Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

G-protein subunit gamma-4 expression has potential for detection, prediction and therapeutic targeting in liver metastasis of gastric cancer

Abstract

Background

The liver is the most common site for haematogenous metastasis of gastric cancer, and liver metastasis is fatal.

Methods

We conducted a transcriptomic analysis between metastatic foci in the liver, primary tumour and adjacent tissues from gastric cancer patients with metastasis limited to the liver. We determined mRNA expression levels in tumour tissues of 300 patients with gastric cancer via quantitative RT-PCR. The oncogenic phenotypes of GNG4 were determined with knockdown, knockout and forced expression experiments. We established and compared subcutaneous and liver metastatic mouse xenograft models of gastric cancer to reveal the roles of GNG4 in tumorigenesis in the liver.

Results

GNG4 was upregulated substantially in primary gastric cancer tissues as well as liver metastatic lesions. High levels of GNG4 in primary cancer tissues were associated with short overall survival and the likelihood of liver recurrence. Functional assays revealed that GNG4 promoted cancer cell proliferation, the cell cycle and adhesiveness. Tumour formation by GNG4-knockout cells was moderately reduced in the subcutaneous mouse model and strikingly attenuated in the liver metastasis mouse model.

Conclusions

GNG4 expression may provide better disease monitoring for liver metastasis, and GNG4 may be a novel candidate therapeutic target for liver metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GNG4 is identified as a promising oncogene to develop liver metastasis of gastric cancer.
Fig. 2: High GNG4 expression correlated with the poor survival of patients with gastric cancer, especially in terms of liver metastasis.
Fig. 3: GNG4 promotes malignant phenotypes of gastric cancer cell lines; in vitro and in vivo assays with transient overexpression of GNG4 (oeGNG4) and stable knockout of GNG4 (dGNG4).

Similar content being viewed by others

References

  1. Tan, P. & Yeoh, K. G. Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology 149, 1153–1162 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Allemani, C., Matsuda, T., Di Carlo, V., Harewood, R., Matz, M., Niksic, M. et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391, 1023–1075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Pineros, M. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953 (2019).

    Article  CAS  Google Scholar 

  4. Hiki, N., Katai, H., Mizusawa, J., Nakamura, K., Nakamori, M., Yoshikawa, T. et al. Long-term outcomes of laparoscopy-assisted distal gastrectomy with suprapancreatic nodal dissection for clinical stage I gastric cancer: a multicenter phase II trial (JCOG0703). Gastric Cancer 21, 155–161 (2018).

    Article  PubMed  Google Scholar 

  5. Bang, Y. J., Van Cutsem, E., Feyereislova, A., Chung, H. C., Shen, L., Sawaki, A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  Google Scholar 

  6. Kang, Y. K., Boku, N., Satoh, T., Ryu, M. H., Chao, Y., Kato, K. et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 2461–2471 (2017).

    Article  CAS  Google Scholar 

  7. Shitara, K., Ozguroglu, M., Bang, Y. J., Di Bartolomeo, M., Mandala, M., Ryu, M. H. et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 392, 123–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Kodera, Y., Fujitani, K., Fukushima, N., Ito, S., Muro, K., Ohashi, N. et al. Surgical resection of hepatic metastasis from gastric cancer: a review and new recommendation in the Japanese gastric cancer treatment guidelines. Gastric Cancer 17, 206–212 (2014).

    Article  PubMed  Google Scholar 

  9. Markar, S. R., Mikhail, S., Malietzis, G., Athanasiou, T., Mariette, C., Sasako, M. et al. Influence of surgical resection of hepatic metastases from gastric adenocarcinoma on long-term survival: systematic review and pooled analysis. Ann. Surg. 263, 1092–1101 (2016).

