Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Translational Therapeutics

Development of a rational strategy for integration of lactate dehydrogenase A suppression into therapeutic algorithms for head and neck cancer

Abstract

Background

Lactate dehydrogenase (LDH) is a critical metabolic enzyme. LDH A (LDHA) overexpression is a hallmark of aggressive malignancies and has been linked to tumour initiation, reprogramming and progression in multiple tumour types. However, successful LDHA inhibition strategies have not materialised in the translational and clinical space. We sought to develop a rational strategy for LDHA suppression in the context of solid tumour treatment.

Methods

We utilised a doxycycline-inducible short hairpin RNA (shRNA) system to generate LDHA suppression. Lactate and LDH activity levels were measured biochemically and kinetically using hyperpolarised 13C-pyruvate nuclear magnetic resonance spectroscopy. We evaluated effects of LDHA suppression on cellular proliferation and clonogenic survival, as well as on tumour growth, in orthotopic models of anaplastic thyroid carcinoma (ATC) and head and neck squamous cell carcinoma (HNSCC), alone or in combination with radiation.

Results

shRNA suppression of LDHA generated a time-dependent decrease in LDH activity with transient shifts in intracellular lactate levels, a decrease in carbon flux from pyruvate into lactate and compensatory shifts in metabolic flux in glycolysis and the Krebs cycle. LDHA suppression decreased cellular proliferation and temporarily stunted tumour growth in ATC and HNSCC xenografts but did not by itself result in tumour cure, owing to the maintenance of residual viable cells. Only when chronic LDHA suppression was combined with radiation was a functional cure achieved.

Conclusions

Successful targeting of LDHA requires exquisite dose and temporal control without significant concomitant off-target toxicity. Combinatorial strategies with conventional radiation are feasible as long as the suppression is targeted, prolonged and non-toxic.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Generation and functional validation of LDHA knockdown constructs.
Fig. 2: Functional validation of LDHA knockdown constructs.
Fig. 3: LDHA is required for viability and survival.
Fig. 4: LDHA is required for maximal tumour proliferation and survival.
Fig. 5: LDHA activity is required to neutralise radiation effects.

References

  1. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

    CAS  PubMed  Article  Google Scholar 

  3. Li, X. B., Gu, J. D. & Zhou, Q. H. Review of aerobic glycolysis and its key enzymes–new targets for lung cancer therapy. Thorac. Cancer 6, 17–24 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Annibaldi, A. & Widmann, C. Glucose metabolism in cancer cells. Curr. Opin. Clin. Nutr. Metab. Care 13, 466–470 (2010).

    CAS  PubMed  Article  Google Scholar 

  5. Sandulache, V. C., Skinner, H. D., Wang, Y., Chen, Y., Dodge, C. T., Ow, T. J. et al. Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and improves response to conventional chemotherapy and radiation. Mol. Cancer Ther. 11, 1373–1380 (2012).

    CAS  PubMed  Article  Google Scholar 

  6. Woo, S. H., Sandulache, V. C., Yang, L. & Skinner, H. D. Evaluating response to metformin/cisplatin combination in cancer cells via metabolic measurement and clonogenic survival. Methods Mol Biol. 1165, 11–18 (2014).

    PubMed  Article  CAS  Google Scholar 

  7. Billiard, J., Dennison, J. B., Briand, J., Annan, R. S., Chai, D., Colón, M. et al. Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells. Cancer Metab. 1, 19 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  8. Yeung, C., Gibson, A. E., Issaq, S. H., Oshima, N., Baumgart, J. T., Edessa, L. D. et al. Targeting glycolysis through inhibition of lactate dehydrogenase impairs tumor growth in preclinical models of Ewing sarcoma. Cancer Res. 79, 5060–5073 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Yecies, J. L. & Manning, B. D. mTOR links oncogenic signaling to tumor cell metabolism. J. Mol. Med. 89, 221–228 (2011).

    CAS  PubMed  Article  Google Scholar 

  10. Shackelford, D. B., Vasquez, D. S., Corbeil, J., Wu, S., Leblanc, M., Wu, C.-L. et al. mTOR and HIF-1α-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc. Natl Acad. Sci. USA 106, 11137–11142 (2009).

