Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The tumour immune microenvironment in oesophageal cancer

Abstract

Oesophageal cancer (OC) is an inflammation-associated malignancy linked to gastro-oesophageal reflux disease, obesity and tobacco use. Knowledge of the microenvironment of oesophageal tumours is relevant to our understanding of the development of OC and its biology, and has major implications for understanding the response to standard therapies and immunotherapies, as well as for uncovering novel targets. In this context, we discuss what is known about the TME in OC from tumour initiation to development and progression, and how this is relevant to therapy sensitivity and resistance in the two major types of OC. We provide an immunological characterisation of the OC TME and discuss its prognostic implications with specific comparison with the Immunoscore and immune-hot, -cold, altered-immunosuppressed and -altered-excluded models. Targeted therapeutics for the TME under pre-clinical and clinical investigation in OCs are also summarised. A deeper understanding of the TME will enable the development of combination approaches to concurrently target the tumour cells and TME delivering precision medicine to OC patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Inflammation and the TME in oesophageal carcinogenesis.
Fig. 2: The TME, immune suppression and tumour progression.
Fig. 3: Drug targets in the TME.
Fig. 4: Targeting tumour-intrinsic mechanisms.

References

  1. 1.

    Then, M., Saleem, S., Gayam, V., Sunkara, T., Culliford, A. & Gaduputi, V. E. O. L. Esophageal cancer: an updated surveillance epidemiology and end results database analysis. World J. Oncol. 11, 55–64 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Morgan, E., Soerjomataram, I., Gavin, A. T., Rutherford, M. J., Gatenby, P., Bardot, A. et al. International trends in oesophageal cancer survival by histological subtype between 1995 and 2014. Gut 70, 234–232 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Pennathur, M. K., Jobe, B. A. & Luketich, J. D. A. G. Oesophageal carcinoma. Lancet 381, 400–412 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Napier, K. J., Scheerer, M. & Misra, S. Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest. Oncol. 6, 112–120 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Hvid-Jensen, F., Pedersen, L., Drewes, A. M., Sørensen, H. T. & Funch-Jensen, P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med. 365, 1375–1383 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Qian, X., Tan, C., Wang, F., Yang, B., Ge, Y., Guan, Z. et al. Esophageal cancer stem cells and implications for future therapeutics. Onco. Targets Ther. 19, 2247–2254 (2016).

    Google Scholar 

  9. 9.

    Makena, M. R., Ranjan, A., Thirumala, V. & Reddy, A. P. Cancer stem cells: road to therapeutic resistance and strategies to overcome resistance. Biochim. Biophys. Acta. Mol Basis Dis. 4, 1866–165339 (2020).

    Google Scholar 

  10. 10.

    Lin, E. W., Karakasheva, T. A., Hicks, P. D., Bass, A. J. & Rustgi, A. K. The tumor microenvironment in esophageal cancer. Oncogene 35, 5337–5349 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Hanahan, D., Weinberg, R. A., Adams, J. M., Cory, S., Aguirre-Ghiso, J. A., Ahmed, Z. et al. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Pienta, K. J., Robertson, B. A., Coffey, D. S. & Taichman, R. S. The cancer diaspora: metastasis beyond the seed and soil hypothesis. Clin. Cancer Res. 19, 5849–5855 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Baba, Y., Nomoto, D., Okadome, K., Ishimoto, T., Iwatsuki, M., Miyamoto, Y. et al. Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci. 111, 3132–3141 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Lin, E. W., Karakasheva, T. A., Hicks, P. D., Bass, A. J. & Rustgi, A. K. The tumor microenvironment in esophageal cancer. Oncogene 35, 5337–5349 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Hatogai, K., Kitano, S., Fujii, S., Kojima, T., Daiko, H., Nomura, S. et al. Comprehensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma. Oncotarget 7, 47252–47264 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Calibasi Kocal, G., Güven, S., Foygel, K., Goldman, A., Chen, P., Sengupta, S. et al. Dynamic microenvironment induces phenotypic plasticity of esophageal cancer cells under flow. Sci. Rep. 6, 38221 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Nouraee, N., Khazaei, S., Vasei, M., Razavipour, S. F., Sadeghizadeh, M. & Mowla, S. J. MicroRNAs contribution in tumor microenvironment of esophageal cancer. Cancer Biomarkers 16, 367–376 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Network the cancer genome atlas research. Integrated genomic characterization of oesophageal carcinoma. Nature 541, 169–175 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    Verbeek, R. E., Spittuler, L. F., Peute, A., van Oijen, M. G. H., ten Kate, F. J., Vermeijden, J. R. et al. Familial clustering of Barrett’s esophagus and esophageal adenocarcinoma in a European cohort. Clin. Gastroenterol. Hepatol. 12, 1656–1663 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    O’Sullivan, J., Lysaght, J., Donohoe, C. L. & Reynolds, J. V. Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat. Rev. Gastroenterol. Hepatol. 15, 699–714 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Picardo, S. L., Maher, S. G., O’Sullivan, J. N. & Reynolds, J. V. Barrett’s to oesophageal cancer sequence: a model of inflammatory-driven upper gastrointestinal cancer. Dig. Surg. 29, 251–260 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Fitzgerald, R. C., Onwuegbusi, B. A., Bajaj-Elliott, M., Saeed, I. T., Burnham, W. R. & Farthing, M. J. G. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut 50, 451–459 (2002).

