
REVIEW ARTICLE

Molecular Diagnostics

Raman spectroscopy: current applications in breast cancer
diagnosis, challenges and future prospects
Katie Hanna 1,2, Emma Krzoska1, Abeer M. Shaaban 3, David Muirhead 4, Rasha Abu-Eid 1,5 and Valerie Speirs 1,2✉

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Despite significant improvements in the way breast cancer is managed and treated, it continues to persist as a leading cause of
death worldwide. If detected and diagnosed early, when tumours are small and localised, there is a considerably higher chance of
survival. However, current methods for detection and diagnosis lack the required sensitivity and specificity for identifying breast
cancer at the asymptomatic or very early stages. Thus, there is a need to develop more rapid and reliable methods, capable of
detecting disease earlier, for improved disease management and patient outcome. Raman spectroscopy is a non-destructive
analytical technique that can rapidly provide highly specific information on the biochemical composition and molecular structure of
samples. In cancer, it has the capacity to probe very early biochemical changes that accompany malignant transformation, even
prior to the onset of morphological changes, to produce a fingerprint of disease. This review explores the application of Raman
spectroscopy in breast cancer, including discussion on its capabilities in analysing both ex-vivo tissue and liquid biopsy samples,
and its potential in vivo applications. The review also addresses current challenges and potential future uses of this technology in
cancer research and translational clinical application.
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INTRODUCTION
Female breast cancer (BC) is the most commonly diagnosed
malignancy and one of the leading causes of cancer-related
deaths, worldwide; an estimated 2.26 million new cases and
680,000 deaths were recorded in 2020 alone [1]. Although
significant advances have been made over the past few decades
in the prevention, diagnosis and treatment of BC [2], it still remains
a major global health burden. Distant (metastatic) recurrence is a
significant clinical issue and is responsible for the majority of BC
deaths [3]. Five-year survival of patients with localised BC is 99%;
decreasing to 27% when diagnosed with late-stage disease [4].
Early detection and diagnosis, when the tumour is still localised
[5], is imperative for improved patient outcome.
Various clinical methods exist for BC detection and diagnosis.

Mammography is the gold-standard method for early BC detection
and forms the basis of Mammographic Screening Programmes,
introduced globally to detect small malignant tumours before
symptoms develop. Although existing evidence suggests that
mammography can reduce risk of mortality [6, 7], there has been
considerable debate regarding the overall efficacy of mammo-
graphy [8] both as a screening and diagnostic tool. Mammography
is far less sensitive in women with dense breast tissue and there is

also debate surrounding the appropriate age for screening [7, 9].
Moreover, overdiagnosis and subsequent over-treatment is now
recognised as a major issue surrounding screening mammography
[10]. However, imaging cannot be used solely for the diagnosis of
BC; currently the only way to make a definitive diagnosis is through
histopathological analysis of the patients’ tissue. Obtaining tissue
involves invasive procedures such as surgical excision or needle
core biopsy. Approximately 80% of biopsies are negative for BC
thus rendering these invasive procedures unnecessary in most
cases. Moreover, the morphological and molecular heterogeneity
of breast tissue also presents challenges and may lead to
interpretive disparity amongst pathologists. These limitations
provide the motivation to develop new techniques capable of
rapidly and accurately detecting and diagnosing BC in its early
stages. Spectroscopic methods are emerging as powerful tools
within biomedical research [11, 12] as they are non-invasive and
have a high real-time spatial resolution. Of the many spectroscopic
techniques available, Raman spectroscopy (RS) is particularly
appealing as it has demonstrated the potential to rapidly, non-
destructively and objectively, provide clinically relevant diagnostic
information in a variety of specialities [13–15]. This review will
explore the application of RS in BC diagnosis.
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RAMAN SPECTROSCOPY FOR BIOLOGICAL APPLICATIONS
RS is an optical spectroscopic technique that can probe the
vibrational modes associated with chemical bonds in a sample; as
different samples have distinct chemical compositions, a sample-
specific spectral fingerprint, or ‘Raman spectrum’ can be obtained.
This spectrum contains numerous bands at various frequencies,
which are characteristic of the structural features and functional
groups of a particular molecule. A more detailed description of the
fundamental principles of RS, is in Supplementary File 1 and
Supplementary Fig. S1.
Different cells and tissues are made up of distinct combinations

of proteins, carbohydrates, lipids and nucleic acids; each of which
have a number of associated vibrational modes that can be
probed by RS to reveal information on their structure and
composition. Accordingly, RS can provide details on the current
state and activity of cells and tissues. Fig. 1a displays an exemplar
of a Raman spectrum recorded from MCF-7 BC cells, highlighting

the three main regions of the spectrum: fingerprint (200–1800
cm−1), silent (1800–2700 cm−1) and high wavenumber
(2700–3300 cm−1). The high wavenumber region is dominated
by C–H, CH2, O–H, N–H vibrations of lipids, proteins and water
whereas the ‘silent region’ is mostly free of bands from biological
material; cellular Raman vibrations arising from triple bond
functional groups like the alkynes are an exception [16]. Most
peaks for biological samples can be found within the ‘fingerprint’
region where the richest molecular vibrational modes of proteins,
lipids, carbohydrates and nucleic acids are found. A typical
biological spectrum of this region is shown (Fig. 1b), with
examples of peak assignments from studies centred around the
detection of BC based on specific Raman signatures.
Biological samples are highly complex and heterogeneous; they

