA2	Any pathogenic variant	92/139 (66%) of family PVs	24 PCa in 803 men from 139 <i>BRCA2</i> families	2.5 (1.6–3.8)
Risch [9]	Canada (predominantly European ancestry)	1995–1999	Kin-cohort	Probands with ovarian cancer who were identified	Not stated	Comparison to age- specific population	BRCA1	Any pathogenic variant		4 PCa in <i>75 BRCA1</i> families and 89 PCa in 1042 non- carrier families	0.65 (0.051–8.3)
				through a cancer register and who provided cancer family history information.		incidence	BRCA2	Any pathogenic variant	27/54 (50%) of family PVs	9 PCa in 54 <i>BRCA2</i> families and 89 PCa in 1042 non- carrier families	2.7 (1.1–7.1)
Moran [16]	ž	1996 and after	Family-based retrospective cohort	Families seeking genetic counselling in two clinics in	Not stated	Comparison to age- specific population incidence	BRCA1	Any pathogenic variant		6.1 standardised PCa observations in male <i>BRCA1</i> carriers from 268 <i>BRCA1</i> families	1.0 (0.4–2.3)
				England from which at least one individual tested positive for <i>BRCA1/</i> 2 PVs.			BRCA2	Any pathogenic variant	90/222 (41%) of family PVs ^b	31.7 standardised PCa observations in male <i>BRCA2</i> carriers from 222 <i>BRCA2</i> families	6.3 (4.3–9.0)
Page [20]	International (predominantly	2005–2015	Prospective screening cohort	BRCA1/2- positive and BRCA1/2-	Not stated (median	Covariate adjustment for age	BRCA1	Any pathogenic variant		19 PCa in 919 BRCA1 carriers, 14	1.36 (0.75–2.45)

Table 2. contin	ned										
Publication	Population, dataset	Period	Study design	Selection	Average age	Age- adjustment	Gene	Considered PVs	% PVs located in BRCA2 OCCR	2	RR (95% CI) ^a
	European ancestry), IMPACT			negative men aged 40–69	across all participants: 54)	ethnicity and country				PCa in 709 non- carriers	
				from families with <i>BRCA1/2</i> PV, recruited through 65 centres in 20 countries.			BRCA2	Any pathogenic variant	42% ^b	57 PCa in 902 BRCA2 carriers, 20 PCa in 497 non- carriers	1.95 (1.06–3.56)
Nyberg [23]	UK and Ireland, EMBRACE	1999–2016	Prospective cohort	Unaffected men with	Median: 54.0 BRCA1; 51.4	Comparison to age-	BRCA1	Any pathogenic variant		16 PCa in 376 BRCA1 carriers	2.35 (1.43–3.88)
				BRCA1/2 PVs recruited through genetics centres and followed for PCa development.	BRCA2	specific population incidence	BRCA2	Any pathogenic variant	178/ 445 (40%)	26 PCa in 447 BRCA2 carriers	4.45 (2.99–6.61)
PCa prostate ca ^a ln all studies ex for age, ethnicit ^b Provided by th	ncer, <i>PV</i> pathogenic v: cept Page et al. [20], t y and country. e study authors on re	ariant, OCCR ovari he RR represents 1 quest.	an cancer cluster regio the estimated standard	n, <i>RR</i> relative risk, lised incidence rat	. <i>Cl</i> confidence inte io, comparing path	erval. Iogenic variant c	arriers to a	age-specific popula	ation cancer inci	dences. Page et al. [2	0] adjusted

T. Nyberg et al.

the age and ethnic ancestry composition of the study participants, the reliance of some studies on historical controls, and the proportion of the studied *BRCA2* carriers who have PVs within the OCCR.

The pooled RR estimates indicate that male BRCA2 carriers are at higher than population risk of PCa at all ages, whereas BRCA1 carriers may be at somewhat increased risk with the increased risk restricted to younger ages. Based on the most restrictive inclusion criteria considered, the overall random-effects RR estimates were 2.08 (95% CI 1.38-3.12) for Ashkenazi Jewish BRCA2 carriers and 4.35 (95% CI 3.50–5.41) for non-Ashkenazi European ancestry BRCA2 carriers. This heterogeneity in BRCA2 PCa risks by ethnicity indicates the need for further research to explore ethnicity-specific risk estimates for male BRCA2 carriers. The reported RRs for African and Asian ancestry BRCA2 carriers were similar to those for non-Ashkenazi European ancestry men, but this was based on a small number of studies and should be interpreted with caution. However, even if the RRs are similar, this would translate to different absolute risks for BRCA2 carriers by ethnicity, because the baseline population risks differ between ethnic groups [43, 44]. For BRCA1 carriers, there was no significant difference in reported RRs by ethnicity and the overall RR was estimated to be 1.18 (95% CI 0.95–1.46). For both BRCA1 and BRCA2 carriers, the reported RRs were higher at younger ages. Based on the most restrictive inclusion criteria, the estimated age-specific RRs applicable to non-Ashkenazi European ancestry men were 7.14 (95% CI 5.33-9.56) at ages <65 and 3.84 (95% CI 2.84–5.18) at ages ≥65 years for BRCA2 carriers and 1.78 (95% CI 1.09-2.91) at ages <65 and 0.91 (95% CI 0.62–1.33) at ages \geq 65 years for *BRCA1* carriers.

The reported overall RR estimates for BRCA2 carriers were lower from studies where a majority of the BRCA2 PVs were located in the OCCR (pooled RR = 2.30, 95% CI 1.74-3.06). The metaregression showed a trend towards decreasing RRs with increasing study-level proportions of PVs located in the BRCA2 OCCR, consistent with the observations that carriers of BRCA2 PVs within the OCCR have a lower risk of PCa than other BRCA2 PV carriers [8, 23, 29-32]. The Ashkenazi BRCA2 studies reported exclusively on the Ashkenazi founder PV c.5946delT that is located in the OCCR, and the RRs from these studies (pooled RR = 2.08, 95% CI 1.38–3.12) were comparable with the RRs reported from studies in non-Ashkenazi European ancestry populations where the majority of participants had PVs located in the OCCR (pooled RR = 2.53, 95% CI 1.71-3.75). Hence, as has previously been suggested [11], it is possible that the lower PCa risks observed for Ashkenazi BRCA2 carriers [3, 4, 6, 7, 11, 12, 30, 33, 45] is explained by risk variation by the location of PVs within the BRCA2 gene.

By contrast, there was no significant variation in the reported overall BRCA1 RR estimates by the ethnic ancestry of the study participants. The studies in Ashkenazi Jewish men reported exclusively on the two Ashkenazi founder PVs c.68_69delAG and/or c.5266dupC. A lack of variation in the PCa risk by specific founder PVs is consistent with previous findings of a lack of significant variation by the location of PVs within BRCA1 [31]. Moreover, the reported RR estimates were higher from two studies that compared Israeli PCa patients to controls from previous studies of US Ashkenazi individuals [4, 6]. The use of cases and controls from different settings and time periods make the studies susceptible to bias from population stratification, and place- and time-specific differences in e.g. opportunistic screening rates. Only one study in Ashkenazi Jewish BRCA1 carriers had reported agespecific RR estimates [11], and these were somewhat lower for younger carriers and somewhat higher for older carriers compared to estimates from studies in non-Ashkenazi European ancestry populations. This study was however limited by the use of a selfselected sample and ascertainment bias may be likely. Hence, the finding may not be inconsistent with the finding of no significant differences by ethnicity in the meta-analysis of overall RR estimates for BRCA1 carriers.

