Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

PI3K activation promotes resistance to eribulin in HER2-negative breast cancer

Abstract

Background

Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2−) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance.

Methods

Resistance to eribulin was evaluated in HER2− BC cell lines and patient-derived tumour xenografts, and correlated with a mutation in the PI3K/AKT pathway.

Results

Eleven out of 23 HER2− BC xenografts treated with eribulin exhibited disease progression. No correlation with ER status was detected. Among the resistant models, 64% carried mutations in PIK3CA, PIK3R1 or AKT1, but only 17% among the sensitive xenografts (P = 0.036). We observed that eribulin treatment induced AKT phosphorylation in vitro and in patient tumours. In agreement, the addition of PI3K inhibitors reversed primary and acquired resistance to eribulin in xenograft models, regardless of the genetic alterations in PI3K/AKT pathway or ER status. Mechanistically, PI3K blockade reduced p21 levels likely enabling apoptosis, thus sensitising to eribulin treatment.

Conclusions

PI3K pathway activation induces primary resistance or early adaptation to eribulin, supporting the combination of PI3K inhibitors and eribulin for the treatment of HER2− BC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PIK3CA-activating mutations correlate with resistance to eribulin in vitro.
Fig. 2: PIK3CA/AKT1-activating mutations do not predict primary resistance to eribulin in vivo.
Fig. 3: PI3K inhibition increases the activity of eribulin in vitro and in vivo.
Fig. 4: PI3K inhibition reverses secondary resistance to eribulin single agent and restores therapy response.
Fig. 5: Downmodulation of p21 re-sensitises to eribulin treatment.

Similar content being viewed by others

References

  1. Cardoso, F., Spence, D., Mertz, S., Corneliussen-James, D., Sabelko, K., Gralow, J. et al. Global analysis of advanced/metastatic breast cancer: Decade report (2005–2015). Breast 39, 131–138 (2018).

    PubMed  Google Scholar 

  2. Cardoso, F., Senkus, E., Costa, A., Papadopoulos, E., Aapro, M., André, F. et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann. Oncol. 29, 1634–1657 (2018).

    CAS  PubMed  Google Scholar 

  3. Balic, M., Thomssen, C., Würstlein, R., Gnant, M. & Harbeck, N. St. Gallen/Vienna 2019: a brief summary of the consensus discussion on the optimal primary breast cancer treatment. Breast Care. 14, 103–110 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Cortes, J., O’Shaughnessy, J., Loesch, D., Blum, J. L., Vahdat, L. T., Petrakova, K. et al. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): A phase 3 open-label randomised study. Lancet 377, 914–923 (2011).

    CAS  PubMed  Google Scholar 

  5. McIntyre, K., O’Shaughnessy, J., Schwartzberg, L., Glück, S., Berrak, E., Song, J. X. et al. Phase 2 study of eribulin mesylate as first-line therapy for locally recurrent or metastatic human epidermal growth factor receptor 2-negative breast cancer. Breast Cancer Res Treat. 146, 321–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong, K.-K., Engelman, J. A. & Cantley, L. C. Targeting the PI3K pathway in cancer. Curr. Opin. Genet Dev. 8, 627–644 (2009).

    Google Scholar 

  7. Coqueret, O. New roles for p21 and p27 cell-cycle inhibitors: A function for each cell compartment? Trends Cell Biol. 13, 65–70 (2003).

    CAS  PubMed  Google Scholar 

  8. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    CAS  PubMed  Google Scholar 

  9. Blain, S. W. Switching cyclin D-Cdk4 kinase activity on and off. Cell Cycle 7, 892–898 (2008).

    CAS  PubMed  Google Scholar 

  10. Labaer, J., Garrett, M. D., Stevenson, L. F., Slingerland, J. M., Sandhu, C., Chou, H. S. et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11, 847–862 (1997).

    CAS  PubMed  Google Scholar 

  11. Reynisdóttir, I. & Massagué, J. The subcellular locations of pl5(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev. 11, 492–503 (1997).

    PubMed  Google Scholar 

  12. Harper, J. W., Elledge, S. J., Keyomarsi, K., Dynlacht, B., Tsai, L. H., Zhang, P. et al. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 6, 387–p400 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki, A., Kawano, H., Hayashida, M., Hayasaki, Y., Tsutomi, Y. & Akahane, K. Procaspase 3/p21 complex formation to resist Fas-mediated cell death is initiated as a result of the phosphorylation of p21 by protein kinase A. Cell Death Differ. 7, 721–728 (2000).

