Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells

Abstract

Background

CHK1 is considered an oncogene with overexpression in numerous cancers. However, CHK1 signalling regulation in hepatocellular carcinoma (HCC) remains unclear.

Methods

CHEK1 mRNA, protein, pri-miR-195 and miR-195 expression in HCC tissue was determined by qPCR, WB and IF staining assay. Survival analyses in HCC with high- and low-CHEK1 mRNA expression was performed using TCGA database. Relative luciferase activity was investigated in HCC cells transfected with p-CHEK1 3’UTR. Apoptosis was detected by TUNEL assay. NK and CD8+ T cells were analysed by flow cytometry.

Results

CHK1 is increased in human HCC tumours compared with non-cancerous liver. High CHK1 predicts worse prognosis. IFN-γ suppresses CHK1 via IRF-1 in HCC cells. The molecular mechanism of IRF-1 suppressing CHK1 is post-transcriptional by promoting miR-195 binding to CHEK1 mRNA 3’UTR, which exerts a translational blockade. Upregulated IRF-1 inhibits CHK1, which induces apoptosis of HCC cells. Likewise, CHK1 inhibition augments cellular apoptosis in HCC tumours. This effect may be a result of increased tumour NK cell infiltration. However, IRF-1 expression or CHK1 inhibition also upregulates PD-L1 expression via increased STAT3 phosphorylation.

Conclusions

IRF-1 induces miR-195 to suppress CHK1 protein expression. Both increased IRF-1 and decreased CHK1 upregulate cellular apoptosis and PD-L1 expression in HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CHK1 is overexpressed in some HCC tumours.
Fig. 2: IFN-γ represses CHK1 through IRF-1 in HCC cells.
Fig. 3: IFN-γ and IRF-1 suppresses CHK1 via miR-195.
Fig. 4: Increased IRF-1 and decreased CHK1 induce apoptosis of HCC cells.
Fig. 5: Prexasertib augments cellular apoptosis of murine HCC through promoting tumour infiltrative NK cells.
Fig. 6: Increased IRF-1 and decreased CHK1 induce PD-L1 expression of HCC cells through increased phosphorylated STAT3.

Similar content being viewed by others

References

  1. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J. & Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    PubMed  Google Scholar 

  2. Sadeghi, S., Bejjani, A. & Finn, R. S. Systemic therapy for primary liver tumors: cholangiocarcinoma and hepatocellular carcinoma. Surg. Oncol. Clin. N. Am. 28, 695–715 (2019).

    Article  PubMed  Google Scholar 

  3. Wildi, S., Pestalozzi, B. C., Mccormack, L. & Clavien, P. A. Critical evaluation of the different staging systems for hepatocellular carcinoma. Br. J. Surg. 91, 400–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Clavien, P. A., Lesurtel, M., Bossuyt, P. M., Gores, G. J., Langer, B., Perrier, A. et al. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol. 13, e11–e22 (2012).

    Article  PubMed  Google Scholar 

  5. Montironi, C., Montal, R. & Llovet, J. M. New drugs effective in the systemic treatment of hepatocellular carcinoma. Clin. Liver Dis. 14, 56–61 (2019).

    Article  Google Scholar 

  6. Marquardt, J. U., Saborowski, A., Czauderna, C. & Vogel, A. The changing landscape of systemic treatment of advanced hepatocellular carcinoma: new targeted agents and immunotherapies. Target Oncol. 14, 115–123 (2019).