    Article  PubMed  Google Scholar 

  10. Van Cutsem, E., Sagaert, X., Topal, B., Haustermans, K. & Prenen, H. Gastric cancer. Lancet 388, 2654–2664 (2016).

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi, N., Kanda, M., Yoshikawa, T., Takiguchi, N., Fujitani, K., Miyamoto, K. et al. A randomized phase II multicenter trial to explore efficacy of weekly intraperitoneal in comparison with intravenous paclitaxel administered immediately after gastrectomy to the patients with high risk of peritoneal recurrence: final results of the INPACT trial. Gastric Cancer 21, 1014–1023 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Ishigami, H., Fujiwara, Y., Fukushima, R., Nashimoto, A., Yabusaki, H., Imano, M. et al. Phase III trial comparing intraperitoneal and intravenous paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer with peritoneal metastasis: PHOENIX-GC trial. J. Clin. Oncol. 36, 1922–1929 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Sakamoto, H., Attiyeh, M. A., Gerold, J. M., Makohon-Moore, A. P., Hayashi, A., Hong, J. et al. The evolutionary origins of recurrent pancreatic cancer. Cancer Discov. 10, 792–805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amikura, K., Kobari, M. & Matsuno, S. The time of occurrence of liver metastasis in carcinoma of the pancreas. Int. J. Pancreatol. 17, 139–146 (1995).

    CAS  PubMed  Google Scholar 

  15. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  16. Mathot, L. & Stenninger, J. Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci. 103, 626–631 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mendoza, M. & Khanna, C. Revisiting the seed and soil in cancer metastasis. Int. J. Biochem Cell Biol. 41, 1452–1462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Groot, A. E., Roy, S., Brown, J. S., Pienta, K. J. & Amend, S. R. Revisiting seed and soil: examining the primary tumor and cancer cell foraging in metastasis. Mol. Cancer Res. 15, 361–370 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Shimizu, D., Kanda, M. & Kodera, Y. Review of recent molecular landscape knowledge of gastric cancer. Histol. Histopathol. 33, 11–26 (2018).

    CAS  PubMed  Google Scholar 

  20. Brosnan, J. A. & Iacobuzio-Donahue, C. A. A new branch on the tree: next-generation sequencing in the study of cancer evolution. Semin Cell Dev. Biol. 23, 237–242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, R., Schell, M. J., Teer, J. K., Greenawalt, D. M., Yang, M. & Yeatman, T. J. Co-evolution of somatic variation in primary and metastatic colorectal cancer may expand biopsy indications in the molecular era. PLoS ONE 10, e0126670 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tanaka, H., Kanda, M., Shimizu, D., Tanaka, C., Kobayashi, D., Hayashi, M. et al. FAM46C serves as a predictor of hepatic recurrence in patients with resectable gastric cancer. Ann. Surg. Oncol. 24, 3438–3445 (2016).