contain an extensive number of Raman-active vibrational modes,
particularly within this fingerprint. Thus, extracting relevant
information from such data-rich spectra is challenging. The many
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Fig. 1 Examples of Raman spectra and peak assignments. a Extended scan from the Luminal A breast cancer cell line, MCF7 depicting the
three main regions of the Raman spectrum: fingerprint, silent and high wavenumber regions are illustrated. Whilst the majority of biologically
relevant molecular vibrations exist within the fingerprint, both the silent and high wavenumber regions may also contain molecular vibrations
from a limited number of biomolecules. b Representation of the fingerprint region of a cellular Raman spectrum (left) with a variety of peaks
that correspond to molecular vibrations of amino acids, proteins, lipids, nucleic acids and carbohydrates. Highlighted are examples of peak
assignments from studies centred around the detection of breast cancer based on changes to specific Raman signatures (right). Image kindly
provided by Renishaw. c Raman spectrum obtained from normal breast tissue displaying sources of spectral interference including noise,
fluorescence and cosmic spikes (arrows).
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discrepancies, within the literature, associated with characterising
spectral peak position reflect this [17]. Raman spectra of biological
samples contain wide peaks that represent a combination of
different molecules and neighbouring molecular interactions may
cause a shift in peak position from the isolated functional group.
Furthermore, most molecules within biological samples that
contain Raman active vibrational modes, also exhibit fluorescence
upon excitation; cellular autofluorescence is several orders of
magnitude more intense than the Raman signal and thus can
hinder spectral interpretation. Additionally, noise sources, either
generated internally within the Raman system itself or exteriorly
from other sources, include cosmic rays; dark current; shot noise
and readout noise which further contaminate the spectra and
complicate subsequent data processing [18]. Therefore, computa-
tional data pre-processing, to remove undesirable background
noise (Fig. 1c), should be carried out prior to analysis. Computa-
tional spectral denoising techniques are beyond the scope of this
review and reviewed elsewhere [19]. Moreover, if spectra, of the
same sample, are not obtained simultaneously, under identical
experimental parameters, then they may be subject to a shift in
peak intensity. Normalisation is applied to address this disparity
and a number of different approaches are available [19]. Prior to
spectral analyses, it is important to identify any outliers within the
dataset that could adversely affect interpretation and classifica-
tion. Principal component analysis (PCA) and Signal to noise ratio
based thresholding methods are two examples of outlier-
detection algorithms [20].
Following pre-processing, corrected Raman spectra are subject

to analysis to recognise vibrational signatures. Univariate methods
can be used to analyse biological samples, but these are
somewhat restricted to small datasets, for example, in studies
on rare diseases or where samples are obtained from surgical

resection with only a few suitable samples for Raman analysis.
Moreover, univariate methods only make use of a limited number
of variables like relative band positional or intensity changes from
the whole spectrum hence resulting in a massive loss of
information. Typically, Raman datasets in biological studies are
large and multifaceted, and require more efficient, multivariate
approaches, such as chemometrics, for a truly exploratory and
comprehensive analysis. These methods involve an in-depth
analysis of many spectra, simultaneously, to allow useful trends
and patterns to emerge from the data, which may otherwise have
been missed if analysed, only, at the single level. Moreover, such
patterns can be modelled and subsequently used as a predictor
for similar newly acquired data.
Multivariate methods can be classified into either unsupervised

or supervised methods, depending on the objective of the analysis
and any priori-knowledge of the sample [20]. Unsupervised
methods, including: PCA [21], k-means clustering [22] and
Hierarchical clustering analysis [23] do not require any previous
knowledge of the sample and are thus exploratory in nature. They
can assist in identifying patterns and trends within the dataset and
the objective creation of groupings. Conversely, supervised
methods, including: partial least squares (PLS) [24] linear
discriminant analysis (LDA) [25] and multiple linear regression
[26] rely on pre-existing class labels within the dataset, for
example, the histopathological diagnosis, and thus are concerned
with pattern recognition.

RAMAN VARIANTS IN BREAST CANCER STUDIES
RS, in its simplest form, implies the phenomenon of Spontaneous
Raman scattering (Fig. 2). Spontaneous Raman scattering has seen
increasing popularity in biomedical research, but the Raman effect
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Fig. 2 Schematic representation of the main components found within a typical spontaneous Raman scattering micro-spectroscopy
system. Laser light is guided through a beam expander onto a series of mirrors that focus the light onto the sample through a microscope
objective lens. Scattered light is collected with this same objective lens in a 180° backscatter sampling geometry. Rayleigh scattered light is
reduced through the use of edge filters and then the Raman scattered light is focused through an entrance slit and dispersed by a diffraction
grating onto the detector. Variations in this general setup typically exist between manufacturers.

K. Hanna et al.

1127

British Journal of Cancer (2022) 126:1125 – 1139



Table 1. Examples of Raman variants with applications in breast cancer.

Raman variants Basic principles Advantages Examples of applications in
breast cancer

Surface enhanced Raman
spectroscopy (SERS)

This describes the large Raman
signal enhancement provided
when molecules are adsorbed
onto a roughened metallic
surface- typically silver or gold
nanoparticles.

This technique provides an increase,
in orders of magnitude, of the Raman
signal intensity; molecules present
only at a low concentration can still
be detected. It is also capable of
multiplex detection due to its
molecularly narrow-band spectra.

Detection and diagnosis through
analysing liquid biopsy
[29, 30, 102, 117]; tissue samples
[132]; exosomal miRNAs [133]; and
in vivo imaging [134, 135].

Spatially offset Raman
spectroscopy (SORS) [136]

Raman scattered light is collected
along the sample from areas that
are laterally offset from the point
of laser excitation. Differences in
the chemical composition as a
function of depth can be
delineated by comparing spectra
obtained with no offset (surface)
and those collected with an offset
(subsurface). As a result of
photon diffusion mechanisms,
the spectra obtained with offset
have different contributions from
various depths within the sample.

