Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer

Abstract

Background

While emerging evidence indicates that N6-methyladenosine (m6A) regulators play crucial roles in cancer progression, their clinical significance in gastric cancer (GC) has thus far not been elucidated.

Methods

We investigated the expression of the m6A regulator genes and their prognostic potential in a large clinical cohort of 173 GC patients using qRT-PCR assays. In addition, we undertook a series of in-vitro and in-vivo functional studies to investigate the oncogenic role of FTO.

Results

GC patients with low expression of METTL3, METTL14, ALKBH5, WTAP and YTHDF1 demonstrated significantly poor OS, while patients with high FTO expression exhibited markedly worse OS. Furthermore, the cumulative risk-score derived from these gene panel also significantly associated with poor OS, with a corresponding hazard ratio of 5.47 (95% CI: 3.18ā€“9.41, pā€‰<ā€‰0.0001). We observed that FTO expression was frequently upregulated in GC cell lines, with epithelial-mesenchymal-transition (EMT) features. FTO knockdown in HGC27 and AGS cells inhibited cell proliferation and migratory potential, while its overexpression in MKN28 cells resulted in enhanced proliferation and migration. Finally, confirming our in-vitro findings, FTO suppression led to significant tumour growth inhibition in a HGC27 xenograft model.

Conclusions

We demonstrate that m6A regulators may serve as promising prognostic biomarkers in GC. Our functional studies reveal that FTO is an important oncogene and may be a promising therapeutic target associated with EMT-alterations in gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prognostic significance of the five gene m6A classifier in GC patients.
Fig. 2: Stable knockdown of FTO suppressed cell proliferation and migration in gastric cancer cells.
Fig. 3: FTO inhibitor (MA2) suppressed oncogenic role and overexpression of FTO enhanced the tumour progression in GC cell lines.
Fig. 4: Stable knockdown of FTO and inhibition by MA2 resulted in tumour growth inhibition in HGC27 xenografts.
Fig. 5: FTO inhibition resulted in the modulation of core of epithelial-mesenchymal-transition related genes in GC cell lines.

Similar content being viewed by others

Data availability

All data are available within the article.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209ā€“49.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7ā€“33.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10:643ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Wu HH, Lin WC, Tsai KW. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev Mol Med. 2014;16:e1.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5ā€™ terminus of HeLa cell messenger RNA. Cell. 1975;4:379ā€“86.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3:1233ā€“47.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet. 2014;15:293ā€“306.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3ā€™ UTRs and near stop codons. Cell. 2012;149:1635ā€“46.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell. 2013;155:1409ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Zhao BS, He C. Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biol. 2015;16:43.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93ā€“95.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18ā€“29.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma Stem cells. Cell Rep. 2017;18:2622ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31:591ā€“606 e596.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113:E2047ā€“2056.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 2016;7:64527ā€“42.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO Plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017;31:127ā€“41.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  22. Kwok CT, Marshall AD, Rasko JE, Wong JJ. Genetic alterations of m(6)A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol. 2017;10:39.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65:529ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38:79ā€“96 e11.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Kandimalla R, Gao F, Li Y, Huang H, Ke J, Deng X, et al. RNAMethyPro: a biologically conserved signature of N6-methyladenosine regulators for predicting survival at pan-cancer level. NPJ Precis Oncol. 2019;3:13.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Bartzatt R. Anti-inflammatory drugs and prediction of new structures by comparative analysis. Antiinflamm Antiallergy Agents Med Chem. 2012;11:151ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Zheng G, Cox T, Tribbey L, Wang GZ, Iacoban P, Booher ME, et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci. 2014;5:658ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43:373ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Wang X, Li Z, Kong B, Song C, Cong J, Hou J, et al. Reduced m(6)A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget. 2017;8:98918ā€“30.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20:427ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Li Y, Zhang S, Huang S. FoxM1: a potential drug target for glioma. Future Oncol. 2012;8:223ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Xu D, Shao W, Jiang Y, Wang X, Liu Y, Liu X. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol Rep. 2017;38:2285ā€“92.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Li Y, Zheng D, Wang F, Xu Y, Yu H, Zhang H. Expression of demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric cancer. Digestive Dis Sci. 2019;64:1503ā€“13.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Zhang C, Zhang M, Ge S, Huang W, Lin X, Gao J, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 2019;8:4766ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Su Y, Huang J, Hu J. m(6)A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gastric cancer. Front Oncol. 2019;9:1038.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Guan K, Liu X, Li J, Ding Y, Li J, Cui G, et al. Expression status and prognostic value of M6A-associated Genes in gastric cancer. J Cancer. 2020;11:3027ā€“40.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Zhang J, Piao HY, Wang Y, Meng XY, Yang D, Zhao Y, et al. To develop and validate the combination of RNA methylation regulators for the prognosis of patients with gastric cancer. OncoTargets Ther. 2020;13:10785ā€“95.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Xu X, Zhou E, Zheng J, Zhang C, Zou Y, Lin J, et al. Prognostic and predictive value of m6A ā€œEraserā€ related gene signature in gastric cancer. Front Oncol. 2021;11:631803.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Jing JJ, Zhao X, Li H, Sun LP, Yuan Y. Expression profiles and prognostic roles of m6A writers, erasers and readers in gastric cancer. Future Oncol. 2021;17:2605ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Wang D, Qu X, Lu W, Wang Y, Jin Y, Hou K, et al. N(6)-Methyladenosine RNA demethylase FTO promotes gastric cancer metastasis by down-regulating the m6A methylation of ITGB1. Front Oncol. 2021;11:681280.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166:21ā€“45.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Roche, J, Gemmill, RM & Drabkin, HA. Epigenetic regulation of the epithelial to mesenchymal transition in lung cancer. Cancers (Basel). 2017:9:72.

  45. Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 2013;19:1848ā€“56.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Dai Q, Fong R, Saikia M, Stephenson D, Yu YT, Pan T, et al. Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N6-methyladenosine. Nucleic Acids Res. 2007;35:6322ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117ā€“20.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  48. Chi KR. The RNA code comes into focus. Nature. 2017;542:503ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Helm M, Motorin Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet. 2017;18:275ā€“91.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15:707ā€“19.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgements

We would like to acknowledge Preethi Ravindranathan, Aki Sakatani, Michael Hsieh, and Kinnari Pankaj Modi for experimental advice, and acknowledge Divya Pasham, Ashley Cao, Maddie Brown, and Anna Wakita for experimental support.

Funding

This work was supported by CA184792, CA187956, CA227602, CA072851 and CA202797, grants from the National Cancer Institute, National Institutes of Health, and a pilot grant from the Stupid Strong Foundation to A Goel.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: TS, RK and AG; Acquisition, analysis, or interpretation of data: TS, RK; Drafting of the manuscript: TS, RK, YO, MO, YT and AG; Statistical analysis: TS, and RK; Administrative, technical, or material support: TS, YO, MO, YT and AG; Supervision: AG

Corresponding author

Correspondence to Ajay Goel.

Ethics declarations

Ethics approval and consent to participate

All study-related procedures were performed as per the Declarations of Helsinki, wherein a written informed consent was obtained from each patient, and the institutional review boards of all participating institutions involved approved the study.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimura, T., Kandimalla, R., Okugawa, Y. et al. Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer. Br J Cancer 126, 228ā€“237 (2022). https://doi.org/10.1038/s41416-021-01581-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01581-w

This article is cited by

Search

Quick links