Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Autophagy mediated lipid catabolism facilitates glioma progression to overcome bioenergetic crisis

Abstract

Background

Activation of mTORC1 plays a significant role in cancer development and progression. However, the metabolic mechanisms to sustain mTORC1 activation of cancer cells within stressed environments are still under-appreciated. We recently revealed high autophagy activity in tumour cells with mTORC1 hyper-activation. Nevertheless, the functions and mechanisms of autophagy in regulating mTORC1 in glioma are not studied.

Methods

Using glioma patient database and human glioma cells, we assessed the mechanisms and function of selective autophagy to sustain mTORC1 hyper-activation in glioma.

Results

We revealed a strong association of altered mRNA levels in mTORC1 upstream and downstream genes with prognosis of glioma patients. Our results indicated that autophagy-mediated lipid catabolism was essential to sustain mTORC1 activity in glioma cells under energy stresses. We found that autophagy inhibitors or fatty acid oxidation (FAO) inhibitors in combination with 2-Deoxy-D-glucose (2DG) decreased energy production and survival of glioma cells in vitro. Consistently, inhibition of autophagy or FAO inhibitors with 2DG effectively suppressed the progression of xenografted glioma with hyper-activated mTORC1.

Conclusions

This study established an autophagy/lipid degradation/FAO/ATP generation pathway, which might be used in brain cancer cells under energy stresses to maintain high mTORC1 signalling for tumour progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of mTORC1 upstream regulators and downstream effectors in glioma patients.
Fig. 2: Maintenance of mTORC1 hyper-activity in GBM cells upon energy stresses through autophagy-mediated lipid degradation.
Fig. 3: Maintenance of mTORC1 hyper-activity in GBM cells upon energy stresses through autophagy-mediated fatty acid oxidation.
Fig. 4: Therapeutic target of autophagy-mediated lipid catabolism in glioblastoma cells.
Fig. 5: Targeting autophagy and glycolysis in a subcutaneously transplanted GBM model.
Fig. 6: Targeting autophagy-mediated fatty acid β-oxidation in an intracranial transplanted GBM model.

Similar content being viewed by others

References

  1. Omuro, A. & DeAngelis, L. M. Glioblastoma and other malignant gliomas: a clinical review. JAMA 310, 1842–1850 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Clarke, J., Butowski, N. & Chang, S. Recent advances in therapy for glioblastoma. Arch. Neurol. 67, 279–283 (2010).

    Article  PubMed  Google Scholar 

  3. Thomas, A. A., Brennan, C. W., DeAngelis, L. M. & Omuro, A. M. Emerging therapies for glioblastoma. JAMA Neurol. 71, 1437–1444 (2014).

    Article  PubMed  Google Scholar 

  4. Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A. et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Liang, B. C., Thornton, A. F. Jr., Sandler, H. M. & Greenberg, H. S. Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J. Neurosurg. 75, 559–563 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Petrecca, K., Guiot, M. C., Panet-Raymond, V. & Souhami, L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J. Neuro Oncol. 111, 19–23 (2013).

