Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma

A Correction to this article was published on 10 June 2021

A Correction to this article was published on 06 April 2021

This article has been updated

Abstract

Background

Hepatitis B virus (HBV) has a crucial role in the progression of hepatocellular carcinoma (HCC). Tumour cells must develop anoikis resistance in order to survive before metastasis. This study aimed to investigate the mechanism of IQGAP1 in HBV-mediated anoikis evasion and metastasis in HCC cells.

Methods

IQGAP1 expression was detected by immunohistochemistry, real-time PCR and immunoblot analysis. Lentiviral-mediated stable upregulation or knockdown of IGAQP1, immunoprecipitation, etc. were used in function and mechanism study.

Results

IQGAP1 was markedly upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. IQGAP1 was positively correlated to poor prognosis of HBV-associated HCC patients. IQGAP1 overexpression significantly enhanced the anchorage-independent growth and metastasis, whereas IQGAP1-deficient HCC cells are more sensitive to anoikis. Mechanistically, we found that HBV-induced ROS enhanced the association of IQGAP1 and Rac1 that activated Rac1, leading to phosphorylation of Src/FAK pathway. Antioxidants efficiently inhibited IQGAP1-mediated anoikis resistance and metastasis.

Conclusions

Our study indicated an important mechanism by which upregulated IQGAP1 by HBV promoted anoikis resistance, migration and invasion of HCC cells through Rac1-dependent ROS accumulation and activation of Src/FAK signalling, suggesting IQGAP1 as a prognostic indicator and a novel therapeutic target in HCC patients with HBV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IQGAP1 is upregulated in HBV-associated HCC cells and tissues.
Fig. 2: IQGAP1 promotes anoikis resistance, migration and invasion of HCC cells.
Fig. 3: ROS are required for IQGAP1-mediated anoikis resistance and metastasis in HCC cells.
Fig. 4: Rac1 acivation is essential for IQGAP1-mediated ROS production, anoikis resistance and metastasis in HCC cells.
Fig. 5: IQGAP1 activates Src/FAK signalling pathway.
Fig. 6: IQGAP1 enhances anoikis resistance and metastasis of HCC cells in vivo.

Similar content being viewed by others

Change history

References

  1. Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    Article  PubMed  Google Scholar 

  2. Joung, Y. H., Park, S. H., Moon, K. B., Jeon, J. H., Cho, H. S. & Kim, H. S. The last ten years of advancements in plant-derived recombinant vaccines against hepatitis B. Int. J. Mol. Sci. 17, 1715 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  3. Yuan, P., Chen, P. & Qian, Y. Evaluation of antiviral therapy performed after curative therapy in patients with HBV-related hepatocellular carcinoma: an updated meta-analysis. Can. J. Gastroenterol. Hepatol. 2016, 5234969 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Jia, Q., Dong, Q. & Qin, L. CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget 7, 1203–1214 (2016).

