Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Porphyromonas gingivalis infection exacerbates oesophageal cancer and promotes resistance to neoadjuvant chemotherapy

Abstract

Background

The effect of Porphyromonas gingivalis (Pg) infection on oesophageal squamous cell carcinoma (ESCC) prognosis, chemotherapeutic efficacy, and oesophageal cancer cell apoptosis resistance and proliferation remain poorly understood.

Methods

Clinicopathological data from 312 ESCC oesophagectomy patients, along with the computed tomography imaging results and longitudinal cancerous tissue samples from a patient subset (nā€‰=ā€‰85) who received neoadjuvant chemotherapy (NACT), were analysed. Comparison of overall survival and response rate to NACT between Pg-infected and Pg-uninfected patients was made by multivariate Cox analysis and Response Evaluation Criteria in Solid Tumours v.1.1 criteria. The influence of Pg on cell proliferation and drug-induced apoptosis was examined in ESCC patients and validated in vitro and in vivo.

Results

The 5-year overall survival was lower in Pg-positive patients, and infection was associated with multiple clinicopathological factors and pathologic tumour, node, metastasis stage. Of the 85 patients who received NACT, Pg infection was associated with a lower response rate and 5-year overall survival. Infection with Pg resulted in apoptosis resistance in ESCC and promoted ESCC cell viability, which was confirmed in longitudinal cancerous tissue samples. Pg-induced apoptosis resistance was dependent on fimbriae and STAT3.

Conclusions

Pg infection is associated with a worse ESCC prognosis, reduced chemotherapy efficacy, and can potentiate the aggressive behaviour of ESCC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Porphyromonas gingivalis infection exacerbates the prognosis, reduces the efficacy of chemotherapy, and results in apoptosis resistance in ESCC patients.
Fig. 2: Porphyromonas gingivalis infection leads to chemotherapy drug-induced apoptosis resistance and promotes proliferation of ESCC cells.
Fig. 3: Porphyromonas gingivalis Ī”fimA mutant is attenuated for suppression of apoptosis and stimulation of proliferation of ESCC cells.
Fig. 4: Porphyromonas gingivalis infection modifies the activity of different apoptosis and proliferation signalling pathways.
Fig. 5: Porphyromonas gingivalis infection aggravates progression of ESCC through STAT3 signalling in a xenograft tumour-bearing model.

Similar content being viewed by others

References

  1. Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M. et al. Environmental and heritable factors in the causation of cancerāˆ’analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78ā€“85 (2000).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Gagnaire, A., Nadel, B., Raoult, D., Neefjes, J. & Gorvel, J. P. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat. Rev. Microbiol. 15, 109ā€“128 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Nagy, R., Sweet, K. & Eng, C. Highly penetrant hereditary cancer syndromes. Oncogene 23, 6445ā€“6470 (2004).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. de Martel, C., Ferlay, J., Franceschi, S., Vignat, J., Bray, F., Forman, D. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607ā€“615 (2012).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  5. Oh, J. K. & Weiderpass, E. Infection and cancer: global distribution and burden of diseases. Ann. Glob. Health 80, 384ā€“392 (2014).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Gur, C., Ibrahim, Y., Isaacson, B., Yamin, R., Abed, J., Gamliel, M. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344ā€“355 (2015).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Schiffman, M., Doorbar, J., Wentzensen, N., de Sanjose, S., Fakhry, C., Monk, B. J. et al. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Prim. 2, 16086 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Whitmore, S. E. & Lamont, R. J. Oral bacteria and cancer. PLoS Pathog. 10, e1003933 (2014).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  9. Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548ā€“563.e516 (2017).