    CAS  PubMed  Article  Google Scholar 

  11. Adeva-Andany, M., Lopez-Ojen, M., Funcasta-Calderon, R., Ameneiros-Rodriguez, E., Donapetry-Garcia, C., Vila-Altesor, M. et al. Comprehensive review on lactate metabolism in human health. Mitochondrion 17, 76–100 (2014).

    CAS  PubMed  Article  Google Scholar 

  12. Rong, Y., Wu, W., Ni, X., Kuang, T., Jin, D., Wang, D. et al. Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumor Biol. 34, 1523–1530 (2013).

    CAS  Article  Google Scholar 

  13. Markert, C. L., Shaklee, J. B. & Whitt, G. S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189, 102–114 (1975).

    CAS  PubMed  Article  Google Scholar 

  14. Xie, H., Valera, V. A., Merino, M. J., Amato, A. M., Signoretti, S., Linehan, W. M. et al. LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Mol. Cancer Ther. 8, 626–635 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Fantin, V. R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).

    CAS  PubMed  Article  Google Scholar 

  16. Le, A., Cooper, C. R., Gouw, A. M., Dinavahi, R., Maitra, A., Deck, L. M. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl Acad. Sci. USA 107, 2037–2042 (2010).

    CAS  PubMed  Article  Google Scholar 

  17. Mohajertehran, F., Ayatollahi, H., Jafarian, A. H., Khazaeni, K., Soukhtanloo, M., Shakeri, M. T. et al. Overexpression of lactate dehydrogenase in the saliva and tissues of patients with head and neck squamous cell carcinoma. Rep. Biochem. Mol. Biol. 7, 142–149 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Thonsri, U., Seubwai, W., Waraasawapati, S., Sawanyawisuth, K., Vaeteewoottacharn, K., Boonmars, T. et al. Overexpression of lactate dehydrogenase A in cholangiocarcinoma is correlated with poor prognosis. Histol. Histopathol. 32, 503–510 (2017).

    CAS  PubMed  Google Scholar 

  19. Sandulache, V. C., Chen, Y., Skinner, H. D., Lu, T., Feng, L., Myers, J. N. et al. Acute tumor lactate perturbations as a biomarker of genotoxic stress: development of a biochemical model. Mol. Cancer Ther. 14, 2901–2908 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Yu, W., Chen, Y., Dubrulle, J., Stossi, F., Putluri, V., Sreekumar, A. et al. Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci. Rep. 8, 1–12 (2018).

    Google Scholar 

  21. Le, X., Huang, A. T., Chen, Y. & Lai, S. Y. Regulation of receptor tyrosine kinases by miRNA overexpression of miRNA using lentiviral inducible expression vectors. Methods Mol Biol. 1233, 135–147 (2015).

    PubMed  Article  Google Scholar 

  22. Wu, X., Bhayani, M. K., Dodge, C. T., Nicoloso, M. S., Chen, Y., Yan, X. et al. Coordinated targeting of the EGFR signaling axis by microRNA-27a. Oncotarget 4, 1388 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  23. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. & van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006).

    CAS  PubMed  Article  Google Scholar 

  24. Lee, J., Ramirez, M. S., Walker, C. M., Chen, Y., Yi, S., Sandulache, V. C. et al. High-throughput hyperpolarized (13)C metabolic investigations using a multi-channel acquisition system. J. Magn. Reson. 260, 20–27 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Gohlke, J. H., Lloyd, S. M., Basu, S., Putluri, V., Vareed, S. K., Rasaily, U. et al. Methionine-homocysteine pathway in African-American Prostate Cancer. JNCI Cancer Spectr. 3, pkz019 (2019).

  26. Vantaku, V., Putluri, V., Bader, D. A., Maity, S., Ma, J., Arnold, J. M. et al. Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression. Oncogene https://doi.org/10.1038/s41388-019-0902-7 (2019).

  27. Vantaku, V., Dong, J., Ambati, C. R., Perera, D., Donepudi, S. R., Amara, C. S. et al. Multi-omics integration analysis robustly predicts high-grade patient survival and identifies CPT1B effect on fatty acid metabolism in bladder cancer. Clin. Cancer Res. 25, 3689–3701 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

    CAS  PubMed  Article  Google Scholar 

  29. Sandulache, V. C., Skinner, H. D., Ow, T. J., Zhang, A., Xia, X., Luchak, J. M. et al. Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status. Cancer 118, 711–721 (2012).