    Article  PubMed  Google Scholar 

  23. Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Menard, S., Pupa, S. M., Campiglio, M. & Tagliabue, E. Biologic and therapeutic role of HER2 in cancer. Oncogene 22, 6570–6578 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Regalado, A., Guzman-Hernandez, M. L., Ramirez-Rangel, I., Robles-Molina, E., Balla, T., Vazquez-Prado, J. et al. G protein-coupled receptor-promoted trafficking of Gbeta1gamma2 leads to AKT activation at endosomes via a mechanism mediated by Gbeta1gamma2-Rab11a interaction. Mol. Biol. Cell 19, 4188–4200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khan, S. M., Sleno, R., Gora, S., Zylbergold, P., Laverdure, J. P., Labbe, J. C. et al. The expanding roles of Gbetagamma subunits in G protein-coupled receptor signaling and drug action. Pharm. Rev. 65, 545–577 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Crespo, P., Xu, N., Simonds, W. F. & Gutkind, J. S. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 369, 418–420 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, J., Liu, W., Liu, J., Xiao, W., Liu, L., Jiang, C. et al. G-protein beta2 subunit interacts with mitofusin 1 to regulate mitochondrial fusion. Nat. Commun. 1, 101 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Bookout, A. L., Finney, A. E., Guo, R., Peppel, K., Koch, W. J. & Daaka, Y. Targeting Gbetagamma signaling to inhibit prostate tumor formation and growth. J. Biol. Chem. 278, 37569–37573 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, X., Sun, Z., Runne, C., Madsen, J., Domann, F., Henry, M. et al. A critical role of Gbetagamma in tumorigenesis and metastasis of breast cancer. J. Biol. Chem. 286, 13244–13254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pal, J., Patil, V., Mondal, B., Shukla, S., Hegde, A. S., Arivazhagan, A. et al. Epigenetically silenced GNG4 inhibits SDF1alpha/CXCR4 signaling in mesenchymal glioblastoma. Genes Cancer 7, 136–147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y., Fang, L., Zang, Y. & Xu, Z. Identification of core genes and key pathways via integrated analysis of gene expression and DNA methylation profiles in bladder cancer. Med Sci. Monit. 24, 3024–3033 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cristescu, R., Lee, J., Nebozhyn, M., Kim, K. M., Ting, J. C., Wong, S. S. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Szasz, A. M., Lanczky, A., Nagy, A., Forster, S., Hark, K., Green, J. E. et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 7, 49322–49333 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tanaka, H., Kanda, M., Miwa, T., Tanaka, C., Kobayashi, D., Umeda, S. et al. Pattern-specific transcriptomics identifies ASGR2 as a predictor of hematogenous recurrence of gastric cancer. Mol. Cancer Res. 16, 1420–1429 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Kanda, M., Nomoto, S., Oya, H., Takami, H., Hibino, S., Hishida, M. et al. Downregulation of DENND2D by promoter hypermethylation is associated with early recurrence of hepatocellular carcinoma. Int. J. Oncol. 44, 44–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Kanda, M., Tanaka, C., Kobayashi, D., Tanaka, H., Shimizu, D., Shibata, M. et al. Epigenetic suppression of the immunoregulator MZB1 is associated with the malignant phenotype of gastric cancer. Int. J. Cancer 139, 2290–2298 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Oya, H., Kanda, M., Koike, M., Iwata, N., Niwa, Y., Shimizu, D. et al. Detection of serum melanoma-associated antigen D4 in patients with squamous cell carcinoma of the esophagus. Dis. Esophagus 29, 663–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Kawasaki, K., Toshimitsu, K., Matano, M., Fujita, M., Fujii, M., Togasaki, K. et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell 183, 1420–1435 (2020).

  40. Kanda, M., Tanaka, H., Shimizu, D., Miwa, T., Umeda, S., Tanaka, C. et al. SYT7 acts as a driver of hepatic metastasis formation of gastric cancer cells. Oncogene 37, 5355–5366 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Kanda, M., Shimizu, D., Sawaki, K., Nakamura, S., Umeda, S., Miwa, T. et al. Therapeutic monoclonal antibody targeting of neuronal pentraxin receptor to control metastasis in gastric cancer. Mol. Cancer 19, 131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miwa, T., Kanda, M., Umeda, S., Tanaka, H., Shimizu, D., Tanaka, C. et al. Establishment of peritoneal and hepatic metastasis mouse xenograft models using gastric cancer cell lines. Vivo 33, 1785–1792 (2019).

