Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bridging the gap between cancer cell line models and tumours using gene expression data

Summary

Cancer cell line models are a cornerstone of cancer research, yet our understanding of how well they represent the molecular features of patient tumours remains limited. Our recent work provides a computational approach to systematically compare large gene expression datasets to better understand which cell lines most closely resemble each tumour type, as well as identify potential gaps in our current cancer models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Boehm, J. S., Garnett, M. J., Adams, D. J., Francies, H. E., Golub, T. R., Hahn, W. C. et al. Cancer research needs a better map. Nature 589, 514–516 (2021).

    CAS  Article  Google Scholar 

  3. 3.

    Tseng, Y.-Y. & Boehm, J. S. From cell lines to living biosensors: new opportunities to prioritize cancer dependencies using ex vivo tumor cultures. Curr Opin. Genet. Dev. 54, 33–40 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Najgebauer, H., Yang, M., Francies, H. E., Pacini, C., Stronach, E. A., Garnett, M. J. et al. CELLector: genomics-guided selection of cancer in vitro models. Cell Syst. 10, 424–432 (2020).

    CAS  Article  Google Scholar 

  5. 5.

    Tsherniak, A., Vazquez, F., Montgomery, P. G., Weir, B. A., Kryukov, G., Cowley, G. S. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Corsello, S. M., Nagari, R. T., Spangler, R. D., Rossen, J., Kocak, M., Bryan, J. G. et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

    Article  Google Scholar 

  7. 7.

    Marisa, L., de, Reyniès, Duval, A., Selves, J., Gaub, M. P., Vescovo, L. et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 10, e1001453 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Warren, A., Chen, Y., Jones, A., Shibue, T., Hahn, W. C., Boehm, J. S. et al. Global computational alignment of tumor and cell line transcriptional profiles. Nat Commun 12, 22 (2021).

    CAS  Article  Google Scholar 

  9. 9.

    Abid, A., Zhang, M. J., Bagaria, V. K. & Zou, J. Exploring patterns enriched in a dataset with contrastive principal component analysis. Nat. Commun. 9, 2134 (2018).

    Article  Google Scholar 

  10. 10.

    Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36, 421–427 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J. E. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Affiliations

Authors

Contributions

J.N., F.V. and J.M.M. drafted and revised the paper.

Corresponding author

Correspondence to James M. McFarland.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Data availability

Not applicable.

Competing interests

F.V. receives research support from Novo Ventures. All authors were partially funded by the Cancer Dependency Map Consortium, but no consortium member was involved in or influenced the study.

Funding information

This work was supported by the Cancer Dependency Map Consortium.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noorbakhsh, J., Vazquez, F. & McFarland, J.M. Bridging the gap between cancer cell line models and tumours using gene expression data. Br J Cancer (2021). https://doi.org/10.1038/s41416-021-01359-0

Download citation

Search

Quick links