    CAS  PubMed  Google Scholar 

  14. Stemke-Hale, K., Gonzalez-Angulo, A. M., Lluch, A., Neve, R. M., Kuo, W. L., Davies, M. et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 68, 6084–6091 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. López-Knowles, E., O’Toole, S. A., McNeil, C. M., Millar, E. K. A., Qiu, M. R., Crea, P. et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int. J. Cancer 126, 1121–1131 (2010).

    PubMed  Google Scholar 

  16. Bareche, Y., Venet, D., Ignatiadis, M., Aftimos, P., Piccart, M., Rothe, F. et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann. Oncol. 29, 895–902 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Koboldt, D. C., Fulton, R. S., McLellan, M. D., Schmidt, H., Kalicki-Veizer, J., McMichael, J. F. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    CAS  Google Scholar 

  18. Huang, W. C. & Hung, M. C. Induction of Akt activity by chemotherapy confers acquired resistance. J. Formos. Med. Assoc. 108, 180–194 (2009).

    CAS  PubMed  Google Scholar 

  19. Wallin, J. J., Guan, J., Prior, W. W., Edgar, K. A., Kassees, R., Sampath, D. et al. Nuclear phospho-Akt increase predicts synergy of PI3K inhibition and doxorubicin in breast and ovarian cancer. Sci. Transl. Med. 2, 1–9 (2010).

    Google Scholar 

  20. Clark, A. S., West, K., Streicher, S., Dennis, P. A., Brueggemeier, R. W., Shapiro, C. L. et al. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol. Cancer Ther. 1, 707–717 (2002).

    CAS  PubMed  Google Scholar 

  21. Rodon, J., Dienstmann, R., Serra, V. & Tabernero, J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat. Rev. Clin. Oncol. 10, 143–153 (2013).

    CAS  PubMed  Google Scholar 

  22. Martín, M., Chan, A., Dirix, L., O’Shaughnessy, J., Hegg, R., Manikhas, A. et al. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2- advanced breast cancer (BELLE-4). Ann. Oncol. 28, 313–320 (2017).

    PubMed  Google Scholar 

  23. Isakoff, S. J., Engelman, J. A., Irie, H. Y., Luo, J., Brachmann, S. M., Pearline, R. V. et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 65, 10992–11000 (2005).

    CAS  PubMed  Google Scholar 

  24. VanderWeele, D. J., Zhou, R. & Rudin, C. M. Akt up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin. Mol. Cancer Ther. 3, 1605–1613 (2004).

    CAS  PubMed  Google Scholar 

  25. Fujiwara, Y., Hosokawa, Y., Watanabe, K., Tanimura, S., Ozaki, K. -I. & Kohno, M. Blockade of the phosphatidylinositol-3-kinase-Akt signaling pathway enhances the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the pathway is constitutively activated. Mol. Cancer Ther. 6, 1133–1142 (2007).

    CAS  PubMed  Google Scholar 

  26. Wallin, J. J., Guan, J., Prior, W. W., Lee, L. B., Berry, L., Belmont, L. D. et al. GDC-0941, a novel class I selective PI3K inhibitor, enhances the efficacy of docetaxel in human breast cancer models by increasing cell death in vitro and in vivo. Clin. Cancer Res. 18, 3901–3911 (2012).

    CAS  PubMed  Google Scholar 

  27. Hirai, H., Sootome, H., Nakatsuru, Y., Miyama, K., Taguchi, S., Tsujioka, K. et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol. Cancer Ther. 9, 1956–1967 (2010).

    CAS  PubMed  Google Scholar 

  28. McDonald, G. T., Sullivan, R., Paré, G. C. & Graham, C. H. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression. Exp. Cell Res. 316, 3197–3206 (2010).

    CAS  PubMed  Google Scholar 

  29. Rajput, S., Guo, Z., Li, S. & Ma, C. X. PI3K inhibition enhances the anti-tumor effect of eribulin in triple negative breast cancer. Oncotarget 10, 3667–3680 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Owusu-Brackett, N., Kenerson, H. L., Riggle, K. M., Turnham, R., Sullivan, K., Bauer, R. et al. TAK228 enhances antitumor activity of eribulin in triple negative breast cancer. Oncotarget 10, 5011–5019 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Wen, W., Marcinkowski, E., Luyimbazi, D., Luu, T., Xing, Q., Yan, J. et al. Eribulin synergistically increases anti-tumor activity of an mTOR inhibitor by inhibiting pAKT/pS6K/pS6 in triple negative breast. Cancer Cells 8, 1–15 (2019).