Raman signals can be retrieved from
numerous individual layers within a
sample and surface fluorescence
signals are reduced, making in vivo
measurements possible.

Detection and characterisation of
breast microcalcifications buried in
tissue at depths up to 10mm [64].

Transmission Raman
spectroscopy (TRS)

The illumination and collection
optics are found on opposites
sides of the sample hence the
generated spectra are
representative of its whole
volume.

This technique is insensitive to depth;
it is possible to probe structures deep
within a particular area without
interference from surface Raman and
fluorescence signals. TRS thus has
potential for non-invasive in vivo
applications.

Detection and characterisation of
breast microcalcification buried in
tissue at depths of 16–40mm
[93, 95, 96].

Kerr-gated Raman
spectroscopy

Exploits the differential time
dependence of Raman signals
(femtoseconds or picoseconds)
and fluorescence (hundreds of
picoseconds to nanoseconds) on
short-repeated laser pulses. Kerr-
gating can separate these distinct
time domains by using excitation
with a pico-second pulsed laser
combined with ultra-fast gating
of the Raman scattered light
collected at various time delays.

Surface Raman and fluorescence
signals tend to be far more
prominent than Raman signals
emanating deep within tissue, posing
difficulty for depth profiling. The Kerr-
gating technique functions to reject
the temporally longer fluorescence
signal and thus produce
enhancement to improve the spectra
collected from biological tissue for
depth profiling.

Probing the biochemical
composition of microcalcifications
for early breast cancer detection
[63].

Near-infrared Fourier
transform Raman
spectroscopy (NIR FT-RS)

A non-dispersive Raman system
that uses a Nd:YAG laser emitting
at 1064 nm excitation. FT-Raman
spectroscopy involves the
coupling of the Raman sampling
module with a FT-IR instrument,
that contains an interferometer,
in order to reduce the
fluorescence typical of near-
infrared excitation.

The use of pre-resonant excitation,
where most biomolecules do not
have electronic absorption bands,
reduces the likelihood of
fluorescence interference as well as
minimising photodegradation. FT-RS
also simultaneously measures the
intensity of scattered light at many
frequencies thus improving spectral
resolution.

Diagnosis of breast cancer through
in vivo and ex vivo measurements.
[55, 137–139].

Shell-isolated nanoparticle-
enhanced Raman
spectroscopy (SHINERS)

A monolayer of gold nanoparticle
cores, coated with either silica or
alumina, are applied to the
surface of the sample to be
probed. The protective shell
prevents direct contact between
the plasmonic nanoparticles and
the probed surface, which if not
present, could lead to structural
changes of the biomolecules.

The plasmonic cores induce
significant increase of the intensity of
the electric field thus leading to a
large enhancement of the Raman
signal. It can do so without the
requirement of a specialised
substrate (SERS) and it is also not
limited to only studying molecules
with a large Raman cross-section
(Tip-Enhanced Raman Spectroscopy).

Detection of breast pathology
[40, 56, 57]; and microcalcification
status [57, 69].

Shifted excitation Raman
difference spectroscopy
(SERDS)

A laser employing two slightly
different emission wavelengths is
used to record two spectra for
fluorescence rejection. A slight
change to the wavelength of the
incident radiation causes a shift
in the Raman spectrum, but the
fluorescence signal will remain

This technique is useful for probing
samples that exhibit strong
autofluorescence. Furthermore, this
technique does not require complex
sample preparation or experimental
setup. As this approach eliminates
fluorescence by experimental means

Classification of normal, benign and
cancerous ex vivo breast tissue
samples [74].
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is inherently weak and is essentially competing with stronger
signals from Rayleigh scattering and tissue autofluorescence.
Experimentally, the use of higher-powered lasers and longer signal
acquisition times can improve the Raman signal and photobleach-
ing can quench the autofluorescence. However, the potential
damage that can be induced following application of these
experimental approaches poses significant challenges both to
biological and clinical applications. Consequently, numerous
Raman-based techniques have been developed to enhance the
weak Raman signal and overcome issues with fluorescence
interference, whilst minimising photodegradation (Table 1).
Furthermore, the development of techniques such as Spatially
offset RS and Transmission RS make it possible to probe
biomolecules in deep tissue layers for potential non-invasive
in vivo measurements. The basic principles and examples of where
these variants have been applied in BC detection and diagnosis
are described in Table 1.

RAMAN SPECTROSCOPY IN BREAST CANCER DETECTION AND
DIAGNOSIS
Morphological and functional changes that occur during the
malignant transformation of cells and tissue are accompanied by
significant biochemical changes. For example, unchecked cellular
proliferation, a hallmark of cancer [27], increases the production of
DNA, RNA and proteins and disrupts lipid metabolism. These
changes, at the biochemical level, occur much earlier than the
onset of clinical symptoms. As such, Raman-based methods can
be used to probe and quantify these altered molecular signatures,

with spectra serving as biomarker profiles for early disease
classification and tumour grading.
Moreover, this information can be obtained without destroying

the material since RS does not require extensive sample
preparation or labelling. Consequently, additional processing
and analyses are possible following the Raman acquisition, which
in the case of diagnosing cancer, is essential to build a complete
picture of individual tumours. Its non-destructive nature, in
addition to its ability to be adapted to optical fibre techniques,
demonstrates its potential for in-vivo intra-operative or bed side
applications. Moreover, samples in a solid state are not a requisite
for RS hence there has been increasing interest in analysing
circulating markers in different body fluids [28–32] for early cancer
detection and diagnosis. The following includes discussion on ex-
vivo tissue, in vivo and liquid biopsy Raman diagnostic
applications in BC.