а	Publication	RR	95% CI	RR	а				
						Publication	RR	95% CI	RR
	Case-control			r		Case-control			
	Hubert, 1999	1.00	[0.14; 7.26]			Johannesdottir, 1996	6.60	[0.79; 55.32]	
	Vazina, 2000	4.15	[1.48; 11.69]	<u>É</u>		Hubert, 1999	1.00	[0.06; 16.25]	
	Giusti, 2003	2.10	[0.97: 4.54]	- <u>-</u>		Vazina, 2000	1.00	[0.14; 7.32]	
	Agalliu, 2009	1.39	[0.60; 3.22]	<u> </u>		Giusti, 2003	2.02	[0.89: 4.57]	
	Gallagher, 2010	0.38	[0.05: 2.82]			Hamel, 2003	1.10	[0.27: 4.48]	
	Fachal 2011	0.00	[0.02:4.15] -			Agalliu 2007	7 78	[3 41: 17 75]	
	Leongamornlert 2012	3.75	[1 22: 11 50]	č		Agalliu 2009	1 02	[0.01:4.06]	
	Cybulcki 2013	0.90	[0.42:1.01]	<u> </u>		Gallaghe r 2010	3.18	[1 52: 6 66]	
	Britchard 2016	2 00	[0.42, 1.91]			Kote-larai 2011	8.60	[5 47: 13 52]	
	Matericia 2020 AA	2.90	[1.30, 3.01]			Akbari 2014	3.50	[1.63:7.50]	
	Matejcic, 2020, AA	1 1 1	[0.20, 00.01]			Pritchard 2016	18 60	[13 44 25 75]	
	Momozawa 2020	2 27	[0.03, 10.01]	- E		Matericic 2020 AA	1 91	[0 48: 7 60]	
	Niomozawa, 2020	2.27	[0.92, 5.59]			Matejcic, 2020, AA	10 30	[1 28 82 73]	
	Wakalarazuk 2020	4.00	[0.02, 7.00]	<u> </u>		Momozawa 2020	5 65	[3 49: 9 15]	
	Novicioiczyk, 2020	2.00	[0.40, 00.10]	È		Nauvon-Dumont 2021	3.90	[1 13: 13 41]	
	Nguyen-Dumont, 2021	2.90	[1.46:2.65]			Fixed-effect model	7.00	[5 82: 8 42]	
	Pandam affaata model	1 0 2	[1.40, 2.00]			Bandom-effects model	4.00	[2 38: 6 73]	
	Heterogeneity: $/^2 - 15\%$	1.50	[Heterogeneity: $/^2 = 83\%$		[=:::::]	
	ricterogeneity./ = 10/6			6					
	Prospective cohort			i i i i i i i i i i i i i i i i i i i		Prospective cohort			
	Page, 2019	1.36	[0.75: 2.46]			Page, 2019	1.95	[1.06; 3.57]	
	Nyberg, 2020	2.35	[1.43; 3.87]	÷.		Nyberg, 2020	4.45	[2.99; 6.62]	
	Fixed-effect model	1.87	[1.28; 2.74]	l.		Fixed-effect model	3.47	[2.49; 4.84]	
	Random-effects model	1.83	[1.07: 3.12]			Random-effects model	3.04	[1.36; 6.82]	\sim
	Heterogeneity: $/^2 = 48\%$		[]	e e		Heterogeneity: $/^2 = 80\%$			
				ĉ					
	Family-based retrospec	ctive c	ohort	c c		Family-based retrospecti	ve coho	ort	
	Thompson, 2002	1.07	[0.75; 1.53]			BCLC, 1999	4.65	[3.48; 6.22]	*
	Risch, 2006	0.65	[0.05; 8.29]			van Asperen, 2005	2.50	[1.62; 3.85]	
	Moran, 2012	1.00	[0.42; 2.40]			Risch, 2006	2.70	[1.06; 6.86]	
	Fixed-effect model	1.05	[0.76; 1.46]			Moran, 2012	6.30	[4.35; 9.11]	
	Random-effects model	1.05	[0.76; 1.46]			Fixed-effect model	4.35	[3.57; 5.30]	Ø.
	Heterogeneity: /2 = 0%		ь / d	6 6		Random-effects model	4.00	[2.61; 6.13]	
				c c		Heterogeneity: $/^2 = 74\%$			
	Fixed-effect model	1.57	[1.30; 1.91]	- A A A A A A A A A A A A A A A A A A A		Eived-offect model	E 94	[4 62: 5 04]	
	Random-effects model	1.69	[1.30; 2.20]			Pandam offects model	3.24	[4.03, 5.94]	
	Heterogeneity: /2 = 30%			01 051 2 10		Hotorogonoity: $l^2 = 92\%$	3.94	[2.79, 5.50]	
				0.1 0.31 2 10		Helefogeneily. / = 65 %			0.1 0.51 2 10
b	Publication	BB	95% CI	BB	h				
			00/001		D				
	Case-control					Publication	DD	95% CI	RR
				ŝ			nn		1
	Hubert, 1999	1.00	[0.14; 7.26]			Case-control	nn		
	Hubert, 1999 Vazina, 2000	1.00 4.15	[0.14; 7.26] [1.48; 11.69]			Case-control Hubert, 1999	1.00	[0.06; 16.25]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003	1.00 4.15 2.10	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54]			Case-control Hubert, 1999 Vazina, 2000	1.00 1.00	[0.06; 16.25] [0.14; 7.32]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009	1.00 4.15 2.10 1.39	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003	1.00 1.00 2.02	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010	1.00 4.15 2.10 1.39 0.38	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003	1.00 1.00 2.02 1.10	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011	1.00 4.15 2.10 1.39 0.38 0.27	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009	1.00 1.00 2.02 1.10 1.92	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013	1.00 4.15 2.10 1.39 0.38 0.27 0.90	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15] - [0.42; 1.91]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010	1.00 1.00 2.02 1.10 1.92 3.18	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15] [0.42; 1.91] [0.09; 13.61]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014	1.00 1.00 2.02 1.10 1.92 3.18 3.50	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27	$ \begin{bmatrix} 0.14; 7.26 \\ 1.48; 11.69 \\ 0.97; 4.54 \\ 0.60; 3.22 \\ 0.05; 2.82 \\ 0.02; 4.15 \\ 0.42; 1.91 \\ 0.09; 13.61 \\ 0.92; 5.59 \\ \end{bmatrix} $			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejoc, 2020, Uganda	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.30	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15] [0.02; 1.15] [0.09; 13.61] [0.92; 5.59] [0.62; 7.83]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.30 5.65	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] 0 [1.28; 82.73] [3.49; 9.15]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60	$\begin{matrix} [0.14; 7.26] \\ [1.48; 11.69] \\ [0.97; 4.54] \\ [0.60; 3.22] \\ [0.05; 2.82] \\ [0.02; 4.15] \\ [0.42; 1.91] \\ [0.92; 5.59] \\ [0.62; 7.83] \\ [1.13; 2.25] \end{matrix}$			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.3(5.65 3.27	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59				Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.30 5.65 3.27 2.86	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17%	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59	$\begin{matrix} [0.14; 7.26] \\ [1.48; 11.69] \\ [0.97; 4.54] \\ [0.60; 3.22] \\ [0.05; 2.82] \\ [0.02; 4.15] \\ - \\ [0.42; 1.91] \\ [0.09; 13.61] \\ [0.92; 5.59] \\ [0.62; 7.83] \\ [1.13; 2.25] \\ [1.07; 2.36] \end{matrix}$			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 42\%$	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.33 5.65 3.27 2.86	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17%	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.05; 3.22] [0.05; 2.82] [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejicic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 42%	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.3(5.65 3.27 2.86	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17%	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59	$\begin{matrix} [0.14; 7.26] \\ [1.48; 11.69] \\ [0.97; 4.54] \\ [0.60; 3.22] \\ [0.05; 2.82] \\ [0.02; 4.15] \\ [0.42; 1.91] \\ [0.92; 5.59] \\ [0.62; 7.83] \\ [1.13; 2.25] \\ [1.07; 2.36] \end{matrix}$			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 42\%$	