Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular Diagnostics

Toward platelet transcriptomics in cancer diagnosis, prognosis and therapy


Widespread adoption of next-generation techniques such as RNA-sequencing (RNA-seq) has enabled research examining the transcriptome of anucleate blood platelets in health and disease, thus revealing a rich platelet transcriptomic signature that is reprogrammed in response to disease. Platelet signatures not only capture information from parent megakaryocytes and progenitor hematopoietic stem cells but also the bone marrow microenvironment, and underlying disease states. In cancer, the substantive body of research in patients with solid tumours has identified distinct signatures in ‘tumour-educated platelets’, reflecting influences of the tumour, stroma and vasculature on splicing, sequestration of tumour-derived RNAs, and potentially cytokine and microvesicle influences on megakaryocytes. More recently, platelet RNA expression has emerged as a highly sensitive approach to profiling chronic progressive haematologic malignancies, where the combination of large data cohorts and machine-learning algorithms enables precise feature selection and potential prognostication. Despite these advances, however, our ability to translate platelet transcriptomics toward clinical diagnostic and prognostic efforts remains limited. In this Perspective, we present a few actionable steps for our basic, translational and clinical research communities in advancing the utility of the platelet transcriptome as a highly sensitive biomarker in cancer and collectively enable efforts toward clinical translation and patient benefit.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Nilsson RJA, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011;118:3680–3.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood. 2003;101:2285–93.

    CAS  PubMed  Google Scholar 

  3. 3.

    Gnatenko DV, Zhu W, Xu X, Samuel ET, Monaghan M, Zarrabi MH, et al. Class prediction models of thrombocytosis using genetic biomarkers. Blood. 2010;115:7–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Rondina MT, Voora D, Simon LM, Schwertz H, Harper JF, Lee O, et al. Longitudinal RNA-seq analysis of the repeatability of gene expression and splicing in human platelets identifies a platelet SELP splice QTL. Circ Res. 2020;126:501–16.

    CAS  PubMed  Google Scholar 

  5. 5.

    Rowley JW, Weyrich AS, Bray PF. The Platelet Transcriptome in Health and Disease. In: Michelson AD, ed. Platelets (Fourth Edition). Academic Press; 2019:139–53.

  6. 6.

    Davizon-Castillo P, Rowley JW, Rondina MT. Megakaryocyte and platelet transcriptomics for discoveries in human health and disease. Arterioscler Thromb Vasc Biol. 2020;40:1432–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Shen Z, Du W, Perkins C, Fechter L, Natu V, Maecker H, et al. Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms. Cell Rep Med. 2021;2:100425.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Roweth HG, Battinelli EM. Lessons to learn from tumor-educated platelets. Blood. 2021;137:3174–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bray PF, McKenzie SE, Edelstein LC, Nagalla S, Delgrosso K, Ertel A, et al. The complex transcriptional landscape of the anucleate human platelet. BMC Genomics. 2013;14:1.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lopez JA. Introduction to a review series on platelets and cancer. Blood. 2021;137:3151–2.

    CAS  PubMed  Google Scholar 

  11. 11.

    Battinelli EM, Thon JN, Okazaki R, Peters CG, Vijey P, Wilkie AR, et al. Megakaryocytes package contents into separate alpha-granules that are differentially distributed in platelets. Blood Adv. 2019;3:3092–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Psaila B, Mead AJ. Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation. Blood. 2019;133:1427–35.

    CAS  PubMed  Google Scholar 

  13. 13.

    Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, et al. Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets. Mol Cell. 2020;78:477–92 e478.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136:1317–29.

    CAS  PubMed  Google Scholar 

  15. 15.

    Middleton EA, Rowley JW, Campbell RA, Grissom CK, Brown SM, Beesley SJ, et al. Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood. 2019;134:911–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Middleton EA, Ware LB, Rondina MT. Shedding new light on platelet extracellular vesicles in sickle cell disease. Am J Respir Crit Care Med. 2020;201:1–2.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Rondina MT, Weyrich AS. Regulation of the genetic code in megakaryocytes and platelets. J Thromb Haemost. 2015;13:S26–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res. 2013;112:1506–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015;28:666–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    In ‘t Veld S, Wurdinger T. Tumor-educated platelets. Blood. 2019;133:2359–64.

    PubMed  Google Scholar 

  21. 21.