Ex-vivo applications
Early Raman studies on breast tissue focused on the qualitative
analysis of spectra; identifying specific features associated with the
appearance of benign or malignant breast changes. The first
observations made on human breast tissue demonstrated the
ability of Fourier-Transform (FT) RS, with Near-Infrared (NIR)
excitation (1064 nm), to discriminate normal and abnormal tissue
[33]. Since then, considerable effort has focused on discerning the
biochemical changes that accompany these spectral changes
associated with breast pathology.
The most prominent biochemical differences between normal

and abnormal breast tissue concern lipids, carotenoids and

Table 1. continued

Raman variants Basic principles Advantages Examples of applications in
breast cancer

unchanged. The different
spectrum, obtained following
subtraction of the two raw
spectra, is free of fluorescence
interference.

rather than computational, the
Raman features are not altered.

Stimulated Raman
spectroscopy (SRS)

Two synchronous pulsed lasers
(pump beam and Stokes beam)
are focused onto a sample. When
the frequency difference
between the lasers matches a
molecular vibrational frequency,
stimulated excitation of the
vibrational transition occurs.
During this excitation, energy of
the pump photon is transferred
to the chemical bond and thus
the emitted Stokes photon has a
lower energy. A loss of an
incident photon at the pump
frequency is paralleled by the
generation of a new photon at
the Stokes frequency.

SRS is much more efficient than
spontaneous Raman as its signal
strength is several orders of
magnitude greater and it is
unaffected by sample fluorescence.

Discrimination of type II
microcalcifications [68, 70]; breast
cancer diagnosis and surgical
guidance [140].

Coherent anti-Stokes Raman
spectroscopy (CARS)

CARS involves the simultaneous
interaction of two incident
photons, at pump and Stokes
frequencies, with the scattering
material. This interaction can
coherently excite a large
proportion of the chemical bonds
to excited vibrational states. The
excited chemical bonds can
exchange energy with a second
pump photon leading to the
coherent emission of a higher
energy anti-stokes photon.

CARS allows detection even in the
presence of a strong fluorescent
background due to the anti-stokes
shift; deep penetration into tissues as
there is minimal scattering of NIR
excitation beams and limited
photodamage due to low absorption
of NIR excitation beams. Moreover,
CARS methods require a very short
time to acquire spectra, which is
imperative for in vivo applications.

Characterisation of ex vivo breast
tissue [141, 142]; and type I and II
microcalcifications buried at a 2mm
depth [94].
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proteins. Spectra obtained from normal, benign and malignant
breast tissue using visible excitation revealed marked reduction in
the intensity of peaks corresponding to vibrational modes of β-
carotene and lipids in abnormal versus normal breast tissue [34].
This same group demonstrated this reduction in peak intensity of
lipids again in diseased breast tissue using NIR excitation [35].
They also found similarities between the spectra of human
collagens and that of infiltrating ductal carcinoma specimen. The
relevance of the vibrational modes of lipids, carotenoids and
proteins as potential spectral biomarkers for distinguishing pre-
cancerous/cancerous and noncancerous breast tissue has been
further corroborated [36–43].
A common observation is that spectral differences between

benign and malignant breast tissue are less obvious. For RS to be
applied as a diagnostic tool, its ability to distinguish benign and
malignant breast lesions, with a high sensitivity and specificity, is
imperative. Indeed, benign and malignant breast tissue could be
distinguished, for the first time, after performing PCA and logistic
regression on spectra [44]. This diagnostic algorithm allowed
correct classification of normal, benign and malignant lesions with
93%, 87% and 100% accuracy, respectively [44]. The coupling of
multivariate statistical methods with RS has since proven to be
indispensable for discriminating benign and malignant breast
lesions [45–54].
Breast tissue abnormalities are inherently heterogeneous, both

at the morphological and molecular level. This is reflected by the
variety of benign and pre-cancerous/cancerous conditions that
can affect the breast. Indeed, there has been considerable focus
on distinguishing the wide variety of breast pathologies using RS.
Efficacy of FT RS in differentiating benign, pre-invasive and
malignant breast tissue has been demonstrated [55]. Through
qualitative spectral analysis, a number of key differences were
observed, including intensity changes of bands corresponding to
amino acids, nucleic acids, proteins, carbohydrates and lipids.
These differences could form the basis of spectral biomarkers for
classifying different breast tissue states. Similarly, spontaneous RS
and shell-isolated nanoparticle-enhanced Raman spectroscopy
(SHINERS) have been used to distinguish normal, benign,
precancerous, and pre-invasive and invasive malignant breast
tissue [56, 57]. In keeping with other studies, they found that the
main spectral features of normal breast tissue were associated
with lipid vibrational modes, whereas the diseased tissues showed
stronger peaks corresponding to that of protein and nucleic acids.
They observed both a gradual increase in protein and nucleic acid
concentration and a decrease in lipid concentration, as the breast
tissue became more malignant. PLS-discriminant analysis demon-
strated a high level of classification accuracy for five different
tissue types. In addition to its ability to distinguish the
morphological subtypes of BC, RS has also been able to classify
the different molecular subtypes- Luminal A, Luminal B, HER2+
and triple negative [58]. Four hundred Raman spectra were
obtained from breast tissue microarrays of various morphological
classifications but stratified into their molecular subtypes, using a
dispersive micro-Raman system operating at a 532 nm wave-
length. They observed differences, between the subtypes, in the
intensity, position and shape of certain peaks; including, the 1583
cm−1 peak of tryptophan and the 1667 cm−1 Amide I peak. LDA
was able to correctly classify the BC subtypes with a specificity of
70%, 100%, 90% and 96.7% for luminal A, luminal B, HER2+ and
triple negative BC, respectively.
Microcalcifications are small calcium deposits commonly