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.3(5.65 3.27 2.86	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] [1.88; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agailiu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59	$\begin{matrix} [0.14; 7.26] \\ [1.48; 11.69] \\ [0.97; 4.54] \\ [0.60; 3.22] \\ [0.05; 2.82] \\ [0.02; 4.15] \\ [0.42; 1.91] \\ [0.92; 5.59] \\ [0.62; 7.83] \\ [1.13; 2.25] \\ [1.07; 2.36] \end{matrix}$			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 42\%$ Prospective cohort Page, 2019	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.3(5.65 3.27 2.86	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15] [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [0.75; 2.46] [1.43; 3.87]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.3(5.65 3.27 2.86	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.06; 3.57] [2.99; 6.62]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59				Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejicic, 2020, Uganda Momozawa, 2020 Fixed-effect model Heterogeneity: $l^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.33 5.65 3.27 2.86 1.95 4.45 3.47	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.87; 4.37] [1.06; 3.57] [2.99; 6.62] [2.49; 4.84]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 17\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model	1.00 4.15 2.10 1.39 0.27 0.90 1.11 2.27 2.20 1.60 1.59				Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Random-effects model	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.33 5.65 3.27 2.86 1.95 4.45 3.47 3.04		
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 17\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Random-effects model Heterogeneity: $l^2 = 48\%$	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83				Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 80\%$	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.30 5.65 3.27 2.86 1.95 4.45 3.47 3.04	$ \begin{bmatrix} 0.06; 16.25 \\ 0.14; 7.32 \\ 0.89; 4.57 \\ 0.27; 4.48 \\ 0.91; 4.06 \\ 1.52; 6.66 \\ 1.63; 7.50 \\ 0.1.28; 82.73 \\ 3.49; 9.15 \\ 1.246; 4.35 \\ 1.87; 4.37 \end{bmatrix} $	 → + + + + + + + + + + + + + + + + + + +
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 48%	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15] [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.43; 3.87] [1.28; 2.74] [1.07; 3.12]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 80\%$	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.30 5.65 3.27 2.86 1.95 4.45 3.47 3.04	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.06; 3.57] [2.99; 6.62] [2.49; 4.84] [1.36; 6.82]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 48%	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.22 1.60 1.59 1.36 2.35 1.87 1.83	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.05; 3.22] [0.05; 2.82] [0.02; 4.15] - [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [0.75; 2.46] [1.43; 3.87] [1.28; 2.74] [1.07; 3.12]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 80\%$	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.30 5.65 5.3.27 2.86 1.95 4.45 3.47 3.04	[0.06; 16.25] [0.14; 7.32] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.06; 3.57] [2.99; 6.62] [2.49; 4.84] [1.36; 6.82]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 48% Family-based retrospect	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.06; 3.22] [0.05; 2.82] [0.02; 4.15] - [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.43; 3.87] [1.28; 2.74] [1.07; 3.12]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejicic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: l^2 = 42% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: l^2 = 80% Family-based retrospect BCLC, 1999 van Aengen 2005	1.00 1.00 2.02 1.10 1.92 3.18 3.50 5.65 3.27 2.86 1.95 4.45 3.47 3.04 ve coh 4.65	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.87; 4.37] [1.96; 3.57] [2.99; 6.62] [2.49; 4.84] [1.36; 6.82] ort [3.48; 6.22] [1.62; 2.85]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agailiu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 48% Family-based retrospect Thompson, 2002	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15] [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.07; 2.36] [1.43; 3.87] [1.28; 2.74] [1.07; 3.12]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 80\%$ Family-based retrospect BCLC, 1999 van Asperen, 2005 Pisced-2005	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.30 5.65 3.27 2.86 1.95 4.45 3.47 3.04 ve coh 4.65 2.50	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.06; 3.57] [2.99; 6.62] [2.49; 4.84] [1.36; 6.82] ort [3.48; 6.22] [1.62; 3.85] [1.62; 3.85]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 48% Family-based retrospect Thompson, 2002 Risch, 2006 Moran, 2012	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83 ctive ct 1.07 0.65 1.00				Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Random-effects model Heterogeneity: $J^2 = 80\%$ Family-based retrospect BCLC, 1999 van Asperen, 2015 Risch, 2006	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.3(5 5.3.27 2.86 1.95 3.27 2.86 1.95 3.47 3.04 ve coh 4.65 2.50 2.70	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.96; 3.57] [2.99; 6.62] [2.49; 4.84] [1.36; 6.82] ort [3.48; 6.22] [1.62; 3.85] [1.06; 6.86] [1.06; 6.86]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 48% Family-based retrospect Thompson, 2002 Risch, 2006 Moran, 2012 Fixed-effect model	1.00 4.15 2.10 1.39 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83 ctive cc 1.07 0.65 1.00 1.00	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.05; 3.22] [0.05; 2.82] [0.02; 4.15] - [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.43; 3.87] [1.28; 2.74] [1.28; 2.74] [1.07; 3.12]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejicic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: l^2 = 42% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: l^2 = 80% Family-based retrospect BCLC, 1999 van Asperen, 2005 Risch, 2006 Moran, 2012	1.00 1.00 2.02 1.10 1.10 1.92 3.18 3.50 5.65 3.27 2.86 1.95 4.45 3.47 3.04 4.65 2.50 2.50 2.70 6.30	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.06; 3.57] [2.99; 6.62] [2.49; 4.84] [1.36; 6.82] ort [3.48; 6.22] [1.62; 3.85] [1.66; 6.86] [4.35; 9.11] [4.35; 9.11]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 17\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 