Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology

Early-life body mass index and risks of breast, endometrial, and ovarian cancers: a dose–response meta-analysis of prospective studies

Abstract

Background

The evidence for the associations between early-life adiposity and female cancer risks is mixed. Little is known about the exact shape of the relationships and whether the associations are independent of adult adiposity.

Methods

We conducted dose–response meta-analyses of prospective studies to summarise the relationships of early-life body mass index (BMI) with breast, endometrial, and ovarian cancer risks. Pubmed and Embase were searched through June 2020 to identify relevant studies. Using random-effects models, the summary relative risks (RRs) and 95% confidence intervals (CIs) were estimated per 5-kg/m2 increase in BMI at ages ≤ 25 years. A nonlinear dose–response meta-analysis was conducted using restricted cubic spline analysis.

Results

After screening 33,948 publications, 37 prospective studies were included in this analysis. The summary RRs associated with every 5-kg/m2 increase in early-life BMI were 0.84 (95% CI = 0.81–0.87) for breast, 1.40 (95% CI = 1.25–1.57) for endometrial, and 1.15 (95% CI = 1.07–1.23) for ovarian cancers. For breast cancer, the association remained statistically significant after adjustment for adult BMI (RR = 0.80, 95% CI = 0.73–0.87). For premenopausal breast, endometrial, and ovarian cancers, the dose–response curves suggested evidence of nonlinearity.

Conclusions

With early-life adiposity, our data support an inverse association with breast cancer and positive associations with ovarian and endometrial cancer risks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linear and nonlinear dose–response relationships for early-life BMI and breast cancer risk.
Fig. 2: Linear and nonlinear dose–response relationships for early-life BMI and endometrial cancer risk.
Fig. 3: Linear and nonlinear dose–response relationships for early-life BMI and ovarian cancer risk.

Similar content being viewed by others

Data availability

Available upon request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Peeters PHM, Verbeek ALM, Krol A, Matthyssen MMM, Dewaard F. Age at menarche and breast-cancer risk in nulliparous women. Breast Cancer Res Treat. 1995;33:55–61.

    Article  CAS  PubMed  Google Scholar 

  3. Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S. Age at menarche, age at menopause, height and obesity as risk-factors for breast-cancer - associations and interactions in an international case-control study. Int J Cancer. 1990;46:796–800.

    Article  CAS  PubMed  Google Scholar 

  4. McPherson CP, Sellers TA, Potter JD, Bostick RM, Folsom AR. Reproductive factors and risk of endometrial cancer—the Iowa women’s health study. Am J Epidemiol. 1996;143:1195–202.

    Article  CAS  PubMed  Google Scholar 

  5. Fujita M, Tase T, Kakugawa Y, Hoshi S, Nishino Y, Nagase S, et al. Smoking, earlier menarche and low parity as independent risk factors for gynecologic cancers in japanese: a case-control study. Tohoku J Exp Med. 2008;216:297–307.

    Article  PubMed  Google Scholar 

  6. Layde PM, Webster LA, Baughman AL, Wingo PA, Rubin GL, Ory HW. The independent associations of parity, age at 1st full term pregnancy, and duration of breastfeeding with the risk of breast-cancer. J Clin Epidemiol. 1989;42:963–73.

    Article  CAS  PubMed  Google Scholar 

  7. Titus-Ernstoff L, Perez K, Cramer DW, Harlow BL, Baron JA, Greenberg ER. Menstrual and reproductive factors in relation to ovarian cancer risk. Br. J Cancer. 2001;84:714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salagame U, Banks E, O’Connell DL, Egger S, Canfell K. Menopausal hormone therapy use and breast cancer risk by receptor subtypes: results from the new south wales cancer lifestyle and evaluation of risk (CLEAR) study. PLoS ONE. 2018;13:e0205034.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bakken K, Fournier A, Lund E, Waaseth M, Dumeaux V, Clavel-Chapelon F, et al. Menopausal hormone therapy and breast cancer risk: impact of different treatments. The European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2011;128:144–56.

    Article  CAS  PubMed  Google Scholar 

  10. Doherty, JA, Cushing-Haugen, KL, Saltzman, BS, Voigt, LF, Hill, DA, Beresford, SA, et al. Long-term use of postmenopausal estrogen and progestin hormone therapies and the risk of endometrial cancer. Am J Obstet Gynecol. 2007;197: 139-e1.

  11. Lacey JV, Mink PJ, Lubin JH, Sherman ME, Troisi R, Hartge P, et al. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA. 2002;288:334–41.

    Article  CAS  PubMed  Google Scholar 

  12. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.

