Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Early life Lactobacillus rhamnosus GG colonisation inhibits intestinal tumour formation

Abstract

Background

Gut microbiota dysbiosis is closely related to the progression of colorectal cancer. Our previous study revealed that early life colonisation with Lactobacillus rhamnosus GG (LGG) had long-term positive effects on health. We sought to investigate whether early life LGG colonisation could inhibit intestinal tumour formation in offspring.

Methods

Adult C57BL/6 female mice were mated with Apcmin/+ male mice. Pregnant mice with the same conception date received 108 cfu live or fixed LGG from day 18 of pregnancy until natural delivery. After genotyping, offspring mice received 107 cfu of live or fixed LGG for 0–5 days after birth.

Results

Early life LGG colonisation significantly promoted intestinal development, inhibited low-grade intestinal inflammation and altered the gut microbiota composition of offspring in the weaning period (3 week old). Notably, early life LGG colonisation reduced the multiplicity of intestinal tumours in adulthood (12 week old), possibly due to inhibition of Wnt signalling and promotion of tumour cell apoptosis. Importantly, at the genus level, Bifidobacterium and Anaeroplasma with potential anti-tumour effects were increased in adulthood, while Peptostreptococcus, which potentially contributes to tumour formation, was decreased.

Conclusions

Early life LGG colonisation inhibited the intestinal tumour formation of offspring in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experiment process and LGG colonisation detection.
Fig. 2: Early life LGG colonisation promoted intestinal development of 3-week-old offspring.
Fig. 3: Early life LGG colonisation promoted intestinal barrier of 3-week-old mice.
Fig. 4: Early life LGG colonisation inhibited intestinal tumour formation and promote tumour cell apoptosis of Apcmin/+FCCC offspring in adulthood.
Fig. 5: Early life LGG colonisation inhibited Wnt signaling pathway of Apcmin/+FCCC offspring in adulthood.
Fig. 6: Early life LGG colonisation altered the composition and diversity of gut microbiota in 12-week-old offspring mice.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Stoffel EM, Murphy CC. Epidemiology and mechanisms of the increasing incidence of colon and rectal cancers in young adults. Gastroenterology. 2020;158:341–53.

    Article  PubMed  Google Scholar 

  2. Araghi M, Soerjomataram I, Jenkins M, Brierley J, Morris E, Bray F, et al. Global trends in colorectal cancer mortality: projections to the year 2035. Int J Cancer. 2019;144:2992–3000.

    Article  CAS  PubMed  Google Scholar 

  3. Drewes JL, Housseau F, Sears CL. Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. Br J Cancer. 2016;115:273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell. 2019;177:1035–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16:713–32.

    Article  PubMed  Google Scholar 

  6. Zhuang L, Chen H, Zhang S, Zhuang J, Li Q, Feng Z. Intestinal microbiota in early life and its implications on childhood health. Genomics Proteomics Bioinformatics. 2019;17:13–25.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lundgren SN, Madan JC, Emond JA, Morrison HG, Christensen BC, Karagas MR, et al. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome. 2018;6:109.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Forbes JD, Azad MB, Vehling L, Tun HM, Konya TB, Guttman DS, et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 2018;172:e181161.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neuman H, Forsythe P, Uzan A, Avni O, Koren O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev. 2018;42:489–99.

    CAS  PubMed  Google Scholar 

  10. Xie R, Sun Y, Wu J, Huang S, Jin G, Guo Z, et al. Maternal high fat diet alters gut microbiota of offspring and exacerbates DSS-induced colitis in adulthood. Front Immunol. 2018;9:2608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Li L, Li X, Zhong W, Yang M, Xu M, Sun Y, et al. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apcmin/+ mice. EBioMedicine. 2019;48:301–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Li L, Xu C, Wang Y, Wang Z, Chen M, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut. 2020;70:1495–506.

    Article  CAS  Google Scholar 

  13. Dai Z, Zhang J, Wu Q, Chen J, Liu J, Wang L, et al. The role of microbiota in the development of colorectal cancer. Int J Cancer. 2019;145:2032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158:322–40.

    Article  CAS  PubMed  Google Scholar 

  15. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, et al. Demonstration of safety of probiotics—a review. Int J Food Microbiol. 1998;44:93–106.