    Best MG, Sol N, In ‘t Veld S, Vancura A, Muller M, Niemeijer AN, et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell. 2017;32:238–52 e239.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    D’Ambrosi S, Nilsson RJ, Wurdinger T. Platelets and tumor-associated RNA transfer. Blood. 2021;137:3181–91.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Takagi S, Tsukamoto S, Park J, Johnson KE, Kawano Y, Moschetta M, et al. Platelets enhance multiple myeloma progression via IL-1beta upregulation. Clin Cancer Res. 2018;24:2430–9.

    CAS  PubMed  Google Scholar 

  24. 24.

    Krishnan A, Zhang Y, Perkins C, Gotlib J, Zehnder JL. Platelet transcriptomic signatures in myeloproliferative neoplasms. Blood. 2017;130:5288.

    Google Scholar 

  25. 25.

    Guo BB, Linden MD, Fuller KA, Phillips M, Mirzai B, Wilson L, et al. Platelets in myeloproliferative neoplasms have a distinct transcript signature in the presence of marrow fibrosis. Br J Haematol. 2020;188:272–82.

    CAS  PubMed  Google Scholar 

  26. 26.

    Best MG, In ‘t Veld S, Sol N, Wurdinger T. RNA sequencing and swarm intelligence-enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA. Nat Protoc. 2019;14:1206–34.

    CAS  PubMed  Google Scholar 

  27. 27.

    Aslan JE. Platelet proteomes, pathways, and phenotypes as informants of vascular wellness and disease. Arterioscler Thromb Vasc Biol. 2021;41:999–1011.

    CAS  PubMed  Google Scholar 

  28. 28.

    Bandyopadhyay S, Fowles JS, Yu L, Fisher DAC, Oh ST. Identification of functionally primitive and immunophenotypically distinct subpopulations in secondary acute myeloid leukemia by mass cytometry. Cytom B Clin Cytom. 2019;96:46–56.

    CAS  Google Scholar 

  29. 29.

    Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell. 2018;175:1014–30 e1019.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, et al. Platelets actively sequester angiogenesis regulators. Blood. 2009;113:2835–42.

    CAS  PubMed  Google Scholar 

  31. 31.

    Barrett TJ, Schlegel M, Zhou F, Gorenchtein M, Bolstorff J, Moore KJ, et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med. 2019;11:eaax0481.

  32. 32.

    Davizon-Castillo P, McMahon B, Aguila S, Bark D, Ashworth K, Allawzi A, et al. TNF-alpha-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood. 2019;134:727–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Barrachina MN, Hermida-Nogueira L, Moran LA, Casas V, Hicks SM, Sueiro AM, et al. Phosphoproteomic analysis of platelets in severe obesity uncovers platelet reactivity and signaling pathways alterations. Arterioscler Thromb Vasc Biol. 2021;41:478–90.

    CAS  PubMed  Google Scholar 

  34. 34.

    Campbell RA, Franks Z, Bhatnagar A, Rowley JW, Manne BK, Supiano MA, et al. Granzyme A in human platelets regulates the synthesis of proinflammatory cytokines by monocytes in aging. J Immunol. 2018;200:295–304.

    CAS  PubMed  Google Scholar 

  35. 35.

    Ezzaty Mirhashemi M, Shah RV, Kitchen RR, Rong J, Spahillari A, Pico AR, et al. The dynamic platelet transcriptome in obesity and weight loss. Arterioscler Thromb Vasc Biol. 2021;41:854–64.

    PubMed  Google Scholar 

  36. 36.

    Harker LA, Roskos LK, Marzec UM, Carter RA, Cherry JK, Sundell B, et al. Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood. 2000;95:2514–22.

    CAS  PubMed  Google Scholar 

  37. 37.

    Portier I, Campbell RA. Role of platelets in detection and regulation of infection. Arterioscler Thromb Vasc Biol. 2021;41:70–78.

    CAS  PubMed  Google Scholar 

  38. 38.

    Deutsch VR, Tomer A. Megakaryocyte development and platelet production. Br J Haematol. 2006;134:453–66.

    CAS  PubMed  Google Scholar 

  39. 39.

    Davis E, Corash L, Stenberg P, Levin J. Histologic studies of splenic megakaryocytes after bone marrow ablation with strontium 90. J Lab Clin Med. 1992;120:767–77.

    CAS  PubMed  Google Scholar 

  40. 40.

    Lefrancais E, Ortiz-Munoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544:105–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Boilard E, Machlus KR. Location is everything when it comes to megakaryocyte function. J Clin Invest. 2021;131.

  42. 42.

    Thomas S, Krishnan A. Platelet heterogeneity in myeloproliferative neoplasms. Arterioscler Thromb Vasc Biol. 2021.

  43. 43.