    Article  PubMed  Google Scholar 

  13. Aune D, Rosenblatt DAN, Chan DSM, Vingeliene S, Abar L, Vieira AR, et al. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol. 2015;26:1635–48.

    Article  CAS  PubMed  Google Scholar 

  14. Aune D, Rosenblatt DAN, Chan DSM, Abar L, Vingeliene S, Vieira AR, et al. Anthropometric factors and ovarian cancer risk: A systematic review and nonlinear dose-response meta-analysis of prospective studies. Int J Cancer. 2015;136:1888–98.

    Article  CAS  PubMed  Google Scholar 

  15. Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI. Growth patterns and the risk of breast cancer in women. N Engl J Med. 2004;351:1619–26.

    Article  CAS  PubMed  Google Scholar 

  16. Keinan-Boker L, Levine H, Derazne E, Molina-Hazan V, Kark JD. Measured adolescent body mass index and adult breast cancer in a cohort of 951,480 women. Breast Cancer Res Treat. 2016;158:157–67.

    Article  PubMed  Google Scholar 

  17. Fagherazzi G, Guillas G, Boutron-Ruault MC, Clavel-Chapelon F, Mesrine S. Body shape throughout life and the risk for breast cancer at adulthood in the French E3N cohort. Eur J Cancer Prev. 2013;22:29–37.

    Article  PubMed  Google Scholar 

  18. Kawai M, Minami Y, Kuriyama S, Kakizaki M, Kakugawa Y, Nishino Y, et al. Adiposity, adult weight change and breast cancer risk in postmenopausal Japanese women: the Miyagi Cohort Study. Brit J Cancer. 2010;103:1443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palmer JR, Adams-Campbell LL, Boggs DA, Wise LA, Rosenberg L. A prospective study of body size and breast cancer in black women. Cancer Epidemiol Biomark Prev.2007;16:1795–802.

    Article  Google Scholar 

  20. Weiderpass E, Braaten T, Magnusson C, Kumle M, Vainio H, Lund E, et al. A prospective study of body size in different periods of life and risk of premenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2004;13:1121–7.

    Article  Google Scholar 

  21. Sellers TA, Davis J, Cerhan JR, Vierkant RA, Olson JE, Pankratz VS, et al. Interaction of waist/hip ratio and family history on the risk of hormone receptor-defined breast cancer in a prospective study of postmenopausal women. Am J Epidemiol. 2002;155:225–33.

    Article  PubMed  Google Scholar 

  22. Hilakivi-Clarke L, Forsen T, Eriksson JG, Luoto R, Tuomilehto J, Osmond C, et al. Tallness and overweight during childhood have opposing effects on breast cancer risk. Br J Cancer. 2001;85:1680–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baer HJ, Tworoger SS, Hankinson SE, Willett WC. Body fatness at young ages and risk of breast cancer throughout life. Am J Epidemiol. 2010;171:1183–94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stevens VL, Jacobs EJ, Patel AV, Sun JZ, Gapstur SM, McCullough ML. Body weight in early adulthood, adult weight gain, and risk of endometrial cancer in women not using postmenopausal hormones. Cancer Cause Control. 2014;25:321–8.

    Article  Google Scholar 

  25. Dougan MM, Hankinson SE, De Vivo I, Tworoger SS, Glynn RJ, Michels KB. Prospective study of body size throughout the life-course and the incidence of endometrial cancer among premenopausal and postmenopausal women. Int J Cancer. 2015;137:625–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang TYO, Cairns BJ, Allen N, Sweetland S, Reeves GK, Beral V, et al. Postmenopausal endometrial cancer risk and body size in early life and middle age: prospective cohort study. Brit J Cancer. 2012;107:169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park SL, Goodman MT, Zhang ZF, Kolonel LN, Henderson BE, Setiawan VW. Body size, adult BMI gain and endometrial cancer risk: the multiethnic cohort. Int J cancer. 2010;126:490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sponholtz TR, Palmer JR, Rosenberg L, Hatch EE, Adams-Campbell LL, Wise LA. Body size, metabolic factors, and risk of endometrial cancer in black women. Am J Epidemiol. 2016;183:259–68.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lubin F, Chetrit A, Freedman LS, Alfandary E, Fishler Y, Nitzan H, et al. Body mass index at age 18 years and during adult life and ovarian cancer risk. Am J Epidemiol. 2003;157:113–20.

    Article  CAS  PubMed  Google Scholar 

  30. Engeland A, Tretli S, Bjørge T. Height, body mass index, and ovarian cancer: a follow-up of 1.1 million Norwegian women. J Natl Cancer Inst. 2003;95:1244–8.