    Article  PubMed  Google Scholar 

  7. Dai, Y. & Grant, S. New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin. Cancer Res. 16, 376–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y. & Hunter, T. Roles of Chk1 in cell biology and cancer therapy. Int. J. Cancer 134, 1013–1023 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Pouliot, L. M., Chen, Y. C., Bai, J., Guha, R., Martin, S. E., Gottesman, M. M. et al. Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res. 72, 5945–5955 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bever, K. M. & Le, D. T. DNA repair defects and implications for immunotherapy. J. Clin. Invest. 128, 4236–4242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shevtsov, M., Sato, H., Multhoff, G. & Shibata, A. Novel approaches to improve the efficacy of immuno-radiotherapy. Front. Oncol. 9, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sen, T., Rodriguez, B. L., Chen, L., Corte, C. M. D., Morikawa, N., Fujimoto, J. et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 9, 646–661 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mouw, K. W. & Konstantinopoulos, P. A. From checkpoint to checkpoint: DNA damage ATR/Chk1 checkpoint signalling elicits PD-L1 immune checkpoint activation. Br. J. Cancer 118, 933–935 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sato, H., Niimi, A., Yasuhara, T., Permata, T. B. M., Hagiwara, Y., Isono, M. et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 8, 1751 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sen, T., Della Corte, C. M., Milutinovic, S., Cardnell, R. J., Diao, L., Ramkumar, K. et al. Combination treatment of the oral CHK1 inhibitor, SRA737, and low-dose gemcitabine enhances the effect of programmed death ligand 1 blockade by modulating the immune microenvironment in SCLC. J. Thorac. Oncol. 14, 2152–2163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong, J., Hu, K., Yuan, Y., Sang, Y., Bu, Q., Chen, G. et al. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. J. Clin. Invest. 122, 2165–2175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myers, K., Gagou, M. E., Zuazua-Villar, P., Rodriguez, R. & Meuth, M. ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet. 5, e1000324 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Bowie, M. L., Troch, M. M., Delrow, J., Dietze, E. C., Bean, G. R., Ibarra, C. et al. Interferon regulatory factor-1 regulates reconstituted extracellular matrix (rECM)-mediated apoptosis in human mammary epithelial cells. Oncogene 26, 2017–2026 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Hong, S., Kim, H. Y., Kim, J., Ha, H. T., Kim, Y. M., Bae, E. et al. Smad7 protein induces interferon regulatory factor 1-dependent transcriptional activation of caspase 8 to restore tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. J. Biol. Chem. 288, 3560–3570 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Stang, M. T., Armstrong, M. J., Watson, G. A., Sung, K. Y., Liu, Y., Ren, B. et al. Interferon regulatory factor-1-induced apoptosis mediated by a ligand-independent fas-associated death domain pathway in breast cancer cells. Oncogene 26, 6420–6430 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, P. K., Armstrong, M., Liu, Y., Yan, P., Bucher, B., Zuckerbraun, B. S. et al. IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. Oncogene 23, 1125–1135 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Li, P., Du, Q., Cao, Z., Guo, Z., Evankovich, J., Yan, W. et al. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett. 314, 213–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lujambio, A. & Lowe, S. W. The microcosmos of cancer. Nature 482, 347–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L. et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med. 14, 1271–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Cutrona, G., Matis, S., Colombo, M., Massucco, C., Baio, G., Valdora, F. et al. Effects of miRNA-15 and miRNA-16 expression replacement in chronic lymphocytic leukemia: implication for therapy. Leukemia 31, 1894–1904 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Xia, L., Zhang, D., Du, R., Pan, Y., Zhao, L., Sun, S. et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer 123, 372–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, B., Wang, X., Deng, J., Zheng, H., Liu, W., Chen, S. et al. p53-dependent upregulation of miR-16-2 by sanguinarine induces cell cycle arrest and apoptosis in hepatocellular carcinoma. Cancer Lett. 459, 50–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, C., Hong, Y., Lee, H., Kang, H. & Lee, E. K. MicroRNA-195 desensitizes HCT116 human colon cancer cells to 5-fluorouracil. Cancer Lett. 412, 264–271 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Bargiela-Iparraguirre, J., Prado-Marchal, L., Fernandez-Fuente, M., Gutierrez-Gonzalez, A., Moreno-Rubio, J., Munoz-Fernandez, M. et al. CHK1 expression in Gastric Cancer is modulated by p53 and RB1/E2F1: implications in chemo/radiotherapy response. Sci. Rep. 6, 21519 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, X., Zhang, Y., Ma, X. & Pertsemlidis, A. miR-195 potentiates the efficacy of microtubule-targeting agents in non-small cell lung cancer. Cancer Lett. 427, 85–93 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yokota, S., Yoshida, O., Dou, L., Spadaro, A. V., Isse, K., Ross, M. A. et al. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Ralpha production. J. Immunol. 194, 6045–6056 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ueki, S., Dhupar, R., Cardinal, J., Tsung, A., Yoshida, J., Ozaki, K. S. et al. Critical role of interferon regulatory factor-1 in murine liver transplant ischemia reperfusion injury. Hepatology 51, 1692–1701 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Du, Q., Zhang, X., Liu, Q., Zhang, X., Bartels, C. E. & Geller, D. A. Nitric oxide production upregulates Wnt/beta-catenin signaling by inhibiting Dickkopf-1. Cancer Res. 73, 6526–6537 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Lal, A., Navarro, F., Maher, C. A., Maliszewski, L. E., Yan, N., O’day, E. et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Mol. Cell. 35, 610–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. et al. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  39. Yan, Y., Zheng, L., Du, Q., Yan, B. & Geller, D. A. Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells. Cancer Immunol. Immunother. 69, 1891–1903 (2020). https://doi.org/10.1007/s00262-020-02586-9.