  24. 24.

    Kavanagh, M. E., Conroy, M. J., Clarke, N. E., Gilmartin, N. T., O’Sullivan, K. E., Feighery, R. et al. Impact of the inflammatory microenvironment on T-cell phenotype in the progression from reflux oesophagitis to Barrett oesophagus and oesophageal adenocarcinoma. Cancer Lett. 370, 117–124 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Miyashita, T., Tajima, H., Shah, F. A., Oshima, M., Makino, I., Nakagawara, H. et al. Impact of inflammation-metaplasia-adenocarcinoma sequence and inflammatory microenvironment in esophageal carcinogenesis using surgical rat models. Ann. Surg. Oncol. 21, 2012–2019 (2014).

  26. 26.

    Gao, J., Wu, Y., Su, Z., Amoah Barnie, P., Jiao, Z., Bie, Q. et al. Infiltration of alternatively activated macrophages in cancer tissue is associated with MDSC and Th2 polarization in patients with esophageal cancer. PLoS ONE 9, 104453–104453 (2014).

    Article  CAS  Google Scholar 

  27. 27.

    Song, S., Guha, S., Liu, K., Buttar, N. S. & Bresalier, R. S. COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 56, 1512–1521 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M. et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Lauby-Secretan, C., Loomis, D., Grosse, Y., Bianchini, F. & Straif, K. B. S. Body fatness and cancer—viewpoint of the IARC working group. N. Engl. J. Med. 375, 794–798 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Michelet, X., Dyck, L., Hogan, A., Loftus, R. M., Duquette, D., Wei, K. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    El-Serag, H. B., Ergun, G. A., Pandolfino, J., Fitzgerald, S., Tran, T. & Kramer, J. R. Obesity increases oesophageal acid exposure. Gut 56, 749–755 (2007).

    PubMed  Article  Google Scholar 

  32. 32.

    Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Andersen, K. E. & Fernandez, M. L. C. J. M. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr. 7, 66–75 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Duggan, C., Onstad, L., Hardikar, S., Blount, P. L., Reid, B. J. & Vaughan, T. L. Association between markers of obesity and progression from Barrett’s esophagus to esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 11, 934–943 (2013).

  35. 35.

    Howard, J. M., Beddy, P., Ennis, D., Keogan, M., Pidgeon, G. P. & Reynolds, J. V. Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma. Br. J. Surg. 97, 1020–1027 (2010).

  36. 36.

    Shurin, R. & Umansky, M. V. The Tumor Immunoenvironment, 94–95 (2013).

  37. 37.

    Broders-Bondon, F., Nguyen Ho-Bouldoires, T. H., Fernandez-Sanchez, M.-E. & Farge, E. Mechanotransduction in tumor progression: the dark side of the force. J Cell Biol. 217, 1571–1587 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Martinez, V. G., Park, D. & Acton, S. E. Immunotherapy: breaching the barriers for cancer treatment. Philos. Trans. R. Soc. B Biol. Sci. 374, 1–7 (2019).