48\%$ Family-based retrospec Thompson, 2002 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Random-effects model Random-effects model	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83 2.35 1.87 1.83 1.07 0.65 1.00 1.05	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.06; 3.22] [0.05; 2.82] [0.02; 4.15] - [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.43; 3.87] [1.43; 3.87] [1.28; 2.74] [1.07; 3.12] cohort [0.75; 1.53] [0.05; 8.29] [0.42; 2.40] [0.76; 1.46] [0.76; 1.46]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: l^2 = 42% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: l^2 = 80% Family-based retrospecti BCLC, 1999 van Asperen, 2005 Risch, 2006 Moran, 2012 Fixed-effect model Bandom effects model	1.00 1.00 2.02 1.10 1.92 3.18 3.50 1.95 5.65 3.27 2.86 1.95 4.45 3.47 3.04 ve coh 4.65 2.50 6.30 4.35	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.87; 4.37] [1.99; 6.62] [2.49; 4.84] [1.36; 6.82] ort [3.48; 6.22] [1.62; 3.85] [1.06; 6.86] [4.35; 9.11] [3.57; 5.30] [0.64 + 20]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agailiu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 17\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 48\%$ Family-based retrospec Thompson, 2002 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 0\%$	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83 2.10 1.07 0.65 1.00 1.05 1.05	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15] [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.43; 3.87] [1.28; 2.74] [1.07; 3.12] cohort [0.75; 1.53] [0.05; 8.29] [0.42; 2.40] [0.76; 1.46] [0.76; 1.46] [0.76; 1.46]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: l^2 = 42% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: l^2 = 80% Family-based retrospect BCLC, 1999 van Asperen, 2005 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Hoterogeneity: l^2 = 74%	1.00 1.00 2.02 1.10 1.92 3.18 3.50 10.30 5.65 3.27 2.86 1.95 4.45 3.47 3.04 4.65 2.50 2.70 6.30 4.35 4.45	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.87; 4.37] [1.06; 3.57] [2.99; 6.62] [2.49; 4.84] [1.36; 6.82] ort [3.48; 6.22] [1.62; 3.85] [1.06; 6.86] [4.35; 9.11] [3.57; 5.30] [2.61; 6.13]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 48% Family-based retrospect Thompson, 2002 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Heterogeneity: / ² = 0%	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83 2.10 1.07 0.65 1.07 1.05	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.60; 3.22] [0.05; 2.82] [0.02; 4.15] [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.3; 2.25] [1.07; 3.12] (0.75; 1.53] [0.75; 1.53] [0.75; 1.53] [0.42; 2.40] [0.42; 2.40] [0.76; 1.46] [0.76; 1.46]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 80\%$ Family-based retrospecti BCLC, 1999 van Asperen, 2005 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 74\%$	1.00 1.00 2.02 1.10 1.92 3.18 3.50 1.95 3.27 2.86 1.95 3.27 2.86 1.95 3.27 2.86 4.45 3.04 4.45 3.04 4.45 2.50 6.30 4.35 4.45 3.04 4.65 2.50 6.30 4.35 4.00	[0.06; 16.25] [0.14; 7.32] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [2.46; 4.35] [1.87; 4.37] [1.87; 4.37] [1.99; 6.62] [2.99; 6.62] [2.99; 6.62] [2.99; 6.62] [2.99; 6.62] [2.99; 6.62] [1.62; 3.85] [1.65; 6.82] ort [3.48; 6.22] [1.65; 3.85] [1.06; 6.86] [4.35; 9.11] [3.57; 5.30] [2.61; 6.13]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 17% Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: / ² = 48% Family-based retrospect Thompson, 2002 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Random-effects model Random-effects model Random-effects model	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83 2.55 1.87 1.83 2.065 1.07 1.05 1.05	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.05; 3.22] [0.05; 2.82] [0.02; 4.15] - [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.43; 3.87] [1.28; 2.74] [1.07; 3.12] cohort [0.75; 1.53] [0.05; 8.29] [0.42; 2.40] [0.76; 1.46] [0.76; 1.46] [0.76; 1.46] [0.76; 1.91]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 80\%$ Family-based retrospect BCLC, 1999 van Asperen, 2005 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 74\%$	1.00 1.00 2.02 1.10 1.92 3.18 3.50 1.95 3.27 2.86 1.95 3.27 2.86 1.95 3.27 2.86 1.95 3.27 2.86 1.95 3.27 2.86 1.95 3.27 2.86 1.95 3.27 2.86 1.95 3.27 2.86 1.95 3.44 3.04	[0.06; 16.25] [0.14; 7.32] [0.89; 4.57] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [2.46; 4.35] [1.87; 4.37] [2.46; 4.35] [1.87; 4.37] [1.99; 6.62] [2.99; 6.62] [2.99; 6.62] [2.99; 6.62] [2.99; 6.62] [2.99; 6.62] [1.62; 3.85] [1.66; 6.82] [1.62; 3.85] [1.06; 6.86] [4.35; 9.11] [3.57; 5.30] [2.61; 6.13] [3.34; 4.47]	
	Hubert, 1999 Vazina, 2000 Giusti, 2003 Agalliu, 2009 Gallagher, 2010 Fachal, 2011 Cybulski, 2013 Matejcic, 2020, Uganda Momozawa, 2020 Oak, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 17\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 48\%$ Family-based retrospec Thompson, 2002 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Heterogeneity: $l^2 = 0\%$ Fixed-effect model Random-effects model Heterogeneity: $l^2 = 0\%$	1.00 4.15 2.10 1.39 0.38 0.27 0.90 1.11 2.27 2.20 1.60 1.59 1.36 2.35 1.87 1.83 2.55 1.87 1.83 2.06 1.07 0.65 1.00 1.05 1.05 1.05 1.43 1.47	[0.14; 7.26] [1.48; 11.69] [0.97; 4.54] [0.05; 2.22] [0.05; 2.82] [0.02; 4.15] - [0.42; 1.91] [0.92; 5.59] [0.62; 7.83] [1.13; 2.25] [1.07; 2.36] [1.43; 3.87] [1.28; 2.74] [1.07; 3.12] cohort [0.75; 1.53] [0.42; 2.40] [0.75; 1.53] [0.42; 2.40] [0.76; 1.46] [0.76; 1.46] [0.76; 1.46] [1.17; 1.75] [1.13; 1.91]			Case-control Hubert, 1999 Vazina, 2000 Giusti, 2003 Hamel, 2003 Agalliu, 2009 Gallagher, 2010 Akbari, 2014 Matejcic, 2020, Uganda Momozawa, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 42\%$ Prospective cohort Page, 2019 Nyberg, 2020 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 80\%$ Family-based retrospecti BCLC, 1999 van Asperen, 2005 Risch, 2006 Moran, 2012 Fixed-effect model Random-effects model Heterogeneity: $J^2 = 74\%$	1.00 1.00 2.02 3.18 3.50 5.65 3.27 2.86 1.95 4.45 3.47 3.04 4.65 2.50 2.70 6.30 4.35 4.03 2.70 6.30 4.35 4.00 2.70 6.30 4.35 4.35 3.33	[0.06; 16.25] [0.14; 7.32] [0.27; 4.48] [0.91; 4.06] [1.52; 6.66] [1.52; 6.66] [1.63; 7.50] D [1.28; 82.73] [3.49; 9.15] [2.46; 4.35] [1.87; 4.37] [1.97; 4.37] [1.96; 3.57] [2.99; 6.62] [2.49; 4.84] [1.36; 6.82] [1.62; 3.85] [1.06; 6.86] [4.35; 9.11] [3.57; 5.30] [2.61; 6.13] [3.34; 4.47] [2.57; 4.33]	