    Pariser DN, Hilt ZT, Ture SK, Blick-Nitko SK, Looney MR, Cleary SJ, et al. Lung megakaryocytes are immune modulatory cells. J Clin Invest. 2021;131:e137377.

  44. 44.

    Potts KS, Farley A, Dawson CA, Rimes J, Biben C, de Graaf C, et al. Membrane budding is a major mechanism of in vivo platelet biogenesis. J Exp Med. 2020;217:e20191206.

  45. 45.

    Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost. 2017;15:1295–306.

    CAS  PubMed  Google Scholar 

  46. 46.

    Rowley JW, Schwertz H, Weyrich AS. Platelet mRNA: the meaning behind the message. Curr Opin Hematol. 2012;19:385–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Schubert S, Weyrich AS, Rowley JW. A tour through the transcriptional landscape of platelets. Blood. 2014;124:493–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 2016;127:e1–e11.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Provost P. Platelets enrich their transcriptome circle. Blood. 2016;127:1080–1.

    CAS  PubMed  Google Scholar 

  50. 50.

    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    CAS  PubMed  Google Scholar 

  51. 51.

    Angenieux C, Maitre B, Eckly A, Lanza F, Gachet C, de la Salle H. Time-dependent decay of mRNA and ribosomal RNA during platelet aging and its correlation with translation activity. PLoS ONE. 2016;11:e0148064.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lazar S, Goldfinger LE. Platelet microparticles and miRNA transfer in cancer progression: many targets, modes of action, and effects across cancer stages. Front Cardiovasc Med. 2018;5:13.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Mussbacher M, Pirabe A, Brunnthaler L, Schrottmaier WC, Assinger A. Horizontal microRNA transfer by platelets—evidence and implications. Front Physiol. 2021;12:678362.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Tran JQD, Pedersen OH, Larsen ML, Grove EL, Kristensen SD, Hvas AM, et al. Platelet microRNA expression and association with platelet maturity and function in patients with essential thrombocythemia. Platelets. 2020;31:365–72.

    CAS  PubMed  Google Scholar 

  55. 55.

    D’Ambrosi S, Visser A, Antunes-Ferreira M, Poutsma A, Giannoukakos S, Sol N, et al. The Analysis of Platelet-Derived circRNA Repertoire as Potential Diagnostic Biomarker for Non-Small Cell Lung Cancer. Cancers (Basel). 2021;13:4644.

  56. 56.

    Bongiovanni D, Santamaria G, Klug M, Santovito D, Felicetta A, Hristov M, et al. Transcriptome analysis of reticulated platelets reveals a prothrombotic profile. Thromb Haemost. 2019;119:1795–806.

    PubMed  Google Scholar 

  57. 57.

    Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122:379–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Schwertz H, Tolley ND, Foulks JM, Denis MM, Risenmay BW, Buerke M, et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med. 2006;203:2433–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Nassa G, Giurato G, Cimmino G, Rizzo F, Ravo M, Salvati A, et al. Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications. Sci Rep. 2018;8:498.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Risitano A, Beaulieu LM, Vitseva O, Freedman JE. Platelets and platelet-like particles mediate intercellular RNA transfer. Blood. 2012;119:6288–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Cunin P, Bouslama R, Machlus KR, Martínez-Bonet M, Lee PY, Wactor A, et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. Elife. 2019;8:e44031.

  62. 62.

    Mills EW, Green R, Ingolia NT. Slowed decay of mRNAs enhances platelet specific translation. Blood. 2017;129:e38–e48.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Amisten S. A rapid and efficient platelet purification protocol for platelet gene expression studies. Methods Mol Biol. 2012;788:155–72.

    CAS  PubMed  Google Scholar 

  64. 64.

    Sol N, In ‘t Veld S, Vancura A, Tjerkstra M, Leurs C, Rustenburg F, et al. Tumor-educated platelet RNA for the detection and (pseudo)progression monitoring of glioblastoma. Cell Rep Med. 2020;1:100101.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Best MG, Sol N, In ‘t Veld SGJG, Vancura A, Muller M, Niemeijer A-LN, et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell. 2017;32:238–.e239.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78:3407–12.

    CAS  PubMed  Google Scholar 

  67. 67.

    Mantini G, Meijer LL, Glogovitis I, In ‘t Veld SGJG, Paleckyte R, Capula M, et al. Omics analysis of educated platelets in cancer and benign disease of the pancreas. Cancers. 2021;13:66.

    CAS  Google Scholar 

  68. 68.