    Article  CAS  PubMed  Google Scholar 

  16. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174:1388–405. e21

    Article  CAS  PubMed  Google Scholar 

  17. Yan F, Liu L, Cao H, Moore DJ, Washington MK, Wang B, et al. Neonatal colonization of mice with LGG promotes intestinal development and decreases susceptibility to colitis in adulthood. Mucosal Immunol. 2017;10:117–27.

    Article  CAS  PubMed  Google Scholar 

  18. Pärtty A, Lehtonen L, Kalliomäki M, Salminen S, Isolauri E. Probiotic Lactobacillus rhamnosus GG therapy and microbiological programming in infantile colic: a randomized, controlled trial. Pediatr Res. 2015;78:470–5.

    Article  PubMed  CAS  Google Scholar 

  19. Banna GL, Torino F, Marletta F, Santagati M, Salemi R, Cannarozzo E, et al. Lactobacillus rhamnosus GG: an overview to explore the rationale of its use in cancer. Front Pharmacol. 2017;8:603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gamallat Y, Meyiah A, Kuugbee ED, Hago AM, Chiwala G, Awadasseid A, et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother. 2016;83:536–41.

    Article  CAS  PubMed  Google Scholar 

  21. Ni Y, Wong VH, Tai WC, Li J, Wong WY, Lee MM, et al. A metagenomic study of the preventive effect of Lactobacillus rhamnosus GG on intestinal polyp formation in ApcMin/+ mice. J Appl Microbiol. 2017;122:770–84.

    Article  CAS  PubMed  Google Scholar 

  22. Tian M, Wang X, Sun J, Lin W, Chen L, Liu S, et al. IRF3 prevents colorectal tumorigenesis via inhibiting the nuclear translocation of β-catenin. Nat Commun. 2020;11:5762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hensley HH, Chang WC, Clapper ML. Detection and volume determination of colonic tumors in Min mice by magnetic resonance micro-imaging. Magn Reson Med. 2004;52:524–9.

    Article  PubMed  Google Scholar 

  24. Wang S, Dong W, Liu L, Xu M, Wang Y, Liu T, et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis. Mol Carcinog. 2019;58:1155–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 2017;17:594–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chou YT, Jiang JK, Yang MH, Lu JW, Lin HK, Wang HD, et al. Identification of a noncanonical function for ribose-5-phosphate isomerase. A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain. PLoS Biol. 2018;16:e2003714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kuo WT, Shen L, Zuo L, Shashikanth N, Ong M, Wu L, et al. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression. Gastroenterology. 2019;157:1323–37.

    Article  CAS  PubMed  Google Scholar 

  28. Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol. 2017;66:81–93.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parikh K, Antanaviciute A, Fawkner-Corbett D, Jagielowicz M, Aulicino A, Lagerholm C, et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. 2019;567:49–55.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng R, Ma J, Wang D, Dong W, Wang S, Liu T, et al. Chemopreventive effects of silibinin on colitis-associated tumorigenesis by inhibiting IL-6/STAT3 signaling pathway. Mediators Inflamm. 2018;2018:1562010.

    PubMed  PubMed Central  Google Scholar 

  31. Llewellyn SR, Britton GJ, Contijoch EJ, Vennaro OH, Mortha A, Colombel JF, et al. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice. Gastroenterology. 2018;154:1037–46.

    Article  PubMed  Google Scholar 

  32. Zhou J, Boutros M. JNK-dependent intestinal barrier failure disrupts host-microbe homeostasis during tumorigenesis. Proc Natl Acad Sci USA. 2020;117:9401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity. 2007;26:812–26.

    Article  CAS  PubMed  Google Scholar 

  34. Grootjans J, Krupka N, Hosomi S, Matute JD, Hanley T, Saveljeva S, et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science. 2019;363:993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Liu L, Moore DJ, Shen X, Peek RM, Acra SA, et al. An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells. Mucosal Immunol. 2017;10:373–84.

    Article  CAS  PubMed  Google Scholar 

  36. Monkkonen T, Debnath J. Inflammatory signaling cascades and autophagy in cancer. Autophagy. 2018;14:190–8.

    Article  CAS  PubMed  Google Scholar 

  37. Mazloom K, Siddiqi I, Covasa M. Probiotics: how effective are they in the fight against obesity. Nutrients. 2019;11:258.