observed on mammograms, as a result of benign cystic [59], or
cancerous/early precancerous breast changes. Mammographic
microcalcification classification relies on morphology and distribu-
tion rather than chemical composition and thus represents a
major source of unnecessary biopsies in benign cases. Micro-
calcifications can be classed as either Type I or Type II. Type I
microcalcifications are composed of calcium oxalate and are most

often associated with benign lesions while Type II; are composed
of calcium phosphate, mainly hydroxyapatite [60, 61] and are
associated with both benign and malignant lesions. Calcium
oxalate and calcium hydroxyapatite scatter photons effectively
and have different spectral signatures, thus RS is powerful for
differentiating type I and II microcalcifications [62–65]. The utility
of RS in BC diagnoses, based on microcalcification- status, is also
dependent on its ability to distinguish benign and malignant type
II calcifications, where subtle chemical differences between both
types of type II microcalcification were reported; malignant breast
ducts contained lower levels of carbonate and higher amounts of
protein compared to benign ducts [65]. The significance of
carbonate as a spectroscopic marker for differentiating type II
microcalcifications has been further demonstrated [66]. More
recently, a Raman mapping approach was used to study the whole
area of each microcalcification for a more intuitive description of
all components within the lesion [61]. In addition to hydro-
xyapatite, whitlockite and amorphous carbonate were found in
some benign type II microcalcifications. Raman profiles from
microcalcifications could be correlated to their respective
diagnostic categories with high sensitivity and specificity. In a
pilot study, type II microcalcifications were also identified in
benign and malignant canine mammary tumours with good
discrimination between benign and malignant lesions supporting
its use in the clinical diagnosis and management of human and
canine BC [67].
Yang, et al. [68] combined spectral and morphological features

in their analysis of type II microcalcification for improved
discrimination of benign and malignant cases [68]. They extracted
the relative abundance of the main chemical constituents of the
microcalcifications- hydroxyapatite, carbonate and protein- using
spontaneous and stimulated Raman spectroscopy (SRS) and found
correlations between their abundance and tumour malignancy,
similar to previous reports. Next, using SRS microscopy, they
extracted features related to geometry (circularity, area, perimeter
and Fourier descriptor) and texture from each calcification, and
found there to be statistically significant differences between the
benign and malignant cases. They then selected the most
informative spectral and morphological features and analysed
them with a support vector machine-based classification algo-
rithm. Interestingly, it was the combination of extracted spectral
and geometric features, as opposed to either pure spectroscopy or
imaging-based methods, that yielded the best accuracy (99.05%)
and precision (98.21%) for diagnosing tumour malignancy.
As mentioned previously, breast abnormalities are highly

heterogenous and thus a binary classification system of either
benign or malignant type II microcalcifications does not consider
the broad spectrum of existing breast pathologies. This is
necessary to better define calcification types. SHINERS, in
combination with PCA, was used to accurately distinguish type II
microcalcifications between fibroadenoma, atypical ductal hyper-
plasia and ductal carcinoma in situ [69]. More recently, hyper-
spectral SRS was combined with Second harmonic generation
imaging to separate specific microcalcification diagnostic cate-
gories, such as: fibroadenoma, atypical ductal hyperplasia, ductal
carcinoma in situ and invasive ductal carcinoma [70].
A tissue microarray study of 79 normal and 499 malignant

breast tumours confirmed RS was a powerful technique in
distinguishing normal from malignant mammary tissues with a
sensitivity and specificity of 90% and 78%, respectively [71]. Lipid,
particularly fatty acid spectra, dominated the normal tissue
whereas protein spectra characterised the cancerous samples.
While several previous studies used fresh and frozen breast
samples to preserve the chemical composition of tissue, this study
confirmed that RS can be easily used on paraffin wax embedded
tissues thus widening its applicability.
A recent, albeit small study, of 36 frozen and paraffin embedded

breast lesions, including normal, in situ carcinoma and invasive
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cancer, confirmed the reliability of the technique in differentiating
benign from cancerous tissue in paraffin sections, despite some
alteration of the chemical composition of the tissues due to
dewaxing [72]. Nodal assessment, traditionally done by ultrasound
imaging, with or without nodal sampling, is an integral
component of the triple assessment of BC. Using frozen sections
of axillary lymph nodes and comparison with the histological
findings on paraffin sections, Raman imaging has provided
promising potential in establishing nodal metastasis and the
chemical composition of the metastatic lymph nodes in compar-
ison with the primary BC [73].

In-vivo applications
Several proof-of-concept studies using portable, hand-held Raman
probes for classifying ex vivo cancerous and non-cancerous breast
tissue [22, 35, 47, 50, 74–78]; and for axillary lymph node
assessment [79, 80] have been reported. This demonstrates the
translational potential for possible in vivo applications for
diagnosing BC intraoperatively; delineating tumour/normal tissue
margins; eliminating residual tumour and intraoperative sentinel
lymph node assessment.
The first in vivo Raman spectra from breast tissue were obtained