    Article  PubMed  Google Scholar 

  31. Aarestrup J, Trabert B, Ulrich LG, Wentzensen N, Sorensen TIA, Baker JL. Childhood overweight, tallness, and growth increase risks of ovarian cancer. Cancer Epidemiol Biomarkers Prev.2019;28:183–8.

    Article  PubMed  Google Scholar 

  32. Burton A, Martin R, Galobardes B, Smith GD, Jeffreys M. Young adulthood body mass index and risk of cancer in later adulthood: historical cohort study. Cancer Cause Control. 2010;21:2069–77.

    Article  Google Scholar 

  33. Baer HJ, Hankinson SE, Tworoger SS. Body size in early life and risk of epithelial ovarian cancer: results from the Nurses’ Health Studies. Brit J Cancer. 2008;99:1916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schouten LJ, Goldbohm RA, van den Brandt PA. Height, weight, weight change, and ovarian cancer risk in the Netherlands Cohort Study on Diet and Cancer. Am J Epidemiol. 2003;157:424–33.

    Article  PubMed  Google Scholar 

  35. Olsen CM, Nagle CM, Whiteman DC, Ness R, Pearce CL, Pike MC, et al. Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocr Relat Cancer. 2013;20:251–62.

    Article  PubMed  Google Scholar 

  36. Suzuki R, Iwasaki M, Inoue M, Sasazuki S, Sawada N, Yamaji T, et al. Body weight at age 20 years, subsequent weight change and breast cancer risk defined by estrogen and progesterone receptor status-the Japan public health center-based prospective study. Int J Cancer. 2011;129:1214–24.

    Article  CAS  PubMed  Google Scholar 

  37. Schouten LJ, Rivera C, Hunter DJ, Spiegelman D, Adami HO, Arslan A, et al. Height, body mass index, and ovarian cancer: a pooled analysis of 12 cohort studies. Cancer Epidemiol Biomark Prev. 2008;17:902–12.

    Article  Google Scholar 

  38. Premenopausal Breast Cancer Collaborative G, Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, et al. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol. 2018;4:e181771.

    Article  Google Scholar 

  39. Chan DSM, Abar L, Cariolou M, Nanu N, Greenwood DC, Bandera EV, et al. World Cancer Research Fund International: continuous update project-systematic literature review and meta-analysis of observational cohort studies on physical activity, sedentary behavior, adiposity, and weight change and breast cancer risk. Cancer Causes Control. 2019;30:1183–200.

    Article  PubMed  Google Scholar 

  40. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.

    Article  CAS  PubMed  Google Scholar 

  41. De Stavola B, dos Santos Silva I, McCormack V, Hardy R, Kuh D, Wadsworth M. Childhood growth and breast cancer. Am J Epidemiol. 2004;159:671–82.

    Article  PubMed  Google Scholar 

  42. Torio CM, Klassen AC, Curriero FC, Caballero B, Helzlsouer K. The modifying effect of social class on the relationship between body mass index and breast cancer incidence. Am J Public Health. 2010;100:146–51.

    Article  PubMed  PubMed Central  Google Scholar 

  43. White KK, Park SY, Kolonel LN, Henderson BE, Wilkens LR. Body size and breast cancer risk: the MULTIETHNIC Cohort. Int J Cancer. 2012;131:E705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krishnan K, Bassett JK, MacInnis RJ, English DR, Hopper JL, McLean C., et al.Associations between weight in early adulthood, change in weight, and breast cancer risk in postmenopausal women.Cancer Epidemiol Biomarkers Prev. 2013;22:1409–16.

    Article  PubMed  Google Scholar 

  45. Andersen ZJ, Baker JL, Bihrmann K, Vejborg I, Sørensen TI, Lynge E. Birth weight, childhood body mass index, and height in relation to mammographic density and breast cancer: a register-based cohort study. Breast Cancer Res. 2014;16:R4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Canchola AJ, Chang ET, Bernstein L, Largent JA, Reynolds P, Deapen D, et al. Body size and the risk of endometrial cancer by hormone therapy use in postmenopausal women in the California Teachers Study cohort. Cancer Cause Control. 2010;21:1407–16.

    Article  Google Scholar 

  47. Stunkard AJ. Use of the Danish adoption register for the study of obesity and thinness. Res Publ Assoc Res Nerv Ment Dis. 1983;60:115–20.

    CAS  PubMed  Google Scholar 

  48. Sørensen T, Stunkard A, Teasdale T, Higgins M. The accuracy of reports of weight: children’s recall of their parents’ weights 15 years earlier. Int J Obes. 1983;7:115–22.