Fig. 2 Forest plots of overall *BRCA1* RR estimates. a All initially considered studies; **b** after restriction to studies unselected for age at diagnosis, family history or aggressive disease.

Fig. 3 Forest plots of overall *BRCA2* RR estimates. a All initially considered studies; **b** after restriction to studies unselected for age at diagnosis, family history or aggressive disease.

Subgroup	Selection	No. of studies	Fixed-effect pooled RR (95% CI)	Random-effect pooled RR (95% Cl)	l'
All	All estimates	20	1.57 (1.30–1.91)	1.69 (1.30–2.20)	30%
Studies unselected for age, aggressive prostate cancer, or family history of prostate cancer	All estimates	15	1.43 (1.17–1.75)	1.47 (1.13–1.91)	25%
Studies unselected for age, aggressive prostate	All estimates	13	1.32 (1.07–1.64)	1.33 (1.05–1.69)	8%
cancer, or family history of prostate cancer; and, that did not use historical controls	All estimates: EMBRACE prospective RR estimate adjusted for potential screening effects ^a	13	1.18 (0.95–1.46)	1.18 (0.95–1.46)	%0
	Ashkenazi ancestry	e	1.12 (0.55–2.31)	1.12 (0.55–2.31)	%0
	Non-Ashkenazi European ancestry	8	1.30 (1.03–1.64)	1.30 (0.95–1.79)	30%
	Non-Ashkenazi European ancestry: EMBRACE prospective RR estimate adjusted for potential screening effects ^a	ω	1.13 (0.89–1.44)	1.13 (0.89–1.44)	%0
	African ancestry	-	1.11 (0.09–13.61)	1.11 (0.09–13.61)	1
	Asian ancestry	-	2.27 (0.92–5.59)	2.27 (0.92–5.59)	ł
AII	All estimates	21	5.24 (4.63–5.94)	3.94 (2.79–5.56)	83%
Studies unselected for age, aggressive prostate cancer, or family history of prostate cancer	All estimates	15	3.87 (3.34–4.47)	3.33 (2.57–4.33)	58%
Studies unselected for age, aggressive prostate	Ashkenazi ancestry: all estimates	9	2.08 (1.38–3.12)	2.08 (1.38–3.12)	%0
cancer, or family history of prostate cancer; by	Non-Ashkenazi European ancestry: all estimates	7	4.07 (3.45–4.80)	3.69 (2.71–5.04)	66%
	Non-Ashkenazi European ancestry: excluding two outliers ^b	5	3.89 (3.20–4.73)	3.71 (2.82–4.89)	39%
	Non-Ashkenazi European ancestry: excluding three outliers ^c	4	4.35 (3.50–5.41)	4.35 (3.50–5.41)	%0
	African ancestry: all estimates	-	10.30 (1.28–82.73)	10.30 (1.28–82.73)	ł
	Asian ancestry: all estimates	-	5.65 (3.49–9.15)	5.65 (3.49–9.15)	1
Studies unselected for age, aggressive prostate	≥50% OCCR PVs: all estimates	8	2.30 (1.74–3.06)	2.30 (1.74–3.06)	%0
cancer, or family history of prostate cancer; by the proportion of PVs located in the OCCR	≥50% OCCR PVs: using separate OCCR estimates when available	6	2.15 (1.61–2.88)	2.15 (1.61–2.88)	%0
	OCCR PVs ^d	8	2.10 (1.55–2.86)	2.10 (1.55–2.86)	%0
	<50% OCCR PVs: all estimates	4	4.74 (3.81–5.91)	4.38 (2.83–6.77)	73%
	<50% OCCR PVs: excluding one outlier ^e	S	5.43 (4.29–6.87)	5.43 (4.29–6.87)	%0
	<50% OCCR PVs: using separate non-OCCR estimates when available	4	5.65 (4.49–7.12)	5.65 (4.49–7.12)	%0
	Non-OCCR PVs ^d	2	5.06 (3.48–7.36)	4.93 (3.10–7.82)	28%
	Proportion of PVs located in OCCR not determinable: all estimates	£	4.55 (3.48–5.95)	4.55 (3.48–5.95)	%0
All	All estimates	4	2.21 (1.47–3.30)	2.19 (1.21–3.98)	47%
	Excluding one outlier ^f	S	2.52 (1.64–3.87)	2.59 (1.58–4.24)	19%
	EMBRACE prospective RR estimate adjusted for potential screening effects ^a	4	1.79 (1.17–2.72)	1.78 (1.12–2.85)	14%
	Studies that did not use historical controls or external population estimates	ε	2.04 (1.32–3.14)	1.92 (0.94–3.92)	57%
	All Studies unselected for age, aggressive prostate cancer, or family history of prostate cancer Studies unselected for age, aggressive prostate cancer, by the ethnicity Studies unselected for age, aggressive prostate cancer, by the proportion of PVs located in the OCCR All	All Non-Ashkenazi European ancestry: EMBACE Alian ancestry African ancestry Alian ancestry African ancestry Studies unselected for age, aggressive prostate Asian ancestry Studies unselected for age, aggressive prostate Asian ancestry Studies unselected for age, aggressive prostate Asian ancestry: all estimates Studies unselected for age, aggressive prostate Ashkenazi European ancestry: all estimates Cancer, or family history of postate cancer Non-Ashkenazi European ancestry: excluding two Studies unselected for age, aggressive prostate Ashkenazi European ancestry: excluding two Unor-Ashkenazi European ancestry: all estimates Don-Ashkenazi European ancestry: excluding two Studies unselected for age, aggressive prostate Asian ancestry: all estimates Cancer, of amily history of postate cancer So% OCR PVs: all estimates Studies unselected for age, aggressive prostate Som occr PVs: all estimates Cancer, of any history of postate cancer So% OCR PVs: all estimates Mudies unselected for age, aggressive prostate Som occr PVs: using separate OCCR estimates Cancer, py the So% OCR PVs: using separate OCCR estimates All Som occr PVs: using separate occr estimates All	All Non-Ashkenzzi European ancestry: EMBRACE 8 African ancestry African ancestry 1 African ancestry African ancestry 1 All African ancestry 1 1 All All estimates 2 2 All All estimates 1 2 Studies unselected for age, aggressive prostate All estimates 1 2 Studies unselected for age, aggressive prostate All estimates 1 2 Studies unselected for age, aggressive prostate All estimates 1 2 Studies unselected for age, aggressive prostate Ashkenazi European ancestry: all estimates 2 2 Studies unselected for age, aggressive prostate Non-Ashkenazi European ancestry: excluding three 4 2 Studies unselected for age, aggressive prostate Non-Ashkenazi European ancestry: excluding three 2 2 Studies unselected for age, aggressive prostate Non-Ashkenazi European ancestry: excluding three 2 2 Studies unselected for age, aggressive prostate Non-Ashkenazi European ancestry: excluding three 2 2	All In on-sheema encenty: EMBAGE In 13 (0.39-1.44) Antion ancestry Antion ancestry In 100-1.160) In 100-1.160) Antion ancestry Antion ancestry In 100-1.160) In 100-1.160) Antion ancestry Antion ancestry In 100-1.160) 227 (0.32-5.90) Antion ancestry Antion ancestry In 100-1.160) 227 (0.32-5.90) Stelensiny introy of prostate cancer Ashenazi European ancestry: all estimates 7 407 (3.43-40) Stelensiny history of prostate cancer Non-Ashenazi European ancestry: all estimates 7 407 (3.43-20) Stelensiny history of prostate cancer Non-Ashenazi European ancestry: all estimates 7 407 (3.42-30) Stelensiny history of prostate cancer Non-Ashenazi European ancestry: all estimates 7 407 (3.42-30) Stelensiny history of prostate cancer Non-Ashenazi European ancestry: excluding three 8 230 (1.4-30) Stelensiny history of prostate cancer Non-Ashenazi European ancestry: excluding three 8 230 (1.3-2.30) Stelensiny history of prostate cancer Non-Ashenazi European ancestry: excluding three 8 201 (1.4-2.30) <td< td=""><td>Mon-Advisors European elsuper folio potentia presenting effects. I. 13 (0.89-1.44) I. 13 (0.89-1.44) Mitten interestry Antion interestry I. 11 (00-13.61) Interestry Audies uneetered for age agreestve protein accessing effects. I. 11 (00-13.61) Interestry Interestry Audies uneetered for age agreestve protein access of annity history of postate cincers Antion interestry I internation 221 (02-5.59) 231 (257-4.33) Audies uneetered for age agreestve protein cincers Antionation I internation 231 (257-4.33) 237 (257-4.33) Audies uneetered for age agreestve protein concers of annity history of postate cincers Antionation 231 (257-4.33) 237 (257-4.33) Autionation Antionation Antionation 231 (257-4.33) 237 (257-4.33) Aution of any history of postate cincers Antionation 231 (257-4.33) 237 (257-4.33) Aution of any history of postate cincers Antionation cincers 231 (257-4.30) 231 (257-4.30) Aution of any istory of postate cincers Antionation cincers 231 (237-4.30) 231 (237-4.30) Aution of any istory of postate cincers Antionation cincers 231 (237-4.30) 231 (237-4.3</td></td<>	Mon-Advisors European elsuper folio potentia presenting effects. I. 13 (0.89-1.44) I. 13 (0.89-1.44) Mitten interestry Antion interestry I. 11 (00-13.61) Interestry Audies uneetered for age agreestve protein accessing effects. I. 11 (00-13.61) Interestry Interestry Audies uneetered for age agreestve protein access of annity history of postate cincers Antion interestry I internation 221 (02-5.59) 231 (257-4.33) Audies uneetered for age agreestve protein cincers Antionation I internation 231 (257-4.33) 237 (257-4.33) Audies uneetered for age agreestve protein concers of annity history of postate cincers Antionation 231 (257-4.33) 237 (257-4.33) Autionation Antionation Antionation 231 (257-4.33) 237 (257-4.33) Aution of any history of postate cincers Antionation 231 (257-4.33) 237 (257-4.33) Aution of any history of postate cincers Antionation cincers 231 (257-4.30) 231 (257-4.30) Aution of any istory of postate cincers Antionation cincers 231 (237-4.30) 231 (237-4.30) Aution of any istory of postate cincers Antionation cincers 231 (237-4.30) 231 (237-4.3