    Google Scholar 

  32. Beaufils, F., Cmiljanovic, N., Cmiljanovic, V., Bohnacker, T., Melone, A., Marone, R. et al. 5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a potent, brain-penetrant, orally bioavailable, pan-class i PI3K/mTOR inhibitor as clinical candidate in oncology. J. Med. Chem. 60, 7524–7538 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gong, J. P., Traganos, F. & Darzynkiewicz, Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal. Biochem. 218, 314–319 (1994).

    CAS  PubMed  Google Scholar 

  34. Krishan, A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol. 66, 188–193 (1975).

    CAS  PubMed  Google Scholar 

  35. Bruna, A., Rueda, O. M., Greenwood, W., Batra, A. S., Callari, M., Batra, R. N. et al. A Biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167, 260–274.e22 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tentler, J. J., Tan, A. C., Weekes, C. D., Jimeno, A., Leong, S., Pitts, T. M. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Festing, M. F. W. Design and statistical methods in studies using animal models of development. ILAR J. 47, 5–14 (2006).

    CAS  PubMed  Google Scholar 

  38. Gao, H., Korn, J. M., Ferretti, S., Monahan, J. E., Wang, Y., Singh, M. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med 21, 1318–1325 (2015).

    CAS  PubMed  Google Scholar 

  39. Therasse, P., Arbuck, S. G., Eisenhauer, E. A., Wanders, J., Kaplan, R. S., Rubinstein, L. et al. New guidelines to evaluate the response to treatment in solid tumors. J. Natl Cancer Inst. 92, 205–216 (2000).

    CAS  PubMed  Google Scholar 

  40. Cheng, D. T., Mitchell, T. N., Zehir, A., Shah, R. H., Benayed, R., Syed, A. et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Juric, D., Castel, P., Griffith, M., Griffith, O. L., Won, H. H., Ellis, H. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).

    CAS  PubMed  Google Scholar 

  42. Wee, S., Wiederschain, D., Maira, S.-M., Loo, A., Miller, C., DeBeaumont, R. et al. PTEN-deficient cancers depend on PIK3CB. Proc. Natl Acad. Sci. USA 105, 13057–13062 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jordan, M. A. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol. Cancer Ther. 4, 1086–1095 (2005).

    CAS  PubMed  Google Scholar 

  44. Kalinsky, K., Jacks, L. M., Heguy, A., Patil, S., Drobnjak, M., Bhanot, U. K. et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin. Cancer Res. 15, 5049–5059 (2009).

    CAS  PubMed  Google Scholar 

  45. Zardavas, D., Te Marvelde, L., Milne, R. L., Fumagalli, D., Fountzilas, G., Kotoula, V. et al. Tumor PIK3CA genotype and prognosis in early-stage breast cancer: a pooled analysis of individual patient data. J. Clin. Oncol. 36, 981–990 (2018).

    CAS  PubMed  Google Scholar 

  46. Mosele, F., Stefanovska, B., Lusque, A., Tran Dien, A., Garberis, I., Droin, N. et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann. Oncol. 31, 377–386 (2020).

    CAS  PubMed  Google Scholar 

  47. Yuan, H., Chen, J., Liu, Y., Ouyang, T., Li, J., Wang, T. et al. Association of PIK3CA mutation status before and after neoadjuvant chemotherapy with response to chemotherapy in women with breast cancer. Clin. Cancer Res. 21, 4365–4372 (2015).

    CAS  PubMed  Google Scholar 

  48. Murtaza, M., Dawson, S. J., Tsui, D. W. Y., Gale, D., Forshew, T., Piskorz, A. M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

    CAS  PubMed  Google Scholar 

  49. Brachmann, S. M., Kleylein-Sohn, J., Gaulis, S., Kauffmann, A., Blommers, M. J. J., Kazic-Legueux, M. et al. Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol. Cancer Ther. 11, 1747–1757 (2012).

    CAS  PubMed  Google Scholar 

  50. Lee, J. S., Yost, S. E., Blanchard, S., Schmolze, D., Yin, H. H., Pillai, R. et al. Phase I clinical trial of the combination of eribulin and everolimus in patients with metastatic triple-negative breast cancer. Breast Cancer Res. 21, 1–13 (2019).