  40. Parmar, K., Kochupurakkal, B. S., Lazaro, J. B., Wang, Z. C., Palakurthi, S., Kirschmeier, P. T. et al. The CHK1 inhibitor prexasertib exhibits monotherapy activity in high-grade serous ovarian cancer models and sensitizes to PARP inhibition. Clin. Cancer Res. 25, 6127–6140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lowery, C. D., Dowless, M., Renschler, M., Blosser, W., Vanwye, A. B., Stephens, J. R. et al. Broad spectrum activity of the checkpoint kinase 1 inhibitor prexasertib as a single agent or chemopotentiator across a range of preclinical pediatric tumor models. Clin. Cancer Res. 25, 2278–2289 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Diaz, A., Shin, D. S., Moreno, B. H., Saco, J., Escuin-Ordinas, H., Rodriguez, G. A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ding, L., Chen, X., Xu, X., Qian, Y., Liang, G., Yao, F. et al. PARP1 suppresses the transcription of PD-L1 by poly(ADP-Ribosyl)ating STAT3. Cancer Immunol. Res. 7, 136–149 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Koh, J., Jang, J. Y., Keam, B., Kim, S., Kim, M. Y., Go, H. et al. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1alpha and STAT3. Oncoimmunology 5, e1108514 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu, J., Hodgins, J. J., Marathe, M., Nicolai, C. J., Bourgeois-Daigneault, M. C., Trevino, T. N. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Karnitz, L. M. & Zou, L. Molecular pathways: targeting ATR in cancer therapy. Clin. Cancer Res. 21, 4780–4785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Angius, G., Tomao, S., Stati, V., Vici, P., Bianco, V. & Tomao, F. Prexasertib, a checkpoint kinase inhibitor: from preclinical data to clinical development. Cancer Chemother. Pharmacol. 85, 9–20 (2020). https://doi.org/10.1007/s00280-019-03950-y.

  49. Tanaka, N., Ishihara, M. & Taniguchi, T. Suppression of c-myc or fosB-induced cell transformation by the transcription factor IRF-1. Cancer Lett. 83, 191–196 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Kroger, A., Dallugge, A., Kirchhoff, S. & Hauser, H. IRF-1 reverts the transformed phenotype of oncogenically transformed cells in vitro and in vivo. Oncogene 22, 1045–1056 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. Wang, W. J., Wu, S. P., Liu, J. B., Shi, Y. S., Huang, X., Zhang, Q. B. et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res. 73, 1219–1231 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Yu, W., Liang, X., Li, X., Zhang, Y., Sun, Z., Liu, Y. et al. MicroRNA-195: a review of its role in cancers. Onco Targets Ther. 11, 7109–7123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, M. H., Liu, K. H., Thomas, J. L., Chen, J. R. & Lin, H. Y. Immunotherapy of hepatocellular carcinoma with magnetic PD-1 peptide-imprinted polymer nanocomposite and natural killer cells. Biomolecules. 9, 651 (2019).

  55. Zhou, J., Peng, H., Li, K., Qu, K., Wang, B., Wu, Y. et al. Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 axis. Immunity 50, 403–17 e4 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and D.A.G. designed the research. Y.Y., L.Z., Q.D., X.C., K.D. and Y.G. performed research and also analysed the data. Y.Y. and D.A.G. wrote the paper. All authors edited and approved the submission of this work.

Corresponding authors

Correspondence to Yihe Yan or David A. Geller.

Ethics declarations

Ethics approval and consent to participate

Human tissue samples were obtained in accordance with the University of Pittsburgh Institutional Review Board (IRB) approved protocol (No. MOD08010372/PRO08010372). Animal experiments were approved by the University of Pittsburgh Institutional Animal Care and Use Committee (Protocol No. 18012053).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by the NIH Grant (HHSN276201200017C and P30DK120531-01, D.A.G.), and the Guangxi Natural Science Foundation (2017GXNSFAA198014 and 2020GXNSFAA297008, Y.Y.).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zheng, L., Du, Q. et al. Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer 125, 101–111 (2021). https://doi.org/10.1038/s41416-021-01337-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01337-6

This article is cited by

Search

Quick links