    Article  CAS  Google Scholar 

  43. Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H. & Nicosia, S. V. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24, 7482–7492 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Rozengurt, E. Signal transduction pathways in the mitogenic response to G protein-coupled neuropeptide receptor agonists. J. Cell Physiol. 177, 507–517 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Hawes, B. E., Luttrell, L. M., van Biesen, T. & Lefkowitz, R. J. Phosphatidylinositol 3-kinase is an early intermediate in the G beta gamma-mediated mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 271, 12133–12136 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Luttrell, L. M., Ferguson, S. S., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J. et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Della Rocca, G. J., Maudsley, S., Daaka, Y., Lefkowitz, R. J. & Luttrell, L. M. Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J. Biol. Chem. 274, 13978–13984 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Yasumoto, K., Koizumi, K., Kawashima, A., Saitoh, Y., Arita, Y., Shinohara, K. et al. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res. 66, 2181–2187 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Mielgo, A. & Schmid, M. C. Liver tropism in cancer: the hepatic metastatic niche. Cold Spring Harb. Perspect. Med. 10, a037259 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Vaniotis, G., Rayes, R. F., Qi, S., Milette, S., Wang, N., Perrino, S. et al. Collagen IV-conveyed signals can regulate chemokine production and promote liver metastasis. Oncogene 37, 3790–3805 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Borggreve, A. S., Goense, L., Brenkman, H. J. F., Mook, S., Meijer, G. J., Wessels, F. J. et al. Imaging strategies in the management of gastric cancer: current role and future potential of MRI. Br. J. Radiol. 92, 20181044 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Koizumi, W., Narahara, H., Hara, T., Takagane, A., Akiya, T., Takagi, M. et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol. 9, 215–221 (2008).

    Article  CAS  Google Scholar 

  53. Sakuramoto, S., Sasako, M., Yamaguchi, T., Kinoshita, T., Fujii, M., Nashimoto, A. et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 357, 1810–1820 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Sasako, M., Sakuramoto, S., Katai, H., Kinoshita, T., Furukawa, H., Yamaguchi, T. et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J. Clin. Oncol. 29, 4387–4393 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Noh, S. H., Park, S. R., Yang, H. K., Chung, H. C., Chung, I. J., Kim, S. W. et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol. 15, 1389–1396 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Busuttil, R. A., Liu, D. S., Di Costanzo, N., Schroder, J., Mitchell, C. & Boussioutas, A. An orthotopic mouse model of gastric cancer invasion and metastasis. Sci. Rep. 8, 825 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Edanz Group (www.edanzediting.com/ac) and Springer Nature Author Services for editing a draft of this paper. This paper was posted on medRxiv prior to submission. https://medrxiv.org/cgi/content/short/2020.08.14.20175034v1; doi: 2020.08.14.20175034v1.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: M.K. and Y.K. Acquisition of the data: M.K., H.T., T.M., S.U., K.S., C.T. and Y.K. Management of data acquisition: M.K., C.T., D.K., M.H., S.Y., G.N., M.K. and Y.K. Analysis of the present data: H.T., M.K. and Y.K. Statistical analysis: H.T. and M.K. Critical interpretation of the present data: H.T., M.K., T.M., S.U., K.S., C.T., D.K., M.H., S.Y., G.N., M.K. and Y.K. Drafting of the paper: H.T., M.K. and Y.K. Critical revision of the paper for important intellectual content: H.T., M.K., T.M., S.U., K.S., C.T., D.K., M.H., S.Y., G.N., M.K. and Y.K. Obtained funding: H.T., M.K. and Y.K. Technical or material support: H.T., M.K., T.M., S.U., K.S., C.T., D.K. and M.K. Study supervision: Y.K.

Corresponding author

Correspondence to Mitsuro Kanda.

Ethics declarations

Ethics approval and consent to participate

Informed consent for the use of clinical samples and data was obtained from all patients in written manners, consistent with the requirement of the Institutional Review Board at Nagoya University, Japan. All animal experiments were conducted in accordance with the ARRIVE guidelines and were approved by the Animal Research Committee of Nagoya University (no. 30143).

Consent to publish

Not applicable.

Data availability

Data will be available as needed.

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by a Grant-in-Aid for the Encouragement of Young Scientists (2017, B, 17K16538), the Japanese Society for Gastroenterological Carcinogenesis (2016), Nakayama Cancer Research Institute (2016) and the Yokoyama Foundation for Clinical Pharmacology (2016).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H., Kanda, M., Miwa, T. et al. G-protein subunit gamma-4 expression has potential for detection, prediction and therapeutic targeting in liver metastasis of gastric cancer. Br J Cancer 125, 220–228 (2021). https://doi.org/10.1038/s41416-021-01366-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01366-1

This article is cited by

Search

Quick links