    CAS  PubMed  Article  Google Scholar 

  30. Sandulache, V. C., Chen, Y., Lee, J., Rubinstein, A., Ramirez, M. S., Skinner, H. D. et al. Evaluation of hyperpolarized [1-(1)(3)C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time. PLoS ONE 9, e87031 (2014).

  31. Kim, S., Park, Y. W., Schiff, B. A., Doan, D. D., Yazici, Y., Jasser, S. A. et al. An orthotopic model of anaplastic thyroid carcinoma in athymic nude mice. Clin. Cancer Res. 11, 1713–1721 (2005).

    CAS  PubMed  Article  Google Scholar 

  32. Ahn, S. H., Henderson, Y., Kang, Y., Chattopadhyay, C., Holton, P., Wang, M. et al. An orthotopic model of papillary thyroid carcinoma in athymic nude mice. Arch. Otolaryngol. Head Neck Surg. 134, 190–197 (2008).

    PubMed  Article  Google Scholar 

  33. Sano, D., Xie, T. X., Ow, T. J., Zhao, M., Pickering, C. R., Zhou, G. et al. Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. Clin. Cancer Res. 17, 6658–6670 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Green, A. S., Chapuis, N., Lacombe, C., Mayeux, P., Bouscary, D. & Tamburini, J. LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 10, 2115–2120 (2011).

    CAS  PubMed  Article  Google Scholar 

  35. Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Li, N., Huang, D., Lu, N. & Luo, L. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells. Oncol. Rep. 34, 2821–2826 (2015).

    CAS  PubMed  Article  Google Scholar 

  37. Filipp, F. V. Cancer metabolism meets systems biology: pyruvate kinase isoform PKM2 is a metabolic master regulator. J. Carcinogen. 12, 14. https://doi.org/10.4103/1477-3163.115423 (2013).

    Article  CAS  Google Scholar 

  38. Reitman, Z. J. & Yan, H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J. Natl Cancer Inst. 102, 932–941 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Kroemer, G. & Pouyssegur, J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer cell 13, 472–482 (2008).

    CAS  PubMed  Article  Google Scholar 

  40. Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    Article  CAS  Google Scholar 

  41. Akhenblit, P. J. & Pagel, M. D. Recent advances in targeting tumor energy metabolism with tumor acidosis as a biomarker of drug efficacy. J. Cancer Sci. Ther. 8, 20 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Fiume, L., Manerba, M., Vettraino, M. & Di Stefano, G. Inhibition of lactate dehydrogenase activity as an approach to cancer therapy. Fut. Med. Chem. 6, 429–445 (2014).

    CAS  Article  Google Scholar 

  43. Granchi, C., Bertini, S., Macchia, M. & Minutolo, F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr. Med. Chem. 17, 672–697 (2010).

    CAS  PubMed  Article  Google Scholar 

  44. Grimm, M., Alexander, D., Munz, A., Hoffmann, J. & Reinert, S. Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin. Exp. Metastasis 30, 529–540 (2013).

    CAS  PubMed  Article  Google Scholar 

  45. Kolev, Y., Uetake, H., Takagi, Y. & Sugihara, K. Lactate dehydrogenase-5 (LDH-5) expression in human gastric cancer: association with hypoxia-inducible factor (HIF-1alpha) pathway, angiogenic factors production and poor prognosis. Ann. Surg. Oncol. 15, 2336–2344 (2008).

    PubMed  Article  Google Scholar 

  46. Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P. et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529–32537 (1996).

    CAS  PubMed  Article  Google Scholar 

  47. Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Gatter, K. C., Trarbach, T., Folprecht, G. et al. Prognostic and predictive role of lactate dehydrogenase 5 expression in colorectal cancer patients treated with PTK787/ZK 222584 (vatalanib) antiangiogenic therapy. Clin. Cancer Res. 17, 4892–4900 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Koukourakis, M. I., Giatromanolaki, A., Panteliadou, M., Pouliliou, S. E., Chondrou, P. S., Mavropoulou, S. et al. Lactate dehydrogenase 5 isoenzyme overexpression defines resistance of prostate cancer to radiotherapy. Br. J. Cancer 110, 2217–2223 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Xie, H., Hanai, J., Ren, J. G., Kats, L., Burgess, K., Bhargava, P. et al. Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab. 19, 795–809 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Sheng, S. L., Liu, J. J., Dai, Y. H., Sun, X. G., Xiong, X. P. & Huang, G. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J. 279, 3898–3910 (2012).