    PubMed  Google Scholar 

  49. Must A, Willett WC, Dietz WH. Remote recall of childhood height, weight, and body build by elderly subjects. Am J Epidemiol. 1993;138:56–64.

    Article  CAS  PubMed  Google Scholar 

  50. Wells, GA, Shea, B, O’Connell, D, Peterson, J, Welch, V, Losos, M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses, http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp Accessed 15, July, 2021.

  51. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135:1301–9.

    Article  CAS  PubMed  Google Scholar 

  52. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  53. Harre FE Jr, Lee KL, Pollock BG. Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst. 1988;80:1198–202.

    Article  Google Scholar 

  54. Orsini N, Greenland S. A procedure to tabulate and plot results after flexible modeling of a quantitative covariate. Stata J. 2011;11:1–29.

    Google Scholar 

  55. Organization, WH. Obesity: preventing and managing the global epidemic. (World Health Organization, 2000).

  56. White IR. Multivariate random-effects meta-analysis. Stata J. 2009;9:40–56.

    Article  Google Scholar 

  57. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta‐analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  58. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11:193–206.

    Article  PubMed  Google Scholar 

  60. Horn-Ross, PL, Canchola, AJ, Bernstein, L, Neuhausen, SL, Nelson, DO & Reynolds, P. Lifetime body size and estrogen-receptor-positive breast cancer risk in the California Teachers Study cohort. Breast Cancer Res. 2016;18:132.

  61. Luo J, Chen X, Manson JE, Shadyab AH, Wactawski‐Wende J, Vitolins M, et al. Birth weight, weight over the adult life course and risk of breast cancer. Int J Cancer. 2020;147:65–75.

    Article  CAS  PubMed  Google Scholar 

  62. van den Brandt PA, Dirx MJ, Ronckers CM, van den Hoogen P, Goldbohm RA. Height, weight, weight change, and postmenopausal breast cancer risk: the Netherlands Cohort Study. Cancer Cause Control. 1997;8:39–47.

    Article  Google Scholar 

  63. Cerhan JR, Grabrick DM, Vierkant RA, Janney CA, Vachon CM, Olson JE, et al. Interaction of adolescent anthropometric characteristics and family history on breast cancer risk in a Historical Cohort Study of 426 families (USA). Cancer Cause Control. 2004;15:1–9.

    Article  Google Scholar 

  64. Renehan AG, Pegington M, Harvie MN, Sperrin M, Astley SM, Brentnall AR, et al. Young adulthood body mass index, adult weight gain and breast cancer risk: the PROCAS Study (United Kingdom). Br J Cancer. 2020;122:1552–61.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gapstur SM, Potter JD, Sellers TA, Kushi LH, Folsom AR. Alcohol consumption and postmenopausal endometrial cancer: results from the Iowa Women’s Health Study. Cancer Cause Control. 1993;4:323–9.

    Article  CAS  Google Scholar 

  66. Schouten LJ, Goldbohm RA. & Van Den Brandt, P. A. Anthropometry, physical activity, and endometrial cancer risk: results from the Netherlands Cohort Study. J Natl Cancer Inst. 2004;96:1635–1638.

  67. Chang S-C, Lacey JV, Brinton LA, Hartge P, Adams K, Mouw T, et al. Lifetime weight history and endometrial cancer risk by type of menopausal hormone use in the NIH-AARP diet and health study. Cancer Epidemiol, Biomark Prev. 2007;16:723–30.

    Article  CAS  Google Scholar 

  68. Han X, Stevens J, Truesdale KP, Bradshaw PT, Kucharska‐Newton A, Prizment AE, et al. Body mass index at early adulthood, subsequent weight change and cancer incidence and mortality. Int J Cancer. 2014;135:2900–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anderson JP, Ross JA, Folsom AR. Anthropometric variables, physical activity, and incidence of ovarian cancer: The Iowa Women’s Health Study. Cancer. 2004;100:1515–21.

    Article  PubMed  Google Scholar 

  70. Leitzmann MF, Koebnick C, Danforth KN, Brinton LA, Moore SC, Hollenbeck AR, et al. Body mass index and risk of ovarian cancer. Cancer: Interdisciplinary. Int J Am Cancer Soc. 2009;115:812–22.

    Google Scholar 

  71. Huang T, Tworoger S, Willett W, Stampfer M, Rosner B. Associations of early life and adulthood adiposity with risk of epithelial ovarian cancer. Ann Oncol. 2019;30:303–9.

    Article  CAS  PubMed  Google Scholar 

  72. Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Preventive Med. 1993;22:167–77.