    Article  CAS  Google Scholar 

  39. 39.

    Gordon-Alonso, M., Hirsch, T., Wildmann, C. & van der Bruggen, P. Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration. Nat. Commun. 8, 793 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Davern, M. & Lysaght, J. Cooperation between chemotherapy and immunotherapy in gastroesophageal cancers. Cancer Lett. 495, 89–99 (2020).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Dhupar, R., Van Der Kraak, L., Pennathur, A., Schuchert, M. J., Nason, K. S., Luketich, J. D. et al. Targeting immune checkpoints in esophageal cancer: a high mutational load tumor. Ann. Thorac. Surg. 103, 1340–1349 (2017).

    PubMed  Article  Google Scholar 

  42. 42.

    Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Feig, C., Jones, J. O., Kraman, M., Wells, R. J. B., Deonarine, A., Chan, D. S. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Wang, J., Zhang, G., Wang, J., Wang, L., Huang, X. & Cheng, Y. The role of cancer-associated fibroblasts in esophageal cancer. J. Transl. Med. 14, 30 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Sun, X., Cheng, G., Hao, M., Zheng, J., Zhou, X., Zhang, J. et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 29, 709–722 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Underwood, T. J., Hayden, A. L., Derouet, M., Garcia, E., Noble, F., White, M. J. et al. Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol. 235, 466–477 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Koide, A., Sato, T., Sugiyama, A. & Miyagawa, S. N. N. Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol. 99, 1667–1674 (2004).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Hao N.-B., Lü M.-H., Fan Y.-H., Cao Y.-L., Zhang Z.-R. & Yang S.-M. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012, 948098 (2012).

  49. 49.

    Chen, M.-F., Kuan, F.-C., Yen, T.-C., Lu, M.-S., Lin, P.-Y., Chung, Y.-H. et al. IL-6-stimulated CD11b+ CD14+ HLA-DR- myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus. Oncotarget. 5, 8716–8728 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J. Immunol. 182, 240–249 (2009).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Waldron, T. J., Quatromoni, J. G., Karakasheva, T. A., Singhal, S. & Rustgi, A. K. Myeloid derived suppressor cells: targets for therapy. Oncoimmunology. 2, 24117 (2013).

    Article  Google Scholar 

  52. 52.

    Hashemi Goradel, N., Najafi, M., Salehi, E., Farhood, B. & Mortezaee, K. Cyclooxygenase-2 in cancer: a review. J. Cell Physiol. 234, 5683–5699 (2019).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Sharma, S., Stolina, M., Yang, S.-C., Baratelli, F., Lin, J. F., Atianzar, K. et al. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin. Cancer Res. 9, 961–968 (2003).

    CAS  PubMed  Google Scholar 

  54. 54.

    Morris, C. D., Armstrong, G. R., Bigley, G., Green, H. & Attwood, S. E. Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Am. J. Gastroenterol. 96, 990–996 (2001).

    CAS  PubMed  Google Scholar 

  55. 55.

    Zhi, H., Wang, L., Zhang, J., Zhou, C., Ding, F., Luo, A. et al. Significance of COX-2 expression in human esophageal squamous cell carcinoma. Carcinogenesis 27, 1214–1221 (2006).

  56. 56.

    Jablonska-Trypuc, M. & Rosochacki, S. A. M. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzym. Inhib. Med. Chem. 31, 177–183 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Fong, S. F., Dietzsch, E., Fong, K. S., Hollosi, P., Asuncion, L., He, Q. et al. Lysyl oxidase-like 2 expression is increased in colon and esophageal tumors and associated with less differentiated colon tumors. Genes Chromosom Cancer. 46, 644–655 (2007).

  58. 58.

    Gu, Z. D., Li, J. Y., Li, M., Gu, J., Shi, X. T., Ke, Y. et al. Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. Am. J. Gastroenterol. 100, 1835–1843 (2005).

  59. 59.

    Singer, K., Cheng, W.-C., Kreutz, M., Ho, P.-C. & Siska, P. J. Immunometabolism in cancer at a glance. Dis Model Mech. 11, dmm034272 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2, 1117–1133 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Albini, A., Bruno, A., Noonan, D. M. & Mortara, L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for Immunotherapy. Front. Imunnol. 9, 527 (2018).