from patients undergoing a partial mastectomy. Using a clinical
Raman system and optical fibre Raman probe, surgical margins of
the remaining tumour cavity following excision were assessed to
investigate its feasibility for real-time, intraoperative margin
assessment [81]. When comparing results to those from traditional
histopathological assessment, Raman achieved an overall accuracy
of 93%. Subsequently, spectra were acquired using a dispersive
Raman spectrometer (785 nm) coupled to a fibre-optic probe,
from breast tumour bearing Sprague-Dawley rats [82]. Probing
eight regions of the tumoral mammary gland, a continuous
decrease in band intensity, mainly of the band 1446 cm−1, which
most likely corresponds to vibrations of CH2 [83], was noted as
they moved from the histologically normal tumour marginal
region to the actual lesion itself. A hand-held spectroscopic
device, termed the ‘SpectroPen’, that can record both fluorescence
and Raman signals has been developed [84]. This device, in
combination with the fluorescent and SERS contrast agents, was
able to detect cancer in 4T1 tumour bearing mice in vivo and pre/
intra operatively. Moreover, this could evaluate, in real-time, the
positive and negative tumour margins of the remaining tumour
cavity. The same approach has been successfully applied to
human BC for the intraoperative margin assessment in breast
conserving surgery [85]. This is a promising application that could
optimise patient management and reduce the need for further
surgical procedures to achieve clear margins.
A strategy for image-guided surgical resection of murine breast

tumours and intra-operative eradication of residual microtumours
using a nanoprobe that combined photoacoustic imaging with
SERS detection and photo-dermal therapy has been reported [86].
This achieved complete ablation of microtumours without local
recurrence in a breast-tumour induced mouse model. If extended
to human subjects, this could drastically improve patient out-
comes, as residual tumour cells drive disease relapse.
Also in mouse models, the feasibility of obtaining spectra from

the breast, transcutaneously, has been demonstrated [87–90] with
99% efficiency for the classification of transcutaneous normal and
transcutaneous breast tumour tissue reported [90]. In vivo
transcutaneous spectra were acquired using a commercial Raman
spectrometer coupled to a fibre-optic probe. Although mouse
models were used, spectra were comparable to that obtained
from both ex vivo and intraoperative in vivo human breast spectra
[90].
As mentioned previously, the detection of microcalcifications in

mammograms can be an early sign of BC. The capability of RS in
characterising type I and II microcalcifications in ex vivo tissue
samples has been reviewed in the previous section. However,

analysis in this way requires an invasive biopsy, which in patients
who only harbour non-cancerous microcalcifications, is unneces-
sary as only a small proportion of microcalcifications detected with
mammography are malignant [91]. This, therefore, necessitates
the development of new techniques capable of characterising
microcalcifications in vivo and in real time. Several groups have
applied fibre-optic Raman sampling to probe the elemental
constituents of microcalcifications. A portable clinical Raman
system, delivering NIR excitation was used to examine freshly
excised tissue [62]. A logistic regression diagnostic algorithm
detected microcalcifications with a sensitivity of 86% and
specificity of 96% and was able to characterise type I and II
microcalcifications based on the presence or absence of the 912
cm−1 and 1477 cm−1 (calcium oxalate) or 960 cm−1 (calcium
hydroxyapatite) bands. Using the same clinical Raman system, this
group later examined biopsy samples (normal and lesions with/
without microcalcifications) and developed a single-step algo-
rithm to determine both microcalcification status and overall
clinical diagnosis [92]. Their diagnostic algorithm yielded a
sensitivity and specificity of 62.5% and 100% for diagnosing BC
and an overall accuracy of 82.2% for classifying normal, benign
and malignant breast samples.
A non-invasive Raman method for breast microcalcification

characterisation would involve the use of instrumentation that can
probe these calcifications, at a considerable depth, through
different skin layers. However, the Raman signal weakens as the
tissue sampling depth increases because the superficial Raman
and fluorescence signals overwhelm the system. Thus, the use of
Raman methods, capable of removing this fluorescence and
enhancing the deep Raman signals, will overcome this and
potentially have a role within the detection and evaluation of
microcalcifications in the clinic. The application of Kerr-gated RS
for depth profiling of microcalcification beneath the surface of
chicken breast and fatty tissues as well as normal and cancerous
breast tissue has been investigated [63]. Spectra were obtained
from type I and II calcification standards through the different
types of breast sections at depths of 0.9 mm. This same group also
demonstrated the efficacy of Spatially offset Raman spectroscopy
and transmission Raman Spectroscopy (TRS) to detect and
characterise the chemical composition of calcified material
through a 2–10mm and 16mm thick block of chicken breast
tissue [64, 93]. Coherent anti-Stokes Raman micro-spectroscopy
has also been applied to successfully image and distinguish type I
and II calcifications buried at a depth of 2 mm between chicken
tissue [94]. Using a breast phantom, constructed from porcine
skin, adipose and muscular tissue at a clinically relevant depth of
27mm, an improvement on the original TRS approach, it was
possible to detect and identify the composition of calcification
standards [95]. More recently, an advanced TRS instrument
capable of detecting calcifications similar to those seen in patient
samples, in soft tissue at a 40mm tissue depth has been
developed [96].
These studies have established that deep Raman can identify

and distinguish both type I and II microcalcifications through up to
40mm of tissue. However, to have utility in a clinical setting, it
must also be able to distinguish benign and malignant type II
microcalcifications. Transmission Raman methods can differentiate
benign and malignant type II microcalcifications based on
carbonate content [97]. The level of carbonate substitution in
type II microcalcifications is known to vary significantly, depend-
ing on whether these are found within benign or malignant
tissues [65]. Calcification standards, with different percentages of
carbonate substitution, were inserted into a cuvette and buried
within porcine soft tissue samples (5.6 mm). The group were able
to determine the level of carbonate substitution through the 5.6
mm sample, by monitoring both the band position and width of
960 cm−1 (phosphate), and thus differentiate and probe the
composition of type II microcalcifications.
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Biofluids
Breast tumours exhibit marked intra-tumoral heterogeneity [98];
tumour cells within one compartment are often molecularly and
genetically distinct from those in another. It is difficult to capture
the complete tumour landscape in a single tissue biopsy.
Accordingly, there is growing interest in the use of liquid biopsies
in the early detection and diagnosis of BC as this facilitates the
rapid, real-time analysis of the tumour as it evolves.
The first proof-of-concept study for BC diagnosis through fluid