1077

Table 3. continu	red					
Gene, age group	Subgroup	Selection	No. of studies	Fixed-effect pooled RR (95% CI)	Random-effect pooled RR (95% Cl)	ر ا
		Excluding one outlier ⁶ , EMBRACE prospective RR estimate adjusted for potential screening effects ^a , studies that did not use historical controls or external population estimates	2	1.78 (1.09–2.91)	1.78 (1.09–2.91)	%0
BRCA1, age	All	All estimates	£	1.18 (0.83–1.70)	1.43 (0.71–2.87)	65%
≥65 years		Excluding one outlier ^f	2	1.09 (0.75–1.59)	1.21 (0.55–2.62)	73%
		EMBRACE RR estimate adjusted for potential screening effects ^a	m	1.01 (0.70–1.45)	1.10 (0.65–1.86)	39%
		Studies that did not use historical controls or external population estimates	m	1.18 (0.83–1.70)	1.43 (0.71–2.87)	65%
		Excluding one outlier ^f , EMBRACE prospective RR estimate adjusted for potential screening effects ^a , studies that did not use historical controls or external population estimates	2	0.91 (0.62–1.33)	0.91 (0.62–1.33)	%0
BRCA2, age	All	All estimates	S	6.37 (4.81–8.43)	5.28 (3.10-9.00)	63%
<65 years	By ethnicity	Ashkenazi ancestry	1	1.58 (0.57–4.38)	1.58 (0.57-4.38)	ł
		Non-Ashkenazi European ancestry	4	7.14 (5.33–9.56)	7.14 (5.33–9.56)	%0
BRCA2, age	All	All estimates	e	3.74 (2.82–4.96)	3.74 (2.82–4.96)	%0
≥65 years	By ethnicity	Ashkenazi ancestry	-	2.63 (0.85–8.16)	2.63 (0.85–8.16)	ł
		Non-Ashkenazi European ancestry	2	3.83 (2.86–5.12)	3.84 (2.84–5.18)	6%
RR relative risk, CI	/ confidence interval, PV pathogenic variant, OCCR ovarian	cancer cluster region.				

^aUsing a 6 month landmark and compared to population incidences adjusted by a factor of 1.6 [23]. ^bExcluding the studies by Page and coworkers [20] and Moran and coworkers [16] and van Asperen and coworkers [8]. ^cExcluding the studies by Page and coworkers [20], Moran and coworkers [16] and van Asperen and coworkers [8]. ^dRestricted to studies that reported separate RR estimates for OCCR and non-OCCR PVs, or where all reported PVs were located in the OCCR. ^fExcluding the study by Page and coworkers [20].