    Google Scholar 

  51. Turner, N. C., Alarcón, E., Armstrong, A. C., Philco, M., López Chuken, Y. A., Sablin, M.-P. et al. BEECH: a dose-finding run-in followed by a randomised phase II study assessing the efficacy of AKT inhibitor capivasertib (AZD5363) combined with paclitaxel in patients with estrogen receptor-positive advanced or metastatic breast cancer, and in a PIK3CA. Ann. Oncol. 30, 774–780 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmid, P., Abraham, J., Chan, S., Wheatley, D., Brunt, M., Nemsadze, G. et al. AZD5363 plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (PAKT): a randomised, double-blind, placebo-controlled, phase II trial. J. Clin. Oncol. 36(Suppl.), 1007–1007 (2018).

    Google Scholar 

  53. Kim, S.-B., Dent, R., Im, S.-A., Espié, M., Blau, S., Tan, A. R. et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 18, 1360–1372 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Oliveira, M., Saura, C., Nuciforo, P., Calvo, I., Andersen, J. & Gil, M. FAIRLANE, a double-blind placebo-controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann. Oncol. 30, 1289–1297 (2019).

    CAS  PubMed  Google Scholar 

  55. Bosch, A., Li, Z., Bergamaschi, A., Ellis, H., Toska, E., Prat, A. et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci. Transl. Med. 7, 283ra51 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Toska, E., Osmanbeyoglu, H. U., Castel, P., Chan, C., Hendrickson, R. C., Elkabets, M. et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science 335, 1324–1330 (2017).

    Google Scholar 

  57. Jain, S. & Vahdat, L. T. Eribulin mesylate. Clin. Cancer Res. 17, 6615–6622 (2011).

    CAS  PubMed  Google Scholar 

  58. Agoulnik, S., Kuznetsov, G., Tendyke, K., Parent, L. A., Marsh, J. P., Twine, N. et al. Sensitivity to halichondrin analog E7389 and hemiasterlin analog E7974 correlates with βIII tubulin isotype expression in human breast cancer cell lines. J. Clin. Oncol. 23(Suppl.), 2012–2012 (2017).

    Google Scholar 

  59. Mabuchi, S., Ohmichi, M., Kimura, A., Hisamoto, K., Hayakawa, J., Nishio, Y. et al. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J. Biol. Chem. 277, 33490–33500 (2002).

    CAS  PubMed  Google Scholar 

  60. Hayasaka, N., Takada, K., Nakamura, H., Arihara, Y., Kawano, Y., Osuga, T. et al. Combination of eribulin plus AKT inhibitor evokes synergistic cytotoxicity in soft tissue sarcoma cells. Sci. Rep. 9, 1–8 (2019).

    CAS  Google Scholar 

  61. Bozulic, L., Surucu, B., Hynx, D. & Hemmings, B. A. PKBα/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol. Cell 30, 203–213 (2008).

    CAS  PubMed  Google Scholar 

  62. Mitsuuchi, Y., Johnson, S. W., Selvakumaran, M., Williams, S. J., Hamilton, T. C. & Testa, J. R. The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21(WAF1/CIP1/SDI1) induced by cisplatin and paclitaxel. Cancer Res. 60, 5390–5394 (2000).

    CAS  PubMed  Google Scholar 

  63. Charrier-Savournin, F. B., Château, M. T., Gire, V., Sedivy, J., Piette, J. & Dulić, V. p21-mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol. Biol. Cell 15, 3965–3976 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all the patients who kindly consented to the use of their tumours to develop this study and to all the personnel involved in sample collection from the Breast Surgical Unit, Breast Cancer Centre, and Department of Radiology Vall d’Hebron University Hospital and Molecular Oncology Group at Vall d’Hebron Institute of Oncology (VHIO). We also thank the Cellex Foundation for providing research facilities and equipment, as well as Ana Vivancos and the Cancer Genomics Group at VHIO and Joanne Soong and the Centre for Molecular Oncology at the MSKCC for providing technical and analytical support with the patient and PDX sequencing.

Author information

Authors and Affiliations

Authors

Contributions

A.G.-O., J.C. and V.S. designed the experiments and wrote the manuscript. A.G.-O., Y.H.I, M.A.R., C.G.-G., M.S.-G., F.R.-P., C.V., J.M.P.-G., A.L.-C., J.G., M.P., M.G., O.R., P.A., P.C., M.T.C., A.B., J.A., C.C., R.D., P.N., M.O., J.C. and V.S. helped in the acquisition of data and/or provided technical support (provided animals, acquired and managed patients, provided facilities, etc.). A.G.-O., Y.H.I., M.A.R., C.G.-G., M.S.-G., F.R.-P., C.V., R.D., M.O., J.C. and V.S. contributed in the analysis of data (e.g. statistical analysis, biostatistics, computational analysis and construction of databases).