    Article  PubMed  Google Scholar 

  5. Collins, N. L., Reginato, M. J., Paulus, J. K., Sgroi, D. C., Labaer, J. & Brugge, J. S. G1/S cell cycle arrest provides anoikis resistance through Erk-mediated Bim suppression. Mol. Cell. Biol. 25, 5282–5291 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horowitz, J. C., Rogers, D. S., Sharma, V., Vittal, R., White, E. S., Cui, Z. et al. Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal. 19, 761–771 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Fofaria, N. M. & Srivastava, S. K. Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget 5, 7051–7064 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xu, J., Liu, H., Chen, L., Wang, S., Zhou, L., Yun, X. et al. Hepatitis B virus X protein confers resistance of hepatoma cells to anoikis by up-regulating and activating p21-activated kinase 1. Gastroenterology 143, 199–212 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez, M. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schafer, Z. T., Grassian, A. R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H. Y. et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461, 109–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren, J. H., Chen, X., Zhou, L., Tao, N. N., Zhou, H. Z., Liu, B. et al. Protective role of Sirtuin3 (SIRT3) in oxidative stress mediated by hepatitis B virus X protein expression. PloS ONE 11, e0150961 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schinzari, V., Barnaba, V. & Piconese, S. Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clin. Microbiol. Infect. 21, 969–974 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Lim, W., Kwon, S. H., Cho, H., Kim, S., Lee, S., Ryu, W. S. et al. HBx targeting to mitochondria and ROS generation are necessary but insufficient for HBV-induced cyclooxygenase-2 expression. J. Mol. Med. 88, 359–369 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Cho, M. Y., Cheong, J. Y., Lim, W., Jo, S., Lee, Y., Wang, H. J. et al. Prognostic significance of catalase expression and its regulatory effects on hepatitis B virus X protein (HBx) in HBV-related advanced hepatocellular carcinomas. Oncotarget 5, 12233–12246 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Briggs, M. W. & Sacks, D. B. IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep. 4, 571–574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson, M., Sharma, M. & Henderson, B. R. IQGAP1 regulation and roles in cancer. Cell Signal. 21, 1471–1478 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. White, C. D., Brown, M. D. & Sacks, D. B. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett. 583, 1817–1824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. David, S., Ghosh, C. C., Mukherjee, A. & Parikh, S. M. Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler. Thromb. Vasc. Biol. 31, 2643–2652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown, M. D., Bry, L., Li, Z. & Sacks, D. B. IQGAP1 regulates Salmonella invasion through interactions with actin, Rac1, and Cdc42. J. Biol. Chem. 282, 30265–30272 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Dong, P., Nabeshima, K., Nishimura, N., Kawakami, T., Hachisuga, T., Kawarabayashi, T. et al. Overexpression and diffuse expression pattern of IQGAP1 at invasion fronts are independent prognostic parameters in ovarian carcinomas. Cancer Lett. 243, 120–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Nabeshima, K., Shimao, Y., Inoue, T. & Koono, M. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett. 176, 101–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Lupberger, J., Mund, A., Kock, J. & Hildt, E. Cultivation of HepG2.2.15 on Cytodex-3: higher yield of hepatitis B virus and less subviral particles compared to conventional culture methods. J. Hepatol. 45, 547–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ladner, S. K., Otto, M. J., Barker, C. S., Zaifert, K., Wang, G. H., Guo, J. T. et al. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication. Antimicrob. Agents Chemother. 41, 1715–1720 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan, K., Lei, Y., Chen, H. N., Chen, Y., Zhang, T., Li, K. et al. HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3. Cell Death Differ. 23, 616–627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, K., Mo, C., Gong, D., Chen, Y., Huang, Z., Li, Y. et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of beta-catenin. Cancer lett. 400, 194–202 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Mo, C., Wang, L., Zhang, J., Numazawa, S., Tang, H., Tang, X. et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal. 20, 574–588 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, X., Fu, J., Xu, A., Yu, L., Zhu, J., Dai, R. et al. Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway. Cell Death Dis. 6, e1751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pedanou, V. E., Gobeil, S., Tabaries, S., Simone, T. M., Zhu, L. J., Siegel, P. M. et al. The histone H3K9 demethylase KDM3A promotes anoikis by transcriptionally activating pro-apoptotic genes BNIP3 and BNIP3L. elife 5, e16844 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li, K., Zhao, G., Ao, J., Gong, D., Zhang, J., Chen, Y. et al. ZNF32 induces anoikis resistance through maintaining redox homeostasis and activating Src/FAK signaling in hepatocellular carcinoma. Cancer lett. 442, 271–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Sood, A. K., Armaiz-Pena, G. N., Halder, J., Nick, A. M., Stone, R. L., Hu, W. et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J. Clin. Invest. 120, 1515–1523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, E. K., Park, M. J., Lee, S. H., Li, Y. C., Kim, J., Lee, J. S. et al. Cholesterol depletion induces anoikis-like apoptosis via FAK down-regulation and caveolae internalization. J. Pathol. 218, 337–349 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Panera, N., Crudele, A., Romito, I., Gnani, D. & Alisi, A. Focal adhesion kinase: insight into molecular roles and functions in hepatocellular carcinoma. Int. J. Mol. Sci. 18, 99 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  33. Kim, S., Kim, H. Y., Lee, S., Kim, S. W., Sohn, S., Kim, K. et al. Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners. J. Virol. 81, 1714–1726 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Azam, F. & Koulaouzidis, A. Hepatitis B virus and hepatocarcinogenesis. Ann. Hepatol. 7, 125–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Dolnik, O., Kolesnikova, L., Welsch, S., Strecker, T., Schudt, G. & Becker, S. Interaction with Tsg101 is necessary for the efficient transport and release of nucleocapsids in marburg virus-infected cells. PLoS Pathog. 10, e1004463 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Morita, E., Sandrin, V., Chung, H. Y., Morham, S. G., Gygi, S. P., Rodesch, C. K. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, J., Qu, Y., Liu, Y., Jambusaria, R., Han, Z., Ruthel, G. et al. Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress. J. Virol. 87, 7777–7780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Z., Li, Z., Ye, Y., Xie, L. & Li, W. Oxidative stress and liver cancer: etiology and therapeutic targets. Oxid. Med. Cell. Longev. 2016, 7891574 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Wang, R., Yin, C., Li, X. X., Yang, X. Z., Yang, Y., Zhang, M. Y. et al. Reduced SOD2 expression is associated with mortality of hepatocellular carcinoma patients in a mutant p53-dependent manner. Aging 8, 1184–1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Diekmann, D., Abo, A., Johnston, C., Segal, A. W. & Hall, A. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265, 531–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Bromberg, Y., Shani, E., Joseph, G., Gorzalczany, Y., Sperling, O. & Pick, E. The GDP-bound form of the small G protein Rac1 p21 is a potent activator of the superoxide-forming NADPH oxidase of macrophages. J. Biol. Chem. 269, 7055–7058 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Sulzmaier, F. J., Jean, C. & Schlaepfer, D. D. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 14, 598–610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, B. Y., Timpson, P., Horvath, L. G. & Daly, R. J. FAK signaling in human cancer as a target for therapeutics. Pharmacol. Ther. 146, 132–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Subramani, J., Ghosh, M., Rahman, M. M., Caromile, L. A., Gerber, C., Rezaul, K. et al. Tyrosine phosphorylation of CD13 regulates inflammatory cell-cell adhesion and monocyte trafficking. J. Immunol. 191, 3905–3912 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Giannoni, E., Fiaschi, T., Ramponi, G. & Chiarugi, P. Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene 28, 2074–2086 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Chiarugi, P., Pani, G., Giannoni, E., Taddei, L., Colavitti, R., Raugei, G. et al. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J. Cell Biol. 161, 933–944 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ribeiro-Pereira, C., Moraes, J. A., Souza Mde, J., Laurindo, F. R., Arruda, M. A. & Barja-Fidalgo, C. Redox modulation of FAK controls melanoma survival-role of NOX4. PloS ONE 9, e99481 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.F.M., J.L. and S.X.Y. designed the project and performed all the experiments. H.J.G. and X.Y.L. helped to conduct animal experiments. J.L. and Y.T.W. provided clinical samples. C.F.M. wrote the manuscript. C.F.M., S.X.Y., Y.L. and M.H.L. interpreted data and revised the manuscript. J.Y.L. and Q.Z. supervised the research.