    Article  Google Scholar 

  7. Sneed, P. K., Gutin, P. H., Larson, D. A., Malec, M. K., Phillips, T. L., Prados, M. D. et al. Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int. J. Radiat. Oncol. Biol. Phys. 29, 719–727 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H., Salama, S. R. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akhavan, D., Cloughesy, T. F. & Mischel, P. S. mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro Oncol. 12, 882–889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laplante, M. & Sabatini, D. M. mTOR signaling at a glance. J. Cell Sci. 122, 3589–3594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pachow, D., Wick, W., Gutmann, D. H. & Mawrin, C. The mTOR signaling pathway as a treatment target for intracranial neoplasms. Neuro Oncol. 17, 189–199 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, S. & Houghton, P. J. Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol. 3, 371–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Dowling, R. J., Topisirovic, I., Fonseca, B. D. & Sonenberg, N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim. Biophys. Acta 1804, 433–439 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Guertin, D. A. & Sabatini, D. M. An expanding role for mTOR in cancer. Trends Mol. Med. 11, 353–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Fan, Q., Aksoy, O., Wong, R. A., Ilkhanizadeh, S., Novotny, C. J., Gustafson, W. C. et al. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma. Cancer Cell 31, 424–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cloughesy, T. F., Yoshimoto, K., Nghiemphu, P., Brown, K., Dang, J., Zhu, S. et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 5, e8 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Iwanami, A., Gini, B., Zanca, C., Matsutani, T., Assuncao, A., Nael, A. et al. PML mediates glioblastoma resistance to mammalian target of rapamycin (mTOR)-targeted therapies. Proc. Natl Acad. Sci. USA 110, 4339–4344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeuchi, H., Kondo, Y., Fujiwara, K., Kanzawa, T., Aoki, H., Mills, G. B. et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 65, 3336–3346 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Dibble, C. C. & Manning, B. D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15, 555–564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, Q., Chen, X., Ma, J., Peng, H., Wang, F., Zha, X. et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl Acad. Sci. USA 108, 4129–4134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Valvezan, A. J., Turner, M., Belaid, A., Lam, H. C., Miller, S. K., McNamara, M. C. et al. mTORC1 couples nucleotide synthesis to nucleotide demand resulting in a targetable metabolic vulnerability. Cancer Cell 32, 624–638 e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chakrabarti, P., English, T., Shi, J., Smas, C. M. & Kandror, K. V. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59, 775–781 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, G., Zheng, Y., Cho, S., Jang, C., England, C., Dempsey, J. M. et al. Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell 171, 1545–58 e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Porstmann, T., Santos, C. R., Griffiths, B., Cully, M., Wu, M., Leevers, S. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Csibi, A., Lee, G., Yoon, S. O., Tong, H., Ilter, D., Elia, I. et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr. Biol. 24, 2274–2280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Agnihotri, S. & Zadeh, G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 18, 160–172 (2016).

    Article  PubMed  Google Scholar 

  28. Beloribi-Djefaflia, S., Vasseur, S. & Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, e189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo, X., Cheng, C., Tan, Z., Li, N., Tang, M., Yang, L. et al. Emerging roles of lipid metabolism in cancer metastasis. Mol. Cancer 16, 76 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Accioly, M. T., Pacheco, P., Maya-Monteiro, C. M., Carrossini, N., Robbs, B. K., Oliveira, S. S. et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 68, 1732–1740 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Qiu, B., Ackerman, D., Sanchez, D. J., Li, B., Ochocki, J. D., Grazioli, A. et al. HIF2alpha-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov. 5, 652–667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yue, S., Li, J., Lee, S. Y., Lee, H. J., Shao, T., Song, B. et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19, 393–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geng, F., Cheng, X., Wu, X., Yoo, J. Y., Cheng, C., Guo, J. Y. et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clinical cancer research: an official journal of the American Association for. Cancer Res. 22, 5337–5348 (2016).

    CAS  Google Scholar 

  34. Laplante, M. & Sabatini, D. M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19, R1046–R1052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walther, T. C. & Farese, R. V. Jr. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zechner, R., Zimmermann, R., Eichmann, T. O., Kohlwein, S. D., Haemmerle, G., Lass, A. et al. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15, 279–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimmelman, A. C. & White, E. Autophagy and tumor metabolism. Cell Metab. 25, 1037–1043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A., Mair, W. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, Y., Wei, H., Liu, F. & Guan, J. L. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) promotes breast cancer progression through enhancing glucose starvation-induced autophagy and Akt signaling. J. Biol. Chem. 289, 1164–1173 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, S., Wang, C., Yeo, S., Liang, C. C., Okamoto, T., Sun, S. et al. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model. Genes Dev. 30, 856–869 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei, H., Wei, S., Gan, B., Peng, X., Zou, W. & Guan, J. L. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25, 1510–1527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anderson, C. M. & Macleod, K. F. Autophagy and cancer cell metabolism. Int. Rev. Cell Mol. Biol. 347, 145–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poillet-Perez, L. & White, E. Role of tumor and host autophagy in cancer metabolism. Genes Dev. 33, 610–619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, C., Haas, M. A., Yang, F., Yeo, S., Okamoto, T., Chen, S. et al. Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells. Nature. Metabolism 1, 1127–1140 (2019).