    Article  CAS  Google Scholar 

  62. 62.

    Lin, Q. & Yun, Z. Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol. Ther. 9, 949–956 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Ippolito, L., Morandi, A., Giannoni, E. & Chiarugi, P. Lactate: a metabolic driver in the tumour landscape. Trends Biochem. Sci. 44, 153–166 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Damgaci, S., Ibrahim-Hashim, A., Enriquez-Navas, P. M., Pilon-Thomas, S., Guvenis, A. & Gillies, R. J. Hypoxia and acidosis: immune suppressors and therapeutic targets. Immunology 154, 354–362 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Tang, N. N., Zhu, H., Zhang, H. J., Zhang, W. F., Jin, H. L., Wang, L. et al. HIF-1α induces VE-cadherin expression and modulates vasculogenic mimicry in esophageal carcinoma cells. World J. Gastroenterol 20, 17894–17904 (2014).

  67. 67.

    Gebauer, F., Krämer, M., Bruns, C., Schlößer, H. A., Thelen, M., Lohneis, P. et al. Lymphocyte activation gene-3 (LAG3) mRNA and protein expression on tumour infiltrating lymphocytes (TILs) in oesophageal adenocarcinoma. J. Cancer Res. Clin. Oncol. 146, 2319–2327 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Wang, W., Chen, D., Zhao, Y., Zhao, T., Wen, J., Mao, Y. et al. Characterization of LAG-3, CTLA-4, and CD8+ TIL density and their joint influence on the prognosis of patients with esophageal squamous cell carcinoma. Ann. Transl. Med. 7, 776 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Zhao, Y., Chen, D., Wang, W., Zhao, T., Wen, J., Zhang, F. et al. Significance of TIM-3 expression in resected esophageal squamous cell carcinoma. Ann Thorac Surg. 109, 1551–1557 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Ohigashi, Y., Sho, M., Yamada, Y., Tsurui, Y., Hamada, K., Ikeda, N. et al. Clinical Significance of Programmed Death-1 Ligand-1 and Programmed Death-1 Ligand-2 Expression in Human Esophageal Cancer. Clin. Cancer Res. 11, 2947–2953 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Chen, H., Lu, M., Xu, B., Wang, Q., Jiang, J. & Wu, C. L. D. B7-H1 expression associates with tumor invasion and predicts patient’s survival in human esophageal cancer. Int. J. Clin. Exp. Pathol. 7, 6015–6023 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Derks, S., Nason, K. S., Liao, X., Stachler, M. D., Liu, K. X., Liu, J. B. et al. Epithelial PD-L2 expression marks barrett’s esophagus and esophageal adenocarcinoma. Cancer. Immunol Res. 3, 1123–1129 (2015).

  73. 73.

    Loke, J. P. P. A. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl Acad. Sci. USA 100, 5336–5341 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    MacCarty. Principles of prognosis in cancer. JAMA. 96, 30–33 (1931).

    Article  Google Scholar 

  75. 75.

    Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Angell, H. K., Bruni, D., Barrett, J. C., Herbst, R. & Galon, J. The immunoscore: colon cancer and beyond. Clin. Cancer Res. 26, 332–339 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Pagès, F., Mlecnik, B., Marliot, F., Bindea, G., Ou, F.-S., Bifulco, C. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Stein, A. V., Dislich, B., Blank, A., Guldener, L., Kröll, D., Seiler, C. A. et al. High intratumoural but not peritumoural inflammatory host response is associated with better prognosis in primary resected oesophageal adenocarcinomas. Pathology 49, 30–37 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Noble, F., Mellows, T., McCormick Matthews, L. H., Bateman, A. C., Harris, S., Underwood, T. J. et al. Tumour infiltrating lymphocytes correlate with improved survival in patients with oesophageal adenocarcinoma. Cancer Immunol. Immunother. 65, 651–662 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Matthews, L. M., Noble, F., Tod, J., Jaynes, E., Harris, S., Primrose, J. N. et al. Systematic review and meta-analysis of immunohistochemical prognostic biomarkers in resected oesophageal adenocarcinoma. Br. J. Cancer 113, 107–118 (2015).

  81. 81.