biopsy analysis using RS was performed on serum [99]. Using
conventional Raman methods combined with PCA and LDA, BC
patients’ samples were discriminated from healthy controls with a
sensitivity and specificity of 97 and 78%. Using PCA loading
vectors, they were able to characterise relevant differences in
band position between both groups in seven band ratios,
corresponding to proteins, phospholipids and polysaccharides.
Using a similar micro-Raman spectroscopy set-up, analysis of
serum from healthy and ductal carcinoma BC patients identified
bands that differentiated the two types of serum sample; K-means
clustering was applied to investigate their significance [100].
Whilst conventional RS methods have demonstrated efficacy for

serum-based BC detection, a recent study compared its perfor-
mance to SERS [101]. Normal Raman and SERS spectra were
acquired from each serum sample; samples included those
obtained from BC patients of Stage II-IV disease and normal
individuals. SERS afforded a better overall diagnostic performance
with improvements in both sensitivity and specificity over
conventional Raman. A number of additional studies have since
been undertaken to demonstrate the efficacy of SERS to
accurately classify and discriminate serum (and serum-albumin)
from BC patients and healthy controls [24, 102, 103]. In addition to
distinguishing normal and cancerous samples, SERS analysis was
also able to differentiate patients at different stages of disease,
which agrees with an earlier study that used SERS, in combination
with multivariate analysis, to distinguish serum samples from
localised and locally advanced Luminal A BC patients with a
sensitivity and specificity of over 80% [104]. For serum Raman
analysis to be adopted for BC screening regimes, serum from BC
patients must have its own unique biochemical signature relative
to other malignancies. Indeed, serum-based Raman analysis has
been able to distinguish BC patients from other malignancies,
including: colorectal, lung, ovarian, oral, liver, leukaemia and
cervical [105–107].
The potential for Raman micro-spectroscopy to aid in the

diagnosis and staging of BC based on blood plasma composition
has also been explored [108]. When comparing normal and BC
samples (stage I-IV), a number of differences between certain
Raman bands, corresponding to vibrational modes of numerous
biomolecules in the fingerprint, have been observed. Stage II and
stage III samples appeared biochemically similar, whereas the
spectra from stage IV patients were more distinct. Nonetheless,
the group applied PCA-Factorial Discriminant Analysis to their data
and were able to differentiate all stages (II, III and IV) of the BC
samples from each other as well as from the normal controls with
very high sensitivity and specificity. This ability to detect BC
through analysis of blood plasma by RS has recently been
corroborated [109].
RS has also shown efficacy in probing whole blood samples to

distinguish BC patients from normal controls. A PLS regression
multivariate model, based on the Raman spectra from BC positive
and healthy participants, was not only able to identify potential
spectral biomarkers (vibrational modes of lycopene, phosphati-
dylserine, quinoid ring, calcium oxalate and calcium hydroxyapa-
tite) for BC detection but also differentiate the two groups with a
90% sensitivity and 75% specificity [31].
Saliva is known to host a variety of biomarkers in many

conditions [110–113]; recently, there has been growing interest in
salivary biomarkers for early BC detection [114]. The appeal of

saliva sampling is strongly attributed to the fact that it is a simple,
non-invasive and low-cost procedure. Indeed, several groups have
applied SERS to overcome this issue and shown its potential as a
medium for BC diagnosis. SERS spectra of purified salivary proteins
from normal controls and patients with benign and malignant
breast tumours [115]. identified six prominent peaks, correspond-
ing to different bond vibrations of salivary proteins [115]. Most of
these peaks’ intensity was significantly different between the
three groups. Furthermore, PLS-discriminant analysis, combined
with the leave-one-patient-out cross-validation method, allowed
them to discriminate salivary proteins with high sensitivity and
specificity in all groups.
Elevated salivary levels of sialic acid have been shown to

correlate with the presence of BC [116]. The feasibility of
quantifying sialic acid levels by applying SERS to healthy and BC
saliva samples showed the median sialic acid concentration of the
healthy samples (3.5 mg dL−1) was significantly lower than that
observed within BC samples (18.5 mg dL−1) [117]. SERS may have
utility in the future as a simple test for quantifying sialic acid
concentrations for BC diagnosis.
Urine-based RS has also been explored in the context of BC

diagnosis. Raman spectra, acquired from the urine (unprocessed
and concentrated) of adenocarcinoma-bearing and normal
Sprague-Dawley rats, using a fibre optic Raman microprobe
(785 nm), revealed intensity changes of several Raman bands
between the two groups, including those corresponding to bond
vibrations of urea and creatine [118]. PCA and PC-LDA were
applied to the spectra of both unprocessed and concentrated
urine; these algorithms were able to classify unprocessed urine
with a 72% sensitivity and 80% specificity and concentrated urine
with a sensitivity of 91% and specificity of 80%. The study also
explored the feasibility of urine-based Raman for the early
detection of BC by obtaining spectra from rats, prior to any
breast tumour development. Indeed, they were able to classify
cancerous urine samples, in the very early stages, with 72.5%
sensitivity and 83% specificity [118]. Subsequently, its feasibility
for BC diagnoses in human subjects has been demonstrated
[30, 119].
Lacrimal fluid (tears) is perhaps the most unexpected potential

source of biomarker for BC detection. One might assume that
changes to the composition of tears only accompanies ocular
disorders, however, recently there has been growing interest in
investigating tear fluid in the context of systemic diseases,
including BC [120]. In comparison to other body fluids, tears are
relatively simple in composition [121], hence will require highly
sensitive methods to detect their low-abundance analytes. As
such, the practicality of SERS-based analysis of human tears for the
discrimination of BC patients and healthy controls has recently
been demonstrated. Using a portable Raman system, and a leave-
one-out cross-validation-assisted PC-LDA identification method, a
clinical sensitivity and specificity of 92% and 100%, respectively for
detecting the presence of BC was achieved [29].