Corresponding authors

Correspondence to Javier Cortés or Violeta Serra.

Ethics declarations

Ethics approval and consent to participate

Fresh tumour samples from patients with breast cancer were collected following an Institutional Research Board-approved protocol and the associated written informed consent. The study was compliant with the Declaration of Helsinki.

Experiments were conducted following the European Union’s animal care directive (2010/63/EU) and were approved by the Ethical Committee of Animal Experimentation of the Vall d’Hebron Research Institute, the Catalan Government or by the National Research Ethics Service, Cambridgeshire (ref. 35 and https://caldaslab.cruk.cam.ac.uk/bcape/).

Data availability

All data generated or analysed during this study are included in this published article [and its Supplementary information files].

Competing interests

V.S. declares non-commercial research agreements with Genentech and Novartis. J.C. reports consulting for Roche, Celgene, Cellestia, AstraZeneca, Biothera Pharmaceutical, Merus, Seattle Genetics, Daiichi Sankyo, Erytech, Athenex, Polyphor, Lilly, Servier, Merck Sharp&Dohme, GSK, Leuko, Bioasis, Clovis Oncology and Boehringer Ingelheim; honoraria for Roche, Novartis, Celgene, Eisai, Pfizer, Samsung Bioepis, Lilly, Merck Sharp&Dohme and Daiichi Sankyo; research funding to the Institution: Roche, Ariad Pharmaceuticals, AstraZeneca, Baxalta GMBH/Servier Affaires, Bayer Healthcare, Eisai, F. Hoffman-La Roche, Guardanth Health, Merck Sharp&Dohme, Pfizer, Piqur Therapeutics, Puma C and Queen Mary University of London; stock, patents and intellectual property of MedSIR; and travel, accommodation and other expenses for Roche, Novartis, Eisai, Pfizer and Daiichi Sankyo. M.O. declares research support from AstraZeneca, Genentech and Philips Healthcare; consultant role for Roche, GSK, PUMA Biotechnology and AstraZeneca; and has received honoraria from Roche. M.S.-G. is on the scientific advisory board of Menarini Ricerche and the Bioscience Institute, has received research funds from Puma Biotechnology, Daiichi-Sankio, Targimmune, Immunomedics and Menarini Ricerche, and is a cofounder of Medendi.org. C.C. is a member of AstraZeneca’s External Science Panel, of Illumina’s Scientific Advisory Board and is a recipient of research grants (administered by the University of Cambridge) from AstraZeneca, Genentech, Roche and Servier. R.D. is on advisory role of AstraZeneca, Roche and Boehringer-Ingelheim and has received speaker’s fees from Roche, Symphogen, IPSEN, Amgen, Servier, Sanofi and MSD; and research support from Merck. J.M.P.-G. reports an advisory role with Roche and Lilly. A.L.-C. has been a consultant for Roche, GlaxoSmithKline, Novartis, Celgene, Eisai and AstraZeneca in the previous 12 months and has stock options for Medica Scientia Innovation Research SL (MedSIR). All other authors declare no competing interests.

Funding information

We acknowledge the GHD-Pink programme, the FERO Foundation and the Orozco Family for supporting this study [to V.S.], as well as Fundación Mútua Madrileña [to J.C.]. This study has also been supported by the Catalan Agency AGAUR [2017 SGR 540 to V.S.]. V.S. is supported by the Miguel Servet Programme (ISCIII) [CPII19/00033]. A.G.-O. was awarded with a fellowship from the Agència de Gestió d’Ajuts Universitaris i de Recerca (FI-AGAUR, 2015 FI_B 01075), and M.S.-G. with a Marie Slodowska-Curie Innovative Training Networks (MSCA-ITN) Ph.D. fellowship (H2020-MSCA-ITN-2015_675392). The xenograft programme in the Caldas Laboratory was supported by Cancer Research UK and also received funding from an EU H2020 Network of Excellence (EuroCAN).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gris-Oliver, A., Ibrahim, Y.H., Rivas, M.A. et al. PI3K activation promotes resistance to eribulin in HER2-negative breast cancer. Br J Cancer 124, 1581–1591 (2021). https://doi.org/10.1038/s41416-021-01293-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01293-1

This article is cited by

Search

Quick links