    Humphries, M. P., Craig, S. G., Kacprzyk, R., Fisher, N. C., Bingham, V., McQuaid, S. et al. The adaptive immune and immune checkpoint landscape of neoadjuvant treated esophageal adenocarcinoma using digital pathology quantitation. BMC Cancer 20, 500 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Yoshioka, T., Miyamoto, M., Cho, Y., Ishikawa, K., Tsuchikawa, T., Kadoya, M. et al. Infiltrating regulatory T cell numbers is not a factor to predict patient’s survival in oesophageal squamous cell carcinoma. Br. J. Cancer 98, 1258–1263 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Schumacher, K., Haensch, W., Röefzaad, C. & Schlag, P. M. Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res. 61, 3932–3936 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Shang, B., Liu, Y., Jiang, S. & Liu, Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 5, 15179 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Dunne, M. R., Michielsen, A. J., O’Sullivan, K. E., Cathcart, M. C., Feighery, R., Doyle, B. et al. HLA-DR expression in tumor epithelium is an independent prognostic indicator in esophageal adenocarcinoma patients. Cancer Immunol. Immunother. 66, 841–850 (2017).

  86. 86.

    Altomonte, M., Fonsatti, E., Visintin, A. & Maio, M. Targeted therapy of solid malignancies via HLA class II antigens: a new biotherapeutic approach? Oncogene. 22, 6564–6569 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Dunne, M. R., Phelan, J. J., Michielsen, A. J., Maguire, A. A., Dunne, C., Martin, P. et al. Characterising the prognostic potential of HLA-DR during colorectal cancer development. Cancer Immunol. Immunother. 69, 1577–1588 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Vonderheide, R. H. The immune revolution: a case for priming, not checkpoint. Cancer Cell 33, 563–569 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Yagi, T., Baba, Y., Okadome, K., Kiyozumi, Y., Hiyoshi, Y., Ishimoto, T. et al. Tumour-associated macrophages are associated with poor prognosis and programmed death ligand 1 expression in oesophageal cancer. Eur. J. Cancer 111, 38–49 (2019).

  90. 90.

    Shigeoka, M., Urakawa, N., Nakamura, T., Nishio, M., Watajima, T., Kuroda, D. et al. Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci. 104, 1112–1119 (2013).

  91. 91.

    Chen, M. F., Chen, P. T., Lu, M. S., Lin, P. Y., Chen, W. C. & Lee, K. D. IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol. Cancer 12, 26 (2013).

  92. 92.

    Chai, D., Bao, Z., Hu, J., Ma, L., Feng, Z. & Tao, Y. Vasculogenic mimicry and aberrant expression of HIF-lα/E-cad are associated with worse prognosis of esophageal squamous cell carcinoma. Medical Sci. 33, 385–391 (2013).

    CAS  Google Scholar 

  93. 93.

    Hu, Z., Yang, Y., Zhao, Y. & Huang, Y. The prognostic value of cyclooxygenase-2 expression in patients with esophageal cancer: evidence from a meta-analysis. Onco. Targets Ther. 10, 2893–2901 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Camus, M., Tosolini, M., Mlecnik, B., Pages, F., Kirilovsky, A., Berger, A. et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 69, 2685–2693 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Derks, S., de Klerk, L. K., Xu, X., Fleitas, T., Liu, K. X., Liu, Y. et al. Characterizing diversity in the tumor-immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas. Ann Oncol. 31, 1011–1020 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Chen, M., Cai, E., Huang, J., Yu, P. & Li, K. Prognostic value of vascular endothelial growth factor expression in patients with esophageal cancer: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 21, 1126–1134 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Clarke, J. M. & Hurwitz, H. I. Understanding and targeting resistance to anti-angiogenic therapies. J. Gastrointest Oncol. 4, 253–263 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Qian, C.-N., Tan, M.-H., Yang, J.-P. & Cao, Y. Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation. Chin J Cancer 35, 10 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Kim, R., Emi, M., Tanabe, K. & Arihiro, K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 66, 5527–5536 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Lapeyre-Prost, A., Terme, M., Pernot, S., Pointet, A.-L., Voron, T., Tartour, E. et al. Chapter seven—immunomodulatory activity of VEGF in cancer. Int. Rev. Cell Mol. Biol. 330, 295–342 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Lloyd, B. W. S. C. Current strategies in chemoradiation for esophageal cancer. J Gastrointest. Oncol. 5, 156–165 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Donlon, N. E., Elliott, J. A., Donohoe, C. L., Murphy, C. F., Nugent, T., Moran, B. et al. Adverse biology in adenocarcinoma of the esophagus and esophagogastric junction impacts survival and response to neoadjuvant therapy independent of anatomic subtype. Ann. Surg. 272, 814–819 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Gabitass, R. F., Annels, N. E., Stocken, D. D., Pandha, H. A. & Middleton, G. W. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol. Immunother. 60, 1419–1430 (2011).