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Geller, L. T., Barzily-Rokni, M., Danino, T., Jonas, O. H., Shental, N., Nejman, D. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156ā€“1160 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Bullman, S., Pedamallu, C. S., Sicinska, E., Clancy, T. E., Zhang, X., Cai, D. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443ā€“1448 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Darveau, R. P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8, 481ā€“490 (2010).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Lamont, R. J., Koo, H. & Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16, 745ā€“759 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10, 717ā€“725 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Hajishengallis, G. & Lamont, R. J. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 24, 477ā€“489 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Ohshima, J., Wang, Q., Fitzsimonds, Z. R., Miller, D. P., Sztukowska, M. N., Jung, Y. J. et al. Streptococcus gordonii programs epithelial cells to resist ZEB2 induction by Porphyromonas gingivalis. Proc. Natl Acad. Sci. USA 116, 8544ā€“8553 (2019).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Lamont, R. J. & Hajishengallis, G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol. Med. 21, 172ā€“183 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Kuboniwa, M., Houser, J. R., Hendrickson, E. L., Wang, Q., Alghamdi, S. A., Sakanaka, A. et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat. Microbiol. 2, 1493ā€“1499 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 7, 887ā€“894 (2009).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Di Pilato, V., Freschi, G., Ringressi, M. N., Pallecchi, L., Rossolini, G. M. & Bechi, P. The esophageal microbiota in health and disease. Ann. NY Acad. Sci. 1381, 21ā€“33 (2016).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  21. Yang, L., Francois, F. & Pei, Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin. Cancer Res. 18, 2138ā€“2144 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Geng, F., Liu, J., Guo, Y., Li, C., Wang, H., Wang, H. et al. Persistente exposure to Porphyromonas gingivalis promotes proliferative and invasion capabilities, and tumorigenic properties of human immortalized oral epithelial cells. Front. Cell Infect. Microbiol. 7, 57 (2017).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  23. Liu, J., Tang, X., Li, C., Pan, C., Li, Q., Geng, F. et al. Porphyromonas gingivalis promotes the cell cycle and inflammatory cytokine production in periodontal ligament fibroblasts. Arch. Oral Biol. 60, 1153ā€“1161 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Mao, S., Park, Y., Hasegawa, Y., Tribble, G. D., James, C. E., Handfield, M. et al. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol. 9, 1997ā€“2007 (2007).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Kuboniwa, M., Hasegawa, Y., Mao, S., Shizukuishi, S., Amano, A., Lamont, R. J. et al. P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes Infect. 10, 122ā€“128 (2008).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Ahn, J., Segers, S. & Hayes, R. B. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis 33, 1055ā€“1058 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Ogrendik, M. Periodontal pathogens in the etiology of pancreatic cancer. Gastrointest. Tumors 3, 125ā€“127 (2017).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Zhang, Y. Epidemiology of esophageal cancer. World J. Gastroenterol. 19, 5598ā€“5606 (2013).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Gao, S., Li, S., Ma, Z., Liang, S., Shan, T., Zhang, M. et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect. Agents cancer 11, 3 (2016).

    ArticleĀ  Google ScholarĀ 

  30. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646ā€“674 (2011).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Baba, Y., Watanabe, M., Yoshida, N. & Baba, H. Neoadjuvant treatment for esophageal squamous cell carcinoma. World J. Gastrointest. Oncol. 6, 121ā€“128 (2014).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Lv, J., Cao, X. F., Zhu, B., Ji, L., Tao, L. & Wang, D. D. Long-term efficacy of perioperative chemoradiotherapy on esophageal squamous cell carcinoma. World J. Gastroenterol. 16, 1649ā€“1654 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Li, S., Liu, H., Diao, C., Wang, X., Gao, M., Li, Z. et al. Prognosis of surgery combined with different adjuvant therapies in esophageal cancer treatment: a network meta-analysis. Oncotarget 8, 36339ā€“36353 (2017).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Bellmunt, J., Pons, F. & Orsola, A. Molecular determinants of response to cisplatin-based neoadjuvant chemotherapy. Curr. Opin. Urol. 23, 466ā€“471 (2013).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Rumiato, E., Boldrin, E., Amadori, A. & Saggioro, D. Predictive role of host constitutive variants in neoadjuvant therapy of esophageal cancer. Pharmacogenomics 17, 805ā€“820 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Enzinger, P. C. & Mayer, R. J. Esophageal cancer. N. Engl. J. Med. 349, 2241ā€“2252 (2003).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Krajewski, K. M., Nishino, M., Franchetti, Y., Ramaiya, N. H., Van den Abbeele, A. D. & Choueiri, T. K. Intraobserver and interobserver variability in computed tomography size and attenuation measurements in patients with renal cell carcinoma receiving antiangiogenic therapy: implications for alternative response criteria. Cancer 120, 711ā€“721 (2014).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Therasse, P., Arbuck, S. G., Eisenhauer, E. A., Wanders, J., Kaplan, R. S., Rubinstein, L. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205ā€“216 (2000).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Yilmaz, O., Watanabe, K. & Lamont, R. J. Involvement of integrins in fimbriae-mediated binding and invasion by Porphyromonas gingivalis. Cell. Microbiol. 4, 305ā€“314 (2002).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415ā€“2420 (2008).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Gao, S., Li, S., Duan, X., Gu, Z., Ma, Z., Yuan, X. et al. Inhibition of glycogen synthase kinase 3 beta (GSK3beta) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol. Carcinog. https://doi.org/10.1002/mc.22685 (2017).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Lu, L., Yakoumatos, L., Ren, J., Duan, X., Zhou, H., Gu, Z. et al. JAK3 restrains inflammatory responses and protects against periodontal disease through Wnt3a signaling. FASEB J. 34, 9120ā€“9140 (2020).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Qi, Y. J., Jiao, Y. L., Chen, P., Kong, J. Y., Gu, B. L., Liu, K. et al. Porphyromonas gingivalis promotes progression of esophageal squamous cell cancer via TGFbeta-dependent Smad/YAP/TAZ signaling. PLoS Biol. 18, e3000825 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Austin, P. C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar. Behav. Res. 46, 399ā€“424 (2011).