    Nilsson RJ, Karachaliou N, Berenguer J, Gimenez-Capitan A, Schellen P, Teixido C, et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget. 2016;7:1066–75.

    PubMed  Google Scholar 

  69. 69.

    Tjon-Kon-Fat L-A, Sol N, Wurdinger T, Nilsson RJA. Platelet RNA in cancer diagnostics. Semin Thromb Hemost. 2018;44:135–41.

    CAS  PubMed  Google Scholar 

  70. 70.

    Saito R, Shoda K, Maruyama S, Yamamoto A, Takiguchi K, Furuya S, et al. Platelets enhance malignant behaviours of gastric cancer cells via direct contacts. Br J Cancer. 2021;124:570–3.

    CAS  PubMed  Google Scholar 

  71. 71.

    Hussein K, Suttorp M, Stucki-Koch A, Baumann I, Niemeyer CM, Kreipe H. Molecular profile of inflammatory and megakaryocytic factors in pediatric myelodysplastic syndrome with acute myelofibrosis. Pediatr Blood Cancer. 2018;65:e27048.

    PubMed  Google Scholar 

  72. 72.

    Heinhuis KM, In ’t Veld SGJG, Dwarshuis G, van den Broek D, Sol N, Best MG, et al. RNA-Sequencing of Tumor-Educated Platelets, a Novel Biomarker for Blood-Based Sarcoma Diagnostics. Cancers (Basel). 2020;12:1372.

  73. 73.

    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl J Med. 2012;366:883–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Pantel K, Diaz LA Jr, Polyak K. Tracking tumor resistance using ‘liquid biopsies’. Nat Med. 2013;19:676–7.

    PubMed  Google Scholar 

  75. 75.

    Li X, Liu L, Song X, Wang K, Niu L, Xie L, et al. TEP linc-GTF2H2-1, RP3-466P17.2, and lnc-ST8SIA4-12 as novel biomarkers for lung cancer diagnosis and progression prediction. J Cancer Res Clin Oncol. 2021;147:1609–22.

    CAS  PubMed  Google Scholar 

  76. 76.

    Asghar S, Waqar W, Umar M, Manzoor S. Tumor educated platelets, a promising source for early detection of hepatocellular carcinoma: Liquid biopsy an alternative approach to tissue biopsy. Clin Res Hepatol Gastroenterol. 2020;44:836–44.

    CAS  PubMed  Google Scholar 

  77. 77.

    Yang L, Jiang Q, Li DZ, Zhou X, Yu DS, Zhong J. TIMP1 mRNA in tumor-educated platelets is diagnostic biomarker for colorectal cancer. Aging. 2019;11:8998–9012.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Gibson CJ, Steensma DP. New insights from studies of clonal hematopoiesis. Clin Cancer Res. 2018;24:4633–42.

    CAS  PubMed  Google Scholar 

  79. 79.

    Veninga A, De Simone I, Heemskerk JWM, Cate HT, van der Meijden PEJ. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica. 2020;105:2020–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Fleischman AG, Tyner JW. Causal role for JAK2 V617F in thrombosis. Blood. 2013;122:3705–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Hobbs CM, Manning H, Bennett C, Vasquez L, Severin S, Brain L, et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood. 2013;122:3787–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Barbui T, Finazzi G, Falanga A. Myeloproliferative neoplasms and thrombosis. Blood. 2013;122:2176–84.

    CAS  PubMed  Google Scholar 

  83. 83.

    Moliterno AR, Ginzburg YZ, Hoffman R. Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood. 2021;137:1145–53.

    CAS  PubMed  Google Scholar 

  84. 84.

    Protagonist Therapeutics, Inc. Hepcidin mimetic in patients with polycythemia vera. identifier: NCT04057040. Protagonist Therapeutics, Inc.; 2021.

  85. 85.

    Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood. 2011;118:e101–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, et al. Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med. 2013;19:1609–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Bodine DM. From helix to hematology: introduction to a collection of reviews on the emerging role of next-generation sequencing in hematology. Blood. 2013;122:3239–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Williams N, Lee J, Moore L, Baxter EJ, Hewinson J, Dawson KJ, et al. Phylogenetic reconstruction of myeloproliferative neoplasm reveals very early origins and lifelong evolution. bioRxiv:2020.2011.2009.374710 [Preprint]. 2020. Available from:

  89. 89.

    Van Egeren D, Escabi J, Nguyen M, Liu S, Reilly CR, Patel S, et al. Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms. Cell Stem Cell. 2021.

  90. 90.