  104. 104.

    Akutsu, Y., Hanari, N., Yusup, G., Komatsu-Akimoto, A., Ikeda, N., Mori, M. et al. COX2 expression predicts resistance to chemoradiotherapy in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 18, 2946–2951 (2011).

  105. 105.

    Vacchelli, E., Semeraro, M., Enot, D. P., Chaba, K., Colame, V. P., Dartigues, P. et al. Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy. Oncotarget 6, 20840–20850 (2015).

  106. 106.

    Gray, L. H., Conger, A., Ebert, M., Hornsey, S. & Scott, O. C. A. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

  107. 107.

    Tao, R., Ager, B., Lloyd, S., Torgeson, A., Denney, M., Gaffney, D. et al. Hypoxia imaging in upper gastrointestinal tumors and application to radiation therapy. J. Gastrointest. Oncol. 9, 1044–1053 (2018).

  108. 108.

    Melsens, E., De Vlieghere, E., Descamps, B., Vanhove, C., Kersemans, K., De Vos, F. et al. Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts. Radiat Oncol. 13, 39 (2018).

  109. 109.

    Peerlings, J., Van De Voorde, L., Mitea, C., Larue, Ruben, Yaromina, A., Sandeleanu, S. et al. Hypoxia response-associated molecular markers in esophageal cancer: A systematic review. Methods 130, 51–62 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    National cancer institute. Trastuzumab—National Cancer Institute, https://www.cancer.gov/about-cancer/treatment/drugs/trastuzumab (2016).

  111. 111.

    Fuchs, C. S., Doi, T., Jang, R. W.-J., Muro, K., Satoh, T., Machado, M. et al. KEYNOTE-059 cohort 1: Efficacy and safety of pembrolizumab (pembro) monotherapy in patients with previously treated advanced gastric cancer. J. Clin. Oncol. 20, 4003 (2017).

    Article  Google Scholar 

  112. 112.

    Bersanelli, M. Tumour mutational burden as a driver for treatment choice in resistant tumours (and beyond). Lancet Oncol. 21, 1255–1257 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Bang, Y. J., Van Cutsem, E., Feyereislova, A., Chung, H. C., Shen, L., Sawaki, A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

  114. 114.

    National cancer institute. FDA Approval for Ramucirumab—National Cancer Institute, https://www.cancer.gov/about-cancer/treatment/drugs/fda-ramucirumab (2015).

  115. 115.

    Van Cutsem, E., Bang, Y.-J., Feng-yi, F., Xu, J. M., Lee, K.-W., Jiao, S.-C. et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 18, 476–484 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  116. 116.

    Wilke, H., Muro, K., Van Cutsem, E., Oh, S. C., Bodoky, G., Shimada, Y. et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 15, 1224–1235 (2014).

  117. 117.

    Kato, K., Cho, B. C., Takahashi, M., Okada, M., Lin, C. Y., Chin, K. et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20, 1506–1517 (2019).

  118. 118.

    Kato, K., Cho, B. C., Takahashi, M., Okada, M., Lin, C.-Y., Chin, K. et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20, 1506–1517 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

  120. 120.

    Samstein, R. M., Lee, C. H., Shoushtari, A. N., Hellmann, M. D., Shen, R., Janjigian, Y. Y. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 51, 202–206 (2019).

  121. 121.

    Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M. et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol. Res. 7, 737–750 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Forde, P. M., Chaft, J. E., Smith, K. N., Anagnostou, V., Cottrell, T. R., Hellmann, M. D. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

  123. 123.

    Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Woo, J., Cohen, S. A. & Grim, J. E. Targeted therapy in gastroesophageal cancers: past, present and future. Gastroenterol. Rep. 3, 316–329 (2015).

    Google Scholar 

  125. 125.

    Derks, S., Liao, X., Chiaravalli, A. M., Xu, X., Camargo, M. C., Solcia, E. et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget 7, 32925–32932 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Kim, S. T., Cristescu, R., Bass, A. J., Kim, K.-M., Odegaard, J. I., Kim, K. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 24, 1449–1458 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Ou Yang, T.-H. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Frankell, A. M., Jammula, S., Li, X., Contino, G., Killcoyne, S., Abbas, S. et al. The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic. Nat. Genet. 51, 506–516 (2019).

  129. 129.

    Adler, F. R. & Gordon, D. M. Cancer ecology and evolution: positive interactions and system vulnerability. Curr Opin. Syst. Biol. 17, 1–7 (2019).

    Google Scholar 

  130. 130.

    Hellmann, M. D., Friedman, C. F. & Wolchok, J. D. Chapter six—combinatorial cancer immunotherapies. Adv. Immunol. 130, 251–277 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Kershaw, M. H., Devaud, C., John, L. B., Westwood, J. A. & Darcy, P. K. Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment. Oncoimmunology 2, 25962 (2013).

    Article  Google Scholar 

  132. 132.

    Christensen, S., Van der Roest, B., Besselink, N., Janssen, R., Boymans, S., Martens, J. W. M. et al. 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer. Nat. Commun. 10, 4571 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. 133.

    Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 18, 197–218 (2019).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    van der Woude, L. L., Gorris, M. A. J., Halilovic, A., Figdor, C. G. & de Vries, I. J. M. Migrating into the tumor: a roadmap for T cells. Trends in Cancer 3, 797–808 (2017).

    PubMed  Article  CAS  Google Scholar 

  136. 136.

    Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Gockel, I., Schimanski, C.C., Heinrich, C., Wehler, T., Frerichs, C., Drescher, D. et al. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma. BMC Cancer 6, 290 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  138. 138.

    Lu, C. L., Guo, J., Gu, J., Ge, D., Hou, Y. Y., Lin, Z. W. et al. CXCR4 heterogeneous expression in esophageal squamous cell cancer and stronger metastatic potential with CXCR4-positive cancer cells. Dis. Esophagus 27, 294–302 (2013).

  139. 139.

    HHuang, E. H., Singh, B., Cristofanilli, M., Gelovani, J., Wei, C., Vincent, L. et al. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J. Surg. Res. 155, 231–236 (2009).

  140. 140.

    Wong, P., Korz, W. & Chinni, S. R. D. K. Targeting CXCR4 with CTCE-9908 inhibits prostate tumor metastasis. BMC Urol. 14, 12 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  141. 141.

    Karakasheva, T. A., Waldron, T. J., Eruslanov, E., Kim, S.-B., Lee, J.-S, O'Brien, S. et al. CD38-Expressing myeloid-derived suppressor cells promote tumor growth in a murine model of esophageal cancer. Cancer Res. 75, 4074–4085 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Lokhorst, H. M., Plesner, T., Laubach, J. P., Nahi, H., Gimsing, P., Hansson, M. et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N. Engl. J. Med. 373, 1207–1219 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Joller, E., Lozano, E., Burkett, P. R., Patel, B., Xiao, S., Zhu, C. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Tian, L., Goldstein, A., Wang, H., Lo, H. C., Kim, I. S., Welte, T. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Zhu, H., Yang, X., Ding, Y., Liu, J., Lu, J., Zhan, L. et al. Recombinant human endostatin enhances the radioresponse in esophageal squamous cell carcinoma by normalizing tumor vasculature and reducing hypoxia. Sci. Rep. 5, 14503 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Lv, J., Li, T., Deng, X., Li, F., Song, Y., Li, C. et al. Randomized phase II study of recombinant human endostatin combined with definitive chemoradiotherapy in locally advanced esophageal squamous cell carcinoma. J. Clin. Oncol. 20, 4035 (2015).

    Article  Google Scholar 

  147. 147.

