Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Genomics

Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy

Abstract

Background

The function of major histocompatibility complex (MHC) molecules is to bind peptide fragments derived from genomic mutations or pathogens and display them on the cell surface for recognition by cognate T cells to initiate an immune response.

Methods

In this study, we provide a comprehensive investigation of HLA gene expression in a pan-cancer manner involving 33 cancer types. We utilised gene expression data from several databases and immune checkpoint blockade-treated patient cohorts.

Results

We show that MHC expression varies strongly among cancer types and is associated with several genomic and immunological features. While immune cell infiltration was generally higher in tumours with higher HLA gene expression, CD4+ T cells showed significantly different correlations among cancer types, separating them into two clusters. Furthermore, we show that increased HLA gene expression is associated with prolonged survival in the majority of cancer types. Lastly, HLA gene expression is associated with patient response to immune checkpoint blockade, which is especially prominent for HLA class II expression in tumour biopsies taken during treatment.

Conclusion

We show that HLA gene expression is an important feature of tumour biology that has significant impact on patient prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HLA mRNA expression comparison across cancer types and HLA genes.
Fig. 2: Association between HLA gene expression and genomic features.
Fig. 3: HLA gene expression associated with prognosis.
Fig. 4: Association between meta-HLA gene expression and the tumour microenvironment.
Fig. 5: HLA Class I genes associated with response to immune checkpoint blockade.

Similar content being viewed by others

References

  1. Neefjes, J., Jongsma, M. L. M., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Albitar, M., Johnson, M., Do, K. A., Day, A., Jilani, I., Pierce, S. et al. Levels of soluble HLA-I and beta2M in patients with acute myeloid leukemia and advanced myelodysplastic syndrome: association with clinical behavior and outcome of induction therapy. Leukemia 21, 480–488 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Shiina, T., Inoko, H. & Kulski, J. K. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64, 631–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braud, V. M., Allan, D. S., O’Callaghan, C. A., Söderström, K., D’Andrea, A., Ogg, G. S. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Garner, H. & de Visser, K. E. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat. Rev. Immunol. 20, 483–497 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Shukla, S. A., Rooney, M. S., Rajasagi, M., Tiao, G., Dixon, P. M., Lawrence, M. S. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGranahan, N., Rosenthal, R., Hiley, C. T., Rowan, A. J., Watkins, T. B. K., Wilson, G. A. et al. Allele-specific HLA Loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chowell, D., Morris, L. G. T., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Bertol, B. C., de Araújo, J. N. G., Sadissou, I. A., Sonon, P., Dias, F. C., Bortolin, R. H. et al. Plasma levels of soluble HLA-G and cytokines in papillary thyroid carcinoma before and after thyroidectomy. Int J. Clin. Pract. 74, e13585 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Akın, M., Aral, L. A., Yavuz, A., Karabacak, H., Dikmen, K. & Bostancı, H. Plasma human leukocyte antigen-G (HLA-G) in patients with thyroid cancer. Turk. J. Med Sci. 47, 1263–1266 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. Chaudhuri, S., Cariappa, A., Tang, M., Bell, D., Haber, D. A., Isselbacher, K. J. et al. Genetic susceptibility to breast cancer: HLA DQB*03032 and HLA DRB1*11 may represent protective alleles. Proc. Natl Acad. Sci. USA 97, 11451–11454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. ECM, Zeestraten, Reimers, M. S., Saadatmand, S., Goossens-Beumer, I. J., Dekker, J.-W. T., Liefers, G. J. et al. Combined analysis of HLA class I, HLA-E and HLA-G predicts prognosis in colon cancer patients. Br. J. Cancer 110, 459–468 (2014).

    Article  CAS  Google Scholar 

  14. Najafimehr, H., Hajizadeh, N., Nazemalhosseini-Mojarad, E., Pourhoseingholi, M. A., Abdollahpour-Alitappeh, M., Ashtari, S. et al. The role of Human leukocyte antigen class I on patient survival in Gastrointestinal cancers: a systematic review and meta-analysis. Sci. Rep. 10, 728 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taylor, A. M., Shih, J., Ha, G., Gao, G. F., Zhang, X., Berger, A. C. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell. 33, 676–689.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castro, A., Ozturk, K., Pyke, R. M., Xian, S., Zanetti, M. & Carter, H. Elevated neoantigen levels in tumors with somatic mutations in the HLA-A, HLA-B, HLA-C and B2M genes. BMC Medical. Genomics 12, 107 (2019).