    CAS  Google Scholar 

  48. Yoo, Y., Wu, X. & Guan, J. L. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 282, 7616–7623 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, Q., Shao, X., Hao, M., Fang, H., Guan, R., Tian, Z. et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. Biomaterials 250, 120059 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Madhavan, S., Zenklusen, J. C., Kotliarov, Y., Sahni, H., Fine, H. A. & Buetow, K. Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol. Cancer Res. 7, 157–167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gravendeel, L. A., Kouwenhoven, M. C., Gevaert, O., de Rooi, J. J., Stubbs, A. P., Duijm, J. E. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 69, 9065–9072 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, J., Xia, H., Kim, M., Xu, L., Li, Y., Zhang, L. et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147, 223–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wagle, N. & Kesari, S. Breaking down the blood brain barrier. Neuro Oncol. 23, 6 https://doi.org/10.1093/neuonc/noaa274 (2021).

    Article  PubMed  Google Scholar 

  55. Li, X., Wu, C., Chen, N., Gu, H., Yen, A., Cao, L. et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 7, 33440–33450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Guo, J. Y., Xia, B. & White, E. Autophagy-mediated tumor promotion. Cell 155, 1216–1219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M. et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 4, e838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Di Nardo, A., Wertz, M. H., Kwiatkowski, E., Tsai, P. T., Leech, J. D., Greene-Colozzi, E. et al. Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Hum. Mol. Genet. 23, 3865–3874 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lin, H., Patel, S., Affleck, V. S., Wilson, I., Turnbull, D. M., Joshi, A. R. et al. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro Oncol. 19, 43–54 (2017).

    Article  PubMed  CAS  Google Scholar 

  62. Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227–232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kolwicz, S. C. Jr., Purohit, S. & Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, D., Xie, J., Fiskesund, R., Dong, W., Liang, X., Lv, J. et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun. 9, 873 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kalender, A., Selvaraj, A., Kim, S. Y., Gulati, P., Brule, S., Viollet, B. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, E. H., Lee, J. H., Oh, Y., Koh, I., Shim, J. K., Park, J. et al. Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin. Neuro Oncol. 19, 197–207 (2017).

    CAS  PubMed  Google Scholar 

  67. Lunt, S. Y., Vander & Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Singh, D., Banerji, A. K., Dwarakanath, B. S., Tripathi, R. P., Gupta, J. P., Mathew, T. L. et al. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther. Onkol. 181, 507–514 (2005).

    Article  PubMed  Google Scholar 

  71. Raez, L. E., Papadopoulos, K., Ricart, A. D., Chiorean, E. G., Dipaola, R. S., Stein, M. N. et al. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 71, 523–530 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xin Tang and Mr. Harsh Patel in Dr. Wang’s lab and other people from Dr. Guan’s lab for careful reading of the manuscript and helpful suggestions. We thank Glenn Doerman for his help in the preparation of figures. We thank the support from Brain Tumor Center of University of Cincinnati College of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

C.W.: developed idea, designed and executed experiments, analysed data and wrote manuscript; M.H.: assisted in the mice transplantation and edited the manuscript; S.Y.: contributed in the development of molecular mechanism, the manuscript review and correction; R.P.: assisted in experiments and edited the manuscript; F.Y.: assisted in experiments and edited the manuscript; S.V.: assisted in the mice transplantation and edited the manuscript; X.Q.: designed experiments, analysed data and edited the manuscript; D.P.: contributed in the development of molecular mechanism, analysed data and edited the manuscript; J.-L.G.: developed idea, analysed data and edited the manuscript.

Corresponding author

Correspondence to Chenran Wang.

Ethics declarations

Ethics approval and consent to participate

Mice were housed and handled according to local, state and federal regulations. All animal studies were carried out according to the protocols approved by the Institutional Animal Care and Use Committee at University of Cincinnati (Cincinnati, OH, USA). Human GBM cell lines were gifts from Dr. David R. Plas (University of Cincinnati College of Medicine) as described in the Methods section.

Data availability

All original data and materials generated during the current study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

This study was supported by NIH grants (NS103981-01) to C.R.W. and (NS094144-02, CA211066) to J.L.G.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Haas, M.A., Yeo, S.K. et al. Autophagy mediated lipid catabolism facilitates glioma progression to overcome bioenergetic crisis. Br J Cancer 124, 1711–1723 (2021). https://doi.org/10.1038/s41416-021-01294-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01294-0

This article is cited by

Search

Quick links