    CAS  PubMed  Article  Google Scholar 

  51. Chang, C. C., Zhang, C., Zhang, Q., Sahin, O., Wang, H., Xu, J. et al. Upregulation of lactate dehydrogenase a by 14-3-3zeta leads to increased glycolysis critical for breast cancer initiation and progression. Oncotarget 7, 35270–35283 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  52. Lewis, B. C., Prescott, J. E., Campbell, S. E., Shim, H., Orlowski, R. Z. & Dang, C. V. Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res. 60, 6178–6183 (2000).

    CAS  PubMed  Google Scholar 

  53. Merkle, S., Favor, J., Graw, J., Hornhardt, S. & Pretsch, W. Hereditary lactate dehydrogenase A-subunit deficiency as cause of early postimplantation death of homozygotes in Mus musculus. Genetics 131, 413–421 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Iriki, H., Kawata, T. & Muramoto, T. Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase. PLoS ONE 14, e0224128 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Wang, X., Xu, L., Wu, Q., Liu, M., Tang, F., Cai, Y. et al. Inhibition of LDHA deliver potential anticancer performance in renal cell carcinoma. Urol. Int. 99, 237–244 (2017).

    CAS  PubMed  Article  Google Scholar 

  56. Ahler, E., Sullivan, W. J., Cass, A., Braas, D., York, A. G., Bensinger, S. J. et al. Doxycycline alters metabolism and proliferation of human cell lines. PLoS ONE 8, e64561 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.Y.L., V.C.S. and Y.C. designed the study. Y.C., A.M., L.T., M.C., X.L., J.S.N., K.A.M., C.J.H., W.L., Y.C.H. and A.S.R.M. performed the experiments and analysed data; S.Y.L., V.C.S., P.L.L., N.P. and J.A.B. analysed data and provided resources. S.Y.L., V.C.S. and Y.C. wrote the initial draft of the paper. A.M., A.S.M., P.L.L., N.P. and J.A.B. reviewed and revised the draft of the paper. J.A.B., V.C.S. and S.Y.L. provided funding support for this study. S.Y.L. supervised the study. All authors reviewed the results and approved the final version of the paper.

Corresponding authors

Correspondence to Vlad C. Sandulache or Stephen Y. Lai.

Ethics declarations

Ethics approval and consent to participate

For the animal study, all procedures and care were reviewed and approved by The University of Texas MD Anderson Cancer Center Institutional Animal Care and Use Committee under Institutional Animal Care and Use Committee guidelines.

Consent to publish

Not applicable.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

The work in this study was funded in part, and V.C.S., S.Y.L., J.A.B., Y.C. and J.S.N. were supported by the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP170366. V.C.S. is supported by the National Institute of Dental and Craniofacial Research through R03DE028858. J.A.B. is supported by R01CA211150. N.P. is supported by the CPRIT Proteomics and Metabolomics Core Facility (RP170005), NIH (P30 CA125123) and Dan L. Duncan Cancer Center. L.T. and P.L.L. were supported by CPRIT grant RP130397 and NIH grants S10OD012304-01, U01CA235510 and P30CA016672. Work performed in the Flow Cytometry and Cellular Imaging Facility is supported in part by the National Institutes of Health through MD Anderson’s Cancer Center Support grant CA016672. Work performed through the Mouse Metabolism and Phenotyping Core (Seahorse) is supported by NIH UM1HG006348 and NIH R01DK114356. The content is solely the responsibility of the authors and does not necessarily represent the official views of their sponsors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Maniakas, A., Tan, L. et al. Development of a rational strategy for integration of lactate dehydrogenase A suppression into therapeutic algorithms for head and neck cancer. Br J Cancer 124, 1670–1679 (2021). https://doi.org/10.1038/s41416-021-01297-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01297-x

Search

Quick links