    ArticleĀ  Google ScholarĀ 

  45. Austin, P. C. & Stuart, E. A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 34, 3661ā€“3679 (2015).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Weinberg, A., Belton, C. M., Park, Y. & Lamont, R. J. Role of fimbriae in Porphyromonas gingivalis invasion of gingival epithelial cells. Infect. Immun. 65, 313ā€“316 (1997).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Zhang, W., Ju, J., Rigney, T. & Tribble, G. D. Fimbriae of Porphyromonas gingivalis are important for initial invasion of osteoblasts, but not for inhibition of their differentiation and mineralization. J. Periodontol. 82, 909ā€“916 (2011).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Yao, L., Jermanus, C., Barbetta, B., Choi, C., Verbeke, P., Ojcius, D. M. et al. Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Mol. Oral Microbiol. 25, 89ā€“101 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Boisvert, H. & Duncan, M. J. Translocation of Porphyromonas gingivalis gingipain adhesin peptide A44 to host mitochondria prevents apoptosis. Infect. Immun. 78, 3616ā€“3624 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Pei, Z., Bini, E. J., Yang, L., Zhou, M., Francois, F. & Blaser, M. J. Bacterial biota in the human distal esophagus. Proc. Natl Acad. Sci. USA 101, 4250ā€“4255 (2004).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Yang, L., Lu, X., Nossa, C. W., Francois, F., Peek, R. M. & Pei, Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 137, 588ā€“597 (2009).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  52. Pei, Z., Yang, L., Peek, R. M. Jr, Levine, S. M., Pride, D. T. & Blaser, M. J. Bacterial biota in reflux esophagitis and Barrettā€™s esophagus. World J. Gastroenterol. 11, 7277ā€“7283 (2005).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgements

We acknowledge Drs. Mi and Zhang for assisting in the pathological evaluation and for other technical advice.

Author information

Authors and Affiliations

Authors

Contributions

H.W., S.G., and F.Z conceived the study. Y.L., K.L., X.D., M.M., Z.G., L.Y., and J.R. performed most of the experiments and interpreted the data. X.Y., S.L., D.A.S., R.J.L., and H.W. directed the study and supervised the research. Y.L. and K.L. collected tumour specimens and analysed the clinical data of patients. X.D., J.R., and Z.G. performed all immunofluorescence staining. Y.L. performed animal experiments. S.G., F.Z., and H.W. confirmed the histopathological findings and interpreted the clinical data. H.W. prepared the manuscript. D.A.S. and R.J.L. reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shegan Gao, Fuyou Zhou or Huizhi Wang.

Ethics declarations

Ethics approval and consent to participate

Tissue samples and clinicopathological data were obtained from The First Affiliated Hospital of Henan University of Science and Technology and Anyang Peopleā€™s Hospital. The research was approved by the Research Ethics Committee of Henan University of Science and Technology and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Written informed consent from each patient was achieved. All animal experiments were authorised through the Animal Care and Use Committee of Henan University of Science and Technology (HAUST). All animal experiments were conducted in accordance with the Guidelines for Animal Health and Use of Henan University of Science and Technology (HAUST).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

This research was supported by grants DE026727 (H.W.), DE017921, DE011111 (R.J.L.), and DE017680 (D.A.S.) from National Institute of Dental and Craniofacial Research, NIH, USA, and by the Natural Science Foundation of China (NSFC, GS 81472234), and Key Programs of Science and Technology of Henan Province (KPST-HN, GS 161100311200).

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Liu, Y., Duan, X. et al. Porphyromonas gingivalis infection exacerbates oesophageal cancer and promotes resistance to neoadjuvant chemotherapy. Br J Cancer 125, 433ā€“444 (2021). https://doi.org/10.1038/s41416-021-01419-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01419-5

This article is cited by

Search

Quick links