The RR estimates from the EMBRACE study were identified as high outliers among the BRCA1 but not the BRCA2 estimates. The EMBRACE study was limited by potential confounding by screening effects [23]. BRCA2 PVs are associated with a more aggressive PCa phenotype than BRCA1 PVs [11, 12, 20, 23, 46], and the results may hence reflect that BRCA2 carriers are more likely than BRCA1 carriers to have clinically significant PCa which is diagnosed regardless of screening. When we instead included BRCA1 RR estimates from a sensitivity analysis that adjusted for potential screening effects, these RR estimates were consistent with those reported in other studies. The IMPACT screening trial reported an RR estimate for BRCA2 carriers that was significantly lower than estimates from other studies. Enhanced screening makes early diagnoses of indolent tumours likely in the trial arms. Hence, bias towards the null may be expected compared to the risk for the average BRCA1/2 carrier in the population, if overdiagnosis rates are similar in the carriers and non-carriers.

One case-control study included only cases with a family history of PCa and an unselected control group, and did not adjust for this family history-based ascertainment [25]. This is likely to lead to higher RR estimates compared to RRs based on case-control studies of unselected cases, because of likely enrichment of PCa PVs in subjects from PCa families. Although such designs may provide valid tests of association, they can lead to biased RR estimates [47]. Two family-based retrospective cohort studies in relatives of breast or ovarian cancer cases reported estimates that were significantly higher [16] or lower [8] than estimates from other studies. Assuming that no other shared genetic and familial risk factors besides BRCA1/2 PVs exist between PCa, breast and ovarian cancer, such ascertainment should in principle not introduce ascertainment bias. However, given the excess breast cancer risk in relatives of PCa cases [48] and the established associations between BRCA1/2 PVs and PCa, it cannot be ruled out that testing for BRCA1/2 PVs in individuals with breast cancer may in some instances have been influenced by the presence of PCa cases in the family. If so, failing to adjust for the PCa events that determined the ascertainment would bias the resulting PCa RRs away from the null. One study included biopsy-negative individuals as controls [18], one study used controls who had other cancers [24] and two studies used controls identified in healthcare settings [21, 22]. Such control selection might bias the corresponding RR estimates if the PV frequency among the controls differs systematically from the population. However, the meta-analysis did not suggest significant differences between these estimates and estimates from other studies.

The systematic review and meta-analysis has a number of strengths. Since the most recent previous systematic review and meta-analysis [27], seven studies [20–26] have been published, including two prospective studies [20, 23] and studies in African [21] and Asian [22] ancestry populations. By incorporating these studies, we update the available evidence. Furthermore, our meta-analysis expanded on previous meta-analyses by exploring variability in risks, which identified several possible explanatory factors for the heterogeneity between studies. We have provided estimates that synthesise all available data on the RRs of PCa for male *BRCA1* and *BRCA2* carriers.

The systematic review and meta-analysis also has limitations. Publication bias and selective reporting of significant outcomes within studies may bias meta-analysis estimates [49]. Because only a subset of the studies reported RRs by age, family history and PV location, and RRs of aggressive PCa, such bias cannot be ruled out. Funnel plots for the age-specific estimates showed no clear asymmetry, indicating that selective reporting is less likely. Another limitation is the potential overlap between the participants of different studies. As noted above some studies used the same historical controls, and the *BRCA1/2* carrier participants

partially overlapped between EMBRACE [23] and IMPACT [20]. This invalidates the assumption that the RRs are estimated based on independent samples, which may bias the pooled RR estimates and underestimate the width of the associated Cls. The metaanalysis of BRCA2 OCCR PVs was limited by a lack of separate estimates of the risks associated with OCCR and non-OCCR PVs. The analysis predominantly relied on study-level data on the proportion of reported PVs that were located within the OCCR. For some studies, this proportion was based on the family-level rather than the individual-level PV distribution. However, despite these limitations, the resulting RR estimate (pooled RR = 2.30, 95% CI 1.74–3.06) was consistent with the eight separate estimates reported for OCCR PVs (pooled RR = 2.10, 95% 1.55–2.86). Risk variation by the OCCR was however not present when split by age group. This might be due to the use of the study-level proportion of OCCR PV carriers, which may be a poor proxy for the proportion of OCCR PV carriers within age-stratified subgroups of the study participants. These study-level subgroup analyses are hypothesisgenerating and larger studies are needed to estimate the agespecific risk associated with specific subgroups of BRCA1/2 carriers based on individual-level data, e.g. by ethnic ancestry and PV location. Finally, the literature search and review was performed by a single reviewer rather than several reviewers, and although the review assessed sources of study-specific bias, it did not use a standardised rating scale.

Conclusion

This meta-analysis has identified several potential effect modifiers that may guide future studies, and has provided pooled RR estimates, overall and by age group, of the risk of PCa for male *BRCA1* and *BRCA2* carriers that incorporate the current accumulated evidence. These risk estimates will be informative for the genetic counselling of male *BRCA1* and *BRCA2* carriers.

DATA AVAILABILITY

The literature review and meta-analysis datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

REFERENCES

- 1. Johannesdottir G, Gudmundsson J, Bergthorsson JT, Arason A, Agnarsson BA, Eiriksdottir G, et al. High prevalence of the 999del5 mutation in Icelandic breast and ovarian cancer patients. Cancer Res. 1996;56:3663–5.
- Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91:1310–6.
- Hubert A, Peretz T, Manor O, Kaduri L, Wienberg N, Lerer I, et al. The Jewish Ashkenazi founder mutations in the BRCA1/BRCA2 genes are not found at an increased frequency in Ashkenazi patients with prostate cancer. Am J Hum Genet. 1999;65:921–4.
- Vazina A, Baniel J, Yaacobi Y, Shtriker A, Engelstein D, Leibovitz I, et al. The rate of the founder Jewish mutations in *BRCA1* and *BRCA2* in prostate cancer patients in Israel. Br J Cancer. 2000;83:463–6.
- Thompson D, Easton DF. Breast Cancer Linkage Consortium. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94:1358–65.
- Giusti RM, Rutter JL, Duray PH, Freedman LS, Konichezky M, Fisher-Fischbein J, et al. A twofold increase in *BRCA* mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet. 2003;40:787–92.
- Hamel N, Kotar K, Foulkes WD. Founder mutations in BRCA1/2 are not frequent in Canadian Ashkenazi Jewish men with prostate cancer. BMC Med Genet. 2003;4:7.
- Van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, Hoogerbrugge N, Verhoef S, Vasen HFA, et al. Cancer risks in *BRCA2* families: estimates for sites other than breast and ovary. J Med Genet. 2005;42:711–9.
- Risch HA, McLaughlin JR, Cole DEC, Rosen B, Bradley L, Fan I, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a Kin–cohort study in Ontario, Canada. J Natl Cancer Inst. 2006;98:1694–706.
- Agalliu I, Karlins E, Kwon EM, Iwasaki LM, Diamond A, Ostrander EA, et al. Rare germline mutations in the *BRCA2* gene are associated with early-onset prostate cancer. Br J Cancer. 2007;97:826–31.