    O’Sullivan, K. E., Michielsen, A. J., O’Regan, E., Cathcart, M. C., Moore, G., Breen, E. et al. pSTAT3 Levels have divergent expression patterns and associations with survival in squamous cell carcinoma and adenocarcinoma of the oesophagus. Int. J. Mol. Sci. 19, 1720 (2018).

  148. 148.

    Zhang, S., Zhang, X.-Q., Ding, X.-W., Yang, R.-K., Huang, S.-L., Kastelein, F. et al. Cyclooxygenase inhibitors use is associated with reduced risk of esophageal adenocarcinoma in patients with Barrett’s esophagus: a meta-analysis. Br. J. Cancer 110, 2378–2388 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Li, G., Yang, T. & Yan, J. Cyclooxygenase-2 increased the angiogenic and metastatic potential of tumor cells. Biochem. Biophys. Res. Commun. 299, 886–890 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Bardou, A. N., Ghosn, J., Hudson, M. & Rahme, E. M. B. Effect of chronic intake of NSAIDs and cyclooxygenase 2-selective inhibitors on esophageal cancer incidence. Clin. Gastroenterol. Hepatol. 2, 880–887 (2004).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    O’Sullivan, J., Lysaght, J., Donohoe, C. L. & Reynolds, J. V. Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat. Rev. Gastroenterol. Hepatol. 15, 699–714 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Vijayaraghavan, S., Moulder, S., Keyomarsi, K. & Layman, R. M. Inhibiting CDK in cancer therapy: current evidence and future directions. Target Oncol. 13, 21–38 (2018).

    PubMed  Article  Google Scholar 

  153. 153.

    Chen, L. & Pan, J. Dual cyclin-dependent kinase 4/6 inhibition by PD-0332991 induces apoptosis and senescence in oesophageal squamous cell carcinoma cells. Br. J. Pharmacol. 174, 2427–2443 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Galon, J., Angell, H. K., Bedognetti, D. & Marincola, F. M. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39, 11–26 (2013).

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Mongan, A. M., Lynam-Lennon, N., Doyle, S. L., Casey, R., Carr, E., Cannon, A. et al. Visceral adipose tissue modulates radiosensitivity in oesophageal adenocarcinoma. Int. J. Med. Sci. 16, 519–528 (2019).

  156. 156.

    Maley, C. C., Aktipis, A., Graham, T. A., Sottoriva, A., Boddy, A. M., Janiszewska, M. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Gatenbee, C. D., Minor, E. S., Slebos, R. J. C., Chung, C. H. & Anderson, A. R. A. Histoecology: applying ecological principles and approaches to describe and predict tumor ecosystem dynamics across space and time. Cancer Control. 27, 1073274820946804–1073274820946804 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Peters, M. K., Classen, A., Müller, J. & Steffan-Dewenter, I. Increasing the phylogenetic coverage for understanding broad-scale diversity gradients. Oecologia 192, 629–639 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Zheng, Y., Li, Y., Lian, J., Yang, H., Li, F., Zhao, S. et al. TNF-α-induced Tim-3 expression marks the dysfunction of infiltrating natural killer cells in human esophageal cancer. J. Transl. Med. 17, 165 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  161. 161.

    Kavanagh, M. E., Conroy, M. J., Clarke, N. E., Gilmartin, N. T., Feighery, R., MacCarthy, F. et al. Altered T cell migratory capacity in the progression from Barrett oesophagus to oesophageal adenocarcinoma. Cancer Microenviron. 12, 57–66 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Affiliations

Authors

Contributions

J.V.R. proposed the review topic and coordinated the review. M.D., N.E.D. and M.R.D. contributed equally to manuscript preparation and all researched and wrote sections of the review. R.P., C.H. and R.K. researched literature and contributed to writing of manuscript. M.D., N.E.D. and R.P. constructed the tables. C.H. designed figures for the manuscript. All authors provided feedback on the entire review and approved submission.

Corresponding author

Correspondence to John V. Reynolds.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Data availability

Not applicable.

Competing interests

The authors declare no competing interests.

Funding information

No funding.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davern, M., Donlon, N.E., Power, R. et al. The tumour immune microenvironment in oesophageal cancer. Br J Cancer (2021). https://doi.org/10.1038/s41416-021-01331-y

Download citation

Search

Quick links