    Article  CAS  Google Scholar 

  73. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115:911–9.

    Article  CAS  PubMed  Google Scholar 

  74. Haffner SM, Miettinen H. Karhapää, P., Mykkänen, L. & Laakso, M. Leptin concentrations, sex hormones, and cortisol in nondiabetic men. J Clin Endocrinol Metab. 1997;82:1807–9.

    CAS  PubMed  Google Scholar 

  75. Bulun SE, Chen D, Moy I, Brooks DC, Zhao H. Aromatase, breast cancer and obesity: a complex interaction. Trends Endocrinol Metab. 2012;23:83–9.

    Article  CAS  PubMed  Google Scholar 

  76. Ginsburg OM, Martin LJ, Boyd NF. Mammographic density, lobular involution, and risk of breast cancer. Br J Cancer. 2008;99:1369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG. ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature. 1983;303:767–70.

    Article  CAS  PubMed  Google Scholar 

  78. Poole EM, Tworoger SS, Hankinson SE, Schernhammer ES, Pollak MN, Baer HJ. Body size in early life and adult levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3. Am J Epidemiol. 2011;174:642–51.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hormones TE, Group BCC. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11:530–42.

    Article  Google Scholar 

  80. Oh H, Pfeiffer RM, Falk RT, Horne HN, Xiang J, Pollak M, et al. Serum insulin‐like growth factor (IGF)‐I and IGF binding protein‐3 in relation to terminal duct lobular unit involution of the normal breast in Caucasian and African American women: The Susan G. Komen Tissue Bank. Int J Cancer. 2018;143:496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bertrand KA, Baer HJ, Orav EJ, Klifa C, Shepherd JA, Van Horn L, et al. Body fatness during childhood and adolescence and breast density in young women: a prospective analysis. Breast Cancer Res. 2015;17:95.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Oh H, Rice MS, Warner ET, Bertrand KA, Fowler EE, Eliassen AH., et al. Early-life and adult anthropometrics in relation to mammographic image intensity variation in the Nurses’ Health Studies. Cancer Epidemiol Biomarkers Prev.2020;29:343–51.

    Article  PubMed  Google Scholar 

  83. Oh, H, Yaghjyan, L, Austin-Datta, RJ, Heng, YJ, Baker, GM, Sirinukunwattana, K, et al. Early-life and adult adiposity, adult height, and benign breast tissue composition. Cancer Epidemiol Biomarkers Prev. 2021;30:608–615.

  84. Oh H, Eliassen AH, Beck AH, Rosner B, Schnitt SJ, Collins LC, et al. Breast cancer risk factors in relation to estrogen receptor, progesterone receptor, insulin-like growth factor-1 receptor, and Ki67 expression in normal breast tissue. NPJ Breast Cancer. 2017;3:1–8.

    Article  Google Scholar 

  85. Wang, J, Peng, C, Askew, C, Heng, YJ, Baker, GM, Rubadue, CA, et al. Early-life body adiposity and the breast tumor transcriptome. J Natl Cancer Inst. 2020; https://doi.org/10.1093/jnci/djaa169.

  86. Rice MS, Bertrand KA, VanderWeele TJ, Rosner BA, Liao X, Adami H-O, et al. Mammographic density and breast cancer risk: a mediation analysis. Breast Cancer Res. 2016;18:1–13.

    Article  Google Scholar 

  87. Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, O’Brien KM, et al. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol. 2018;4:e181771–e181771.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

HO was supported by the National Research Foundation of Korea (NRF) grants (2019R1G1A1004227, 2019S1A3A2099973) and Korea University grant L1906811. NK was supported by the National Research Foundation of Korea (NRF) grants (2018R1C1B6008822, 2018R1A4A1022589). The funders were not involved in the study design or data analysis and the views expressed in this publication are those of the authors.

Author information

Authors and Affiliations

Authors

Contributions

DB conducted literature search, performed data extraction, and wrote the paper. SH performed statistical analyses and wrote the paper. SR, YN, HJ and YC conducted literature search and performed data extraction. HO and NK designed the research and made substantial contributions to interpretation of data, and critical revision and editing of the manuscript. All authors revised the manuscript for important intellectual content and gave final approval of the version to be published.

Corresponding authors

Correspondence to NaNa Keum or Hannah Oh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, D., Hong, S., Ryu, S. et al. Early-life body mass index and risks of breast, endometrial, and ovarian cancers: a dose–response meta-analysis of prospective studies. Br J Cancer 126, 664–672 (2022). https://doi.org/10.1038/s41416-021-01625-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01625-1

This article is cited by

Search

Quick links