CURRENT CHALLENGES AND FUTURE OUTLOOK FOR CLINICAL
IMPLEMENTATION
Capabilities of RS hold promise for future applications in BC
detection and diagnosis. However, there are several barriers that
remain with regards to its widespread clinical translation.
Good general information is currently available for obtaining

spectra from biological samples [122], but, there is a real lack of
uniformity regarding protocols amongst studies. This includes: the
way the samples are prepared; the substrate on which they are
mounted; the spectrometer instrument settings and the computa-
tional pre-processing methods applied (Table 2). The use of
different protocols for analysing the same samples can result in
significantly different spectra. As spectral differences between
cancerous and non-cancerous samples can be very subtle,
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experimental variability may be responsible for disparity amongst
studies with regards to spectral biomarkers for the same disease
[123] or even lead to the discovery of false biomarkers. Therefore,
it is of paramount importance to optimise and standardise the
experimental setup, as well as validate its robustness, for future
analysis of biological samples.
As we have highlighted, RS has significant potential as a rapid

in vivo tool to probe the biochemical changes that accompany
malignancy. Over the past few decades, a variety of innovative
fibre-optic based Raman probes have been developed to trans-
form Raman from benchtop to bedside [123]. These can be
inserted into the working channel of an endoscope for assessment
of both hollow and solid organs. To date, there have been a
number of large clinical studies conducted for skin [124], oral
[125], GI [126], and cervical cancer [127]. However, research
outcomes from studying BC, have relied on small sample sizes and
thus validation in randomised large-scale clinical studies is
warranted.
Moreover, analysing live tissues presents its own challenges. As

discussed earlier, the Raman signal is inherently weak, which can
be compromised by background emanating from the measure-
ment device or the tissue itself. Most probes that have been
developed have NIR excitation, which can limit autofluorescence
interference. Furthermore, many of these probes are based on
silica optical fibres, signals from which can overwhelm the tissue
spectrum. Prolonging integration times or the use of higher laser
powers are often used to improve signal to noise, when analysing
resected tissue samples. However, this can be impractical and
potentially unsafe for in vivo applications. Indeed, one of the most
important considerations is the laser-tissue interaction. RS is
generally considered non-destructive, however, the long-term
effects of repeated irradiation on tissue architecture are unclear;
rigorous safety testing is imperative, prior to clinical implementa-
tion. In addition to safety, its clinical performance value must also
be demonstrated; either comparable with or outperforming the
existing standard of care and if there would be economic value to
health care systems in adopting such Raman devices into routine
practice.
The coupling of RS with multivariate analysis provides a means

to processing and analysing the rich information that is contained
within the Raman spectra. However, RS is somewhat unknown to
many clinicians and thus the complex and laborious task of
analysing the large volume of data may serve as a hinderance and
disrupt the standard workflow. Therefore, it is essential that fully
automated spectral diagnostic frameworks are created using
machine learning and/or artificial intelligence approaches that can
be easily interpreted to help in clinical decision making. Not only is
the ease of interpreting the output imperative for translation to
the clinic but so too is obtaining this data and operating the
instrument to ensure repeatability and reproducibility amongst
centres. Moreover, it is imperative that clinicians are competent in
interpreting this data in context. Every patient is different; some
may have underlying fibrocystic breast disease and others may
have had previous radiotherapy or surgery, leading to tissue
damage and scarring. As such, to embrace the new era of
personalised medicine, the clinician must be able to interpret the
Raman results on an individual basis.
The COVID-19 pandemic has seen widespread disruption to

multiple aspects of cancer care including the suspension of
mammographic screening programmes and the deferral of
routine diagnostics. Consequently, cancers that would otherwise
have been detected early could now be allowed to progress and
become more difficult to treat. Even before the pandemic, remote
health monitoring, in the form of home and wearable optical
technologies, has been rising in popularity. COVID-19 may have
heightened their appeal, particularly in the medical space.
Currently, these technologies use only a fraction of the
physiological data that can be accessed by optical sensors, suchTa
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as for heart rate and blood glucose monitoring. However, the
potential exists to leverage portable and remote optical technol-
ogies for oncological applications [128] in the COVID and post-
COVID landscape. Low-cost, handheld portable Raman spectro-
meters have already demonstrated capability for in vivo detection
of skin cancers [129]. Moreover, a proof-of-concept study
demonstrated the potential of leveraging a mobile phone camera
and computing system to incorporate a Raman spectroscope into
a phone [130]. Using a standard mobile phone camera as a
detector for a Spatial-Heterodyne (miniature) Raman spectrometer
(SHRS), spectra from ammonium nitrate and sodium sulphate
could be obtained. The spectra obtained by this device were
comparable to that obtained with a miniature SHRS with high
quality optics and a CCD detector, although, as expected, with a
lower SNR and signal intensity in the former. Refinements to this
type of device could lead to the development of miniature,
affordable, high-throughput Raman spectrometers that could
eventually be trialled in the medical realm to transform at-home
health care delivery. As highlighted recently, the management of
BC has been modified during the pandemic, potentially impacting
on delays to diagnosis [131]. Although not a replacement to
conventional diagnosis, RS has potential to be used in easily
accessible regions, like the breast, as a supplementary screening
tool to identify, prioritise and streamline the most at-risk
individuals for further testing.
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