Corresponding authors

Correspondence to Chun-fen Mo, Jing-yi Li or Qiang Zou.

Ethics declarations

Ethics approval and consent to participate

Tumour tissues samples were collected from HCC patients who underwent surgical resection at the First Affiliated Hospital of Chengdu Medical College (Chengdu, China). The patients agreed to enter the study and signed the informed consent. This study was approved by the Committee for Ethical Review of Research involving Human Subjects of the First Affiliated Hospital of Chengdu Medical College and was performed in accordance with the Declaration of Helsinki. The clinical pathological information of HCC patients was summarised in Table 1. All animal experiments were performed in accordance with relevant guidelines and regulations and approved by the Institutional Animal Care and Use Committee of Chengdu Medical College.

Consent to publish

Not applicable.

Data availability

The datasets generated and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

This study was supported by the National Natural Science Foundation of China (81402944, 81702446, 81871300), Application and Basic Project of Science and Technology Department of Sichuan Province (2018JY0440, 2017JY0174) and Research Fund of Chengdu Medical College (CYZ16-01).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: There was an error in the funding information.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Cf., Li, J., Yang, Sx. et al. IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma. Br J Cancer 123, 1154–1163 (2020). https://doi.org/10.1038/s41416-020-0970-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-020-0970-z

This article is cited by

Search

Quick links