    Google Scholar 

  17. Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gentles, A. J., Newman, A. M., Liu, C. L., Bratman, S. V., Feng, W., Kim, D. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Snyder, A., Nathanson, T., Funt, S. A., Ahuja, A., Novik, J. B., Hellmann, M. D. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLOS Med. 14, e1002309 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riaz, N., Havel, J. J., Makarov, V., Desrichard, A., Urba, W. J., Sims, J. S. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anagnostou, V., Yarchoan, M., Hansen, A. R., Wang, H., Verde, F., Sharon, E. et al. Immuno-oncology trial endpoints: capturing clinically meaningful activity. Clin. Cancer Res. 23, 4959–4969 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Villaruz, L. C. & Socinski, M. A. The clinical viewpoint: definitions, limitations of RECIST, practical considerations of measurement. Clin. Cancer Res. 19, 2629–2636 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Queirolo, P. & Spagnolo, F. Atypical responses in patients with advanced melanoma, lung cancer, renal-cell carcinoma and other solid tumors treated with anti-PD-1 drugs: a systematic review. Cancer Treat. Rev. 59, 71–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Varn, F. S., Andrews, E. H., Mullins, D. W. & Cheng, C. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles. Nat. Commun. 7, 10248 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Varn, F. S., Wang, Y., Mullins, D. W., Fiering, S. & Cheng, C. Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment. Cancer Res. 77, 1271–1282 (2017). 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng, C., Yan, X., Sun, F. & Li, L. M. Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinforma. 8, 452 (2007).

    Article  CAS  Google Scholar 

  29. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinforma. 14, 7 (2013).

    Article  Google Scholar 

  30. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perea, F., Bernal, M., Sánchez‐Palencia, A., Carretero, J., Torres, C., Bayarri, C. et al. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int. J. Cancer 140, 888–899 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Sáenz‐López, P., Gouttefangeas, C., Hennenlotter, J., Concha, A., Maleno, I., Ruiz‐Cabello, F. et al. Higher HLA class I expression in renal cell carcinoma than in autologous normal tissue. Tissue Antigens 75, 110–118 (2010).

    Article  PubMed  CAS  Google Scholar 

  33. Zajacova, M., Kotrbova‐Kozak, A. & Cerna, M. Expression of HLA-DQA1 and HLA-DQB1 genes in B lymphocytes, monocytes and whole blood. Int. J. Immunogenetics. 45, 128–137 (2018).

    Article  CAS  Google Scholar 

  34. Heng, T. S. P. & Painter, M. W. Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Middha S., Yaeger R., Shia J., Stadler Z. K., King S., Guercio S., et al. Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis. Oncol. 3, 1–14 (2019).

  36. Grasso, C. S., Giannakis, M., Wells, D. K., Hamada, T., Mu, X. J., Quist, M. et al. Genetic mechanisms of immune evasion in colorectal. Cancer Cancer Discov. 8, 730–749 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Dunn, G. P., Koebel, C. M. & Schreiber, R. D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: implications for cancer therapy. Nat. Rev. Cancer 16, 131–144 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Dummer, R., Hauschild, A., Lindenblatt, N., Pentheroudakis, G. & Keilholz, U., ESMO Guidelines Committee. Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26, v126–132 (2015). Suppl 5.

    Article  PubMed  Google Scholar 

  40. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yarchoan M., Hopkins A., Jaffee E. M. Tumor mutational burden and response rate to PD-1 inhibition. https://doi.org/10.1056/NEJMc1713444. (Massachusetts Medical Society, 2017).

  42. McMaster M., Librach C., Zhou Y., Lim K., Janatpour M., DeMars R. et al. Human placental HLA-G expression is restricted to differentiated cytotrophoblasts. J. immunol. 154, 3771–3778 (1995).