    Samuelson C, O’Toole L, Boland E, Greenfield D, Ezaydi Y, Ahmedzai SH, et al. High prevalence of cardiovascular and respiratory abnormalities in advanced, intensively treated (transplanted) myeloma: the case for ‘late effects’ screening and preventive strategies. Hematology. 2016;21:272–9.

    CAS  PubMed  Google Scholar 

  91. 91.

    Ng AK, Bernardo MP, Weller E, Backstrand KH, Silver B, Marcus KC, et al. Long-term survival and competing causes of death in patients with early-stage Hodgkin’s disease treated at age 50 or younger. J Clin Oncol. 2002;20:2101–8.

    PubMed  Google Scholar 

  92. 92.

    Kappelmayer J, Nagy B, Jr. The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. Biomed Res Int. 2017;6138145.

  93. 93.

    Colombo G, Gertow K, Marenzi G, Brambilla M, De Metrio M, Tremoli E, et al. Gene expression profiling reveals multiple differences in platelets from patients with stable angina or non-ST elevation acute coronary syndrome. Thromb Res. 2011;128:161–8.

    CAS  PubMed  Google Scholar 

  94. 94.

    Bury L, Megy K, Stephens JC, Grassi L, Greene D, Gleadall N, et al. Next-generation sequencing for the diagnosis of MYH9-RD: predicting pathogenic variants. Hum Mutat. 2020;41:277–90.

    CAS  PubMed  Google Scholar 

  95. 95.

    Landry S, Tanguay JF, Lordkipanidze M. Personalizing antiplatelet therapies: What have we learned from recent trials? Platelets. 2018;29:131–9.

    CAS  PubMed  Google Scholar 

  96. 96.

    Tjon-Kon-Fat LA, Sol N, Wurdinger T, Nilsson RJA. Platelet RNA in cancer diagnostics. Semin Thromb Hemost. 2018;44:135–41.

    CAS  PubMed  Google Scholar 

  97. 97.

    Caparros-Perez E, Teruel-Montoya R, Lopez-Andreo MJ, Llanos MC, Rivera J, Palma-Barqueros V, et al. Comprehensive comparison of neonate and adult human platelet transcriptomes. PLoS ONE. 2017;12:e0183042.

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Department of Health and Social Care, Department of Business, Energy and Industrial Strategy, Office for Life Sciences, Department of Health and Social Care: Genome UK: 2021 to 2022 implementation plan. 2021.

  99. 99.

    Medina-Martínez JS, Arango-Ossa JE, Levine MF, Zhou Y, Gundem G, Kung AL, et al. Isabl Platform, a digital biobank for processing multimodal patient data. BMC Bioinform. 2020;21:549.

    Google Scholar 

  100. 100.

    Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015;28:666–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Heinhuis KM, In’t Veld SGJG, Dwarshuis G, van den Broek D, Sol N, Best MG, et al. RNA-sequencing of tumor-educated platelets, a novel biomarker for blood-based sarcoma diagnostics. Cancers. 2020;12:1372.

    CAS  PubMed Central  Google Scholar 

  102. 102.

    Gangaraju R, Song J, Kim SJ, Tashi T, Reeves BN, Sundar KM, et al. Thrombotic, inflammatory, and HIF-regulated genes and thrombosis risk in polycythemia vera and essential thrombocythemia. Blood Adv. 2020;4:1115–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Dillon R, Potter N, Freeman S, Russell N. How we use molecular minimal residual disease (MRD) testing in acute myeloid leukaemia (AML). Br J Haematol. 2021;193:231–44.

    CAS  PubMed  Google Scholar 

Download references


AK extends special thanks to mentors at Stanford University, in particular, Prof. Jason Gotlib (Stanford MPN Translational Research Center, and the Stanford Cancer Institute, Stanford University School of Medicine) and the patients at the Stanford Cancer Center for their generous participation in MPN platelet transcriptomic research.


This work was funded by US National Institutes of Health Grants 1K08HG010061-01A1 and 3UL1TR001085-04S1 to AK and the UK National Institute for Health Research to ST.

Author information




AK and ST conceived the article and wrote the first draft. AK and ST researched the literature for the article. AK completed the subsequent versions and resubmission as ST had to be away on personal leave.

Corresponding author

Correspondence to Anandi Krishnan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Ethics approval was obtained prior to our research on patients with chronic myeloproliferative neoplasms using written informed consent from the patients themselves or their legally authorised representatives (Stanford IRB approval #18329).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishnan, A., Thomas, S. Toward platelet transcriptomics in cancer diagnosis, prognosis and therapy. Br J Cancer (2021).

Download citation


Quick links