    Article  CAS  PubMed Central  Google Scholar 

  38. Quigley E. Prebiotics and probiotics in digestive health. Clin Gastroenterol Hepatol. 2019;17:333–44.

    Article  CAS  PubMed  Google Scholar 

  39. Luoto R, Kalliomäki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes (Lond). 2010;34:1531–7.

    Article  CAS  Google Scholar 

  40. Liu Z, Xiao Y, Zhou Z, Mao X, Cai J, Xiong L, et al. Extensive metabolic disorders are present in APC(min) tumorigenesis mice. Mol Cell Endocrinol. 2016;427:57–64.

    Article  CAS  PubMed  Google Scholar 

  41. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352:539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703.

    Article  PubMed  CAS  Google Scholar 

  43. Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile. Res Microbiol. 2008;159:187–93.

    Article  PubMed  CAS  Google Scholar 

  44. Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. 2016;534:263–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han X, Lee A, Huang S, Gao J, Spence JR, Owyang C. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids. Gut Microbes. 2019;10:59–76.

    Article  CAS  PubMed  Google Scholar 

  46. Schroeder BO, Birchenough G, Ståhlman M, Arike L, Johansson M, Hansson GC, et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe. 2018;23:27–40. e7

    Article  CAS  PubMed  Google Scholar 

  47. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81:e00036–17.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scheraiber M, Grześkowiak Ł, Zentek J, Barbosa FF, Félix AP, da Silva A. Inclusion of IgY in a dog’s diet has moderate impact on the intestinal microbial fermentation. J Appl Microbiol. 2019;127:996–1003.

    Article  CAS  PubMed  Google Scholar 

  49. Beller A, Kruglov A, Durek P, von Goetze V, Werner K, Heinz GA, et al. Specific microbiota enhances intestinal IgA levels by inducing TGF-β in T follicular helper cells of Peyer’s patches in mice. Eur J Immunol. 2020;50:783–94.

    Article  CAS  PubMed  Google Scholar 

  50. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods. 2017;33:194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Alam A, Leoni G, Quiros M, Wu H, Desai C, Nishio H, et al. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat Microbiol. 2016;1:15021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Z, Cao H, Song N, Zhang L, Cao Y, Tai J. Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition. Food Chem Toxicol. 2020;138:111237.

    Article  CAS  PubMed  Google Scholar 

  54. Lu Y, Chen J, Zheng J, Hu G, Wang J, Huang C, et al. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep. 2016;6:26337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu J, Liu D, Sun X, Yang K, Yao J, Cheng C, et al. CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression. Cell Death Dis. 2019;10:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer. 2017;140:2545–56.

    Article  CAS  PubMed  Google Scholar 

  57. Chen J, Domingue JC, Sears CL. Microbiota dysbiosis in select human cancers: evidence of association and causality. Semin Immunol. 2017;32:25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Si W, Liang H, Bugno J, Xu Q, Ding X, Yang K, et al. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade. Gut. 2021:gutjnl-2020-323426. https://doi.org/10.1136/gutjnl-2020-323426. Epub ahead of print.

Download references

Acknowledgements

We are grateful to the reviewers for their constructive suggestions to improve the earlier version of this manuscript.

Funding

This research was supported by grants (82070545, 82000511 and 81970477) from the National Natural Science Foundation of China, the Key Project of Science and Technology Pillar Program of Tianjin (20YFZCSY00020) and the Zhao Yicheng Medical Science Foundation Youth Incubation Project of Tianjin (ZYYFY2019018).

Author information

Authors and Affiliations

Authors

Contributions

XL, GJ, CY, BMW, WLZ, KJ and HLC were involved in the study design, XL, GJ, QT, SMH, YS, TYL and ZXG performed the experiments. XL, GJ, YJZ, QT, KJ and HLC analysed the data. XL, GJ and HLC wrote the manuscript. KJ, WLZ and HLC made the critical revisions. XL, GJ and HLC were aware of the group allocation in the experiment. All authors contributed to the design and writing of the paper and agreed with the final version of the content of the manuscript.

Corresponding authors

Correspondence to Kui Jiang, Weilong Zhong or Hailong Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consents to participate

All experimental procedures were performed according to the International Association of Veterinary Editors guidelines for the Care and Use of Laboratory Animal protocols and approved by the Institutional Animal Care and Use Committee at Tianjin Medical University, Tianjin, P. R. China.

Consent for publication

All authors provided consent for the publication of this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Jin, G., Tang, Q. et al. Early life Lactobacillus rhamnosus GG colonisation inhibits intestinal tumour formation. Br J Cancer 126, 1421–1431 (2022). https://doi.org/10.1038/s41416-021-01562-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01562-z

This article is cited by

Search

Quick links