  43. Carosella, E. D., Moreau, P., Lemaoult, J. & Rouas-Freiss, N. HLA-G: from biology to clinical benefits. Trends Immunol. 29, 125–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J. S. & O’Neill, L. Methylation of the HLA-DR alpha gene is positively correlated with expression. Immunogenetics 26, 92–98 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Nie, Y., Yang, G., Song, Y., Zhao, X., So, C., Liao, J. et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22, 1615–1623 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Hu, J. M., Li, L., Chen, Y. Z., Liu, C., Cui, X., Yin, L. et al. HLA-DRB1 and HLA-DQB1 methylation changes promote the occurrence and progression of Kazakh ESCC. Epigenetics 9, 1366–1373 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sangrouber, D., Marcou, C., Le Discorde, M., Chang, C.-C., Carosella, E. D. & Moreau, P. Cellular co-localization of intron-4 containing mRNA and HLA-G soluble protein in melanoma analyzed by fluorescence in situ hybridization. J. Immunol. Methods 326, 54–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Goodson-Gregg, F. J., Rothbard, B., Zhang, A., Wright, P. W., Li, H., Walker-Sperling, V. E. et al. Tuning of NK-Specific HLA-C Expression by Alternative mRNA Splicing. Front Immunol. 10, 3034 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Z. & Jensen P. E. Structural characteristics of HLA-DQ that may impact DM editing and susceptibility to type-1 diabetes. Front Immunol. 4, 262 (2013).

  50. Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S. et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ljunggren, H. G. & Kärre, K. In search of the “missing self”: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Long, E. O., Kim, H. S., Liu, D., Peterson, M. E. & Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev. Immunol. 31, 227–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. López-Botet, M., Llano, M., Navarro, F. & Bellón, T. NK cell recognition of non-classical HLA class I molecules. Semin Immunol. 12, 109–119 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. Lanier, L. L., Corliss, B., Wu, J. & Phillips, J. H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Hammer, Q., Rückert, T., Borst, E. M., Dunst, J., Haubner, A., Durek, P. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Ryschich, E., Nötzel, T., Hinz, U., Autschbach, F., Ferguson, J., Simon, I. et al. Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin. Cancer Res. 11, 498–504 (2005).

    CAS  PubMed  Google Scholar 

  59. So, T., Takenoyama, M., Mizukami, M., Ichiki, Y., Sugaya, M., Hanagiri, T. et al. Haplotype loss of HLA class I antigen as an escape mechanism from immune attack in lung cancer. Cancer Res. 65, 5945–5952 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Aptsiauri, N., Ruiz-Cabello, F. & Garrido, F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr. Opin. Immunol. 51, 123–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Kreiter, S., Vormehr, M., van de Roemer, N., Diken, M., Löwer, M., Diekmann, J. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alspach, E., Lussier, D. M., Miceli, A. P., Kizhvatov, I., DuPage, M., Luoma, A. M. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borst, J., Ahrends, T., Bąbała, N., Melief, C. J. M. & Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Cheng lab for their suggestions and critical feedback.

Author information

Authors and Affiliations

Authors

Contributions

C.C. conceived the project. E.S., C.M.F. and C.C. performed computational analyses. E.S., C.M.F., X.W. and C.C. wrote the paper. E.S., C.M., X.W. and C.C. interpreted the results. X.W. and C.C. supervised the project. C.C., E.S., CF. and X.W. critically reviewed the content. C.C., E.S., C.F. and X.W. read and approved the final paper.

Corresponding author

Correspondence to Chao Cheng.

Ethics declarations

Ethics approval and consent to participate

Not applicable. All data utilised in this study are publicly available.

Consent to publish

Not applicable.

Data availability

All data utilised in this study are publicly available. See ‘Methods’ for data sources.

Competing interests

The authors declare no competing interests.

Funding information

This work is supported by the Cancer Prevention Research Institute of Texas (CPRIT) (RR180061 to C.C.), the National Cancer Institute of the National Institutes of Health (1R21CA227996 to C.C.) and the T32 training grant of the National Institutes of Health (T32 AI007363 to ES). C.C. is a CPRIT Scholar in Cancer Research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaafsma, E., Fugle, C.M., Wang, X. et al. Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy. Br J Cancer 125, 422–432 (2021). https://doi.org/10.1038/s41416-021-01400-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01400-2

This article is cited by

Search

Quick links