- Agalliu I, Gern R, Leanza S, Burk RD. Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res. 2009;15:1112–20.
- Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16:2115–21.
- Fachal L, Gómez-Caamaño A, Celeiro-Muñoz C, Peleteiro P, Blanco A, Carballo A, et al. BRCA1 mutations do not increase prostate cancer risk: Results from a metaanalysis including new data. Prostate. 2011;71:1768–79.
- Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer. 2011;105:1230–4.
- Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline *BRCA1* mutations increase prostate cancer risk. Br J Cancer. 2012;106:1697–701.
- Moran A, O'Hara C, Khan S, Shack L, Woodward E, Maher ER, et al. Risk of cancer other than breast or ovarian in individuals with *BRCA1* and *BRCA2* mutations. Fam Cancer. 2012;11:235–42.
- Cybulski C, Wokołorczyk D, Kluźniak W, Jakubowska A, Górski B, Gronwald J, et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer. 2013;108:461–468.
- Akbari MR, Wallis CJD, Toi A, Trachtenberg J, Sun P, Narod SA, et al. The impact of a BRCA2 mutation on mortality from screen-detected prostate cancer. Br J Cancer. 2014;111:1238–40.
- Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375:443–53.
- Page EC, Bancroft EK, Brook MN, Assel M, Al Battat MH, Thomas S, et al. Interim results from the IMPACT study: evidence for prostate-specific antigen screening in *BRCA2* mutation carriers. Eur Urol. 2019;76:831–42.
- Matejcic M, Patel Y, Lilyquist J, Hu C, Lee KY, Gnanaolivu RD, et al. Pathogenic variants in cancer predisposition genes and prostate cancer risk in men of African ancestry. JCO Precis Oncol. 2020;4:32–43.
- Momozawa Y, Iwasaki Y, Hirata M, Liu X, Kamatani Y, Takahashi A, et al. Germline pathogenic variants in 7636 Japanese patients with prostate cancer and 12 366 controls. J Natl Cancer Inst. 2020;112:369–76.
- Nyberg T, Frost D, Barrowdale D, Evans DG, Bancroft E, Adlard J, et al. Prostate cancer risks for male *BRCA1* and *BRCA2* mutation carriers: a prospective cohort study. Eur Urol. 2020;77:24–35.
- Oak N, Cherniack AD, Mashl RJ, Hirsch FR, Ding L, Beroukhim R, et al. Ancestryspecific predisposing germline variants in cancer. Genome Med. 2020;12:51.
- Wokołorczyk D, Kluźniak W, Huzarski T, Gronwald J, Szymiczek A, Rusak B, et al. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer. 2020;147:2793–2800.
- Nguyen-Dumont T, Dowty JG, MacInnis RJ, Steen JA, Riaz M, Dugué PA, et al. Rare germline pathogenic variants identified by multigene panel testing and the risk of aggressive prostate cancer. Cancers. 2021;13:1495.
- Oh M, Alkhushaym N, Fallatah S, Althagafi A, Aljadeed R, Alsowaida Y, et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate. 2019;79:880–95.
- Roed Nielsen H, Petersen J, Therkildsen C, Skytte AB, Nilbert M. Increased risk of male cancer and identification of a potential prostate cancer cluster region in BRCA2. Acta Oncologica. 2016;55:38–44.
- 29. Thompson D, Easton D. Breast Cancer Linkage Consortium. Variation in cancer risks, by mutation position, in *BRCA2* mutation carriers. Am J Hum Genet. 2001;68:410–9.
- Lubinski J, Phelan CM, Ghadirian P, Lynch HT, Garber J, Weber B, et al. Cancer variation associated with the position of the mutation in the BRCA2 gene. Fam Cancer. 2004;3:1–10.
- Patel VL, Busch EL, Friebel TM, Cronin A, Leslie G, McGuffog L, et al. Association of genomic domains in BRCA1 and BRCA2 with prostate cancer risk and aggressiveness. Cancer Res. 2020;80:624–38.
- Nyberg T, Frost D, Barrowdale D, Evans DG, Bancroft E, Adlard J, et al. Prostate cancer risk by BRCA2 genomic regions. Eur Urol. 2020;78:494–7.
- Laitman Y, Boker LK, Liphsitz I, Weissglas-Volkov D, Litz-Philipsborn S, Schayek H, et al. Cancer risks in Jewish male BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat. 2015;150:631–5.
- Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372:2243–57.
- Thompson ML, Myers JE, Kriebel D. Prevalence odds ratio or prevalence ratio in the analysis of cross-sectional data: what is to be done? Occup Environ Med. 1998;55:272–7.

- 36. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.
- Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.
- Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48.
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.
- Gayther SA, Mangion J, Russell P, Seal S, Barfoot R, Ponder BAJ, et al. Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nat Genet. 1997;15:103–5.
- 41. R Core Team. R: a language and environment for statistical computing. Vienna, Austria. Available from: https://www.R-project.org/.
- Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22:153–60.
- Ben-Shlomo Y, Evans S, Ibrahim F, Patel B, Anson K, Chinegwundoh F, et al. The risk of prostate cancer amongst black men in the United Kingdom: the PROCESS cohort study. Eur Urol. 2008;53:99–105.
- Wild CP, Weiderpass E, Stewart BW, editors. World cancer report: cancer research for cancer prevention. Lyon: International Agency for Research on Cancer (World Health Organization); 2020.
- 45. Nastiuk KL, Mansukhani M, Terry MB, Kularatne P, Rubin MA, Melamed J, et al. Common mutations in *BRCA1* and *BRCA2* do not contribute to early prostate cancer in Jewish men. Prostate. 1999;40:172–7.
- 46. Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013;31:1748–57.
- Antoniou AC, Easton DF. Polygenic inheritance of breast cancer: implications for design of association studies. Genet Epidemiol. 2003;25:190–202.
- Anderson DE, Badzioch MD. Familial breast cancer risks. Effects of prostate and other cancers. Cancer. 1993;72:114–9.
- Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in metaanalyses of randomised controlled trials. BMJ. 2011;343:d4002.
- Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, et al. The risk of cancer associated with specific mutations of *BRCA1* and *BRCA2* among Ashkenazi Jews. N Engl J Med. 1997;336:1401–8.
- 51. Gruber SB, Ellis NA, Rennert G, Offit K, Scott KK, Almog R, et al. BLM heterozygosity and the risk of colorectal cancer. Science. 2002;297:2013.

ACKNOWLEDGEMENTS

We thank the IMPACT study collaborators and Steering Committee for providing additional data on their study, and Gareth Evans for helpful clarifications regarding one of the publications.

AUTHOR CONTRIBUTIONS

All authors conceived and designed the study. TN performed the literature review and the statistical analysis, and wrote the first draft of the manuscript. MT and ACA revised the manuscript and supervised the work. ACA obtained funding.

FUNDING

This work was funded by Cancer Research UK grants C12292/A20861, C12292/ A22820 and PPRPGM-Nov20/100002; and supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. The sponsors played no direct role in the study.

COMPETING INTERESTS

The authors declare no competing interests.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable; this was a systematic review and meta-analysis of previously published research. It did not include any original data on research participants.

CONSENT TO PUBLISH

None.

1080

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41416-021-01675-5.

Correspondence and requests for materials should be addressed to Tommy Nyberg.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons. org/licenses/by/4.0/.

© The Author(s) 2021