Molecular Diagnostics

Syntenin-1 promotes colorectal cancer stem cell expansion and chemoresistance by regulating prostaglandin E2 receptor



The protein syntenin-1 is expressed by a variety of cell types, and is upregulated in various malignancies, including melanoma, breast cancer and glioma. Although the mechanism by which elevated syntenin-1 expression contributes to cancer has been described, the exact pathway has not been elucidated.


To investigate the involvement of syntenin-1 in colorectal cancer (CRC), we performed immunohistochemical analysis of 139 CRC surgical specimens. We also examined syntenin-1 knockdown in CRC cell lines.


High syntenin-1 expression was associated with less differentiated histologic grade and poor prognosis, and was an independent prognostic indicator in CRC. Syntenin-1 knockdown in CRC cells reduced the presence of cancer stem cells (CSCs), oxaliplatin chemoresistance and migration. DNA microarray analysis and quantitative real-time polymerase chain reaction showed decreased prostaglandin E2 receptor 2 (PTGER2) expression in syntenin-1-knockdown cells. PTGER2 knockdown in CRC cells yielded the same phenotype as syntenin-1 knockdown. Celecoxib, which has anti-inflammatory effects by targeting cyclooxygenase-2, reduced CSCs and decreased chemoresistance, while prostaglandin E2 (PGE2) had the opposite effect.


Our findings suggested that syntenin-1 enhanced CSC expansion, oxaliplatin chemoresistance and migration capability through regulation of PTGER2 expression. Syntenin-1 may be a promising new prognostic factor and target for anti-cancer therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Syntenin-1 expression is associated with cancer.
Fig. 2: Syntenin-1 is associated with the malignant potential of cancer.
Fig. 3: Syntenin-1 expression is associated with prostaglandin E2 receptor 2 (EP2) expression.
Fig. 4: Coexistence of EP2 and syntenin-1 is associated with L-OHP chemosensitivity and sphere formation of cancer.
Fig. 5: Kaplan–Meier curves for OS or RFS according to syntenin-1 expression.


  1. 1.

    Colvin, H., Mizushima, T., Eguchi, H., Takiguchi, S., Doki, Y. & Mori, M. Gastroenterological surgery in Japan: the past, the present and the future. Ann. Gastroenterol. Surg. 1, 5–10 (2017).

    Article  Google Scholar 

  2. 2.

    Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson, C. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Newcomb, P. A., Baron, J., Cotterchio, M., Gallinger, S., Grove, J., Haile, R. et al. Colon Cancer Family Registry: An international resource for studies of the genetic epidemiology of colon cancer. Cancer Epidemiol. Biomark. Prev. 16, 2331–2343 (2007).

    Article  Google Scholar 

  5. 5.

    Ogino, S., Kirkner, G. J., Nosho, K., Irahara, N., Kure, S., Shima, K. et al. Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin. Cancer Res. 14, 8221–8227 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Chandrasekharan, S., Foley, N. A., Jania, L., Clark, P., Audoly, L. P. & Koller, B. H. Coupling of COX-1 to mPGES1 for prostaglandin E2 biosynthesis in the murine mammary gland. J. Lipid Res. 46, 2636–2648 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Eruslanov, E., Kaliberov, S., Daurkin, I., Kaliberova, L., Buchsbaum, D., Vieweg, J. et al. Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumour-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J. Immunol. 182, 7548–7557 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Hsu, H. H., Hu, W. S., Lin, Y. M., Kuo, W. W., Chen, L. M., Chen, W. K. et al. JNK suppression is essential for 17beta-estradiol inhibits prostaglandin E2-induced uPA and MMP-9 expressions and cell migration in human LoVo colon cancer cells. J. Biomed. Sci. 18, 61 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Hsu, H. H., Lin, Y. M., Shen, C. Y., Shibu, M. A., Li, S. Y., Chang, S. H. et al. Prostaglandin E2-induced COX-2 expressions via EP2 and EP4 signaling pathways in human LoVo colon cancer cells. Int. J. Mol. Sci. 25, 18 (2017).

    Google Scholar 

  10. 10.

    Wang, D., Fu, L., Sun, H., Guo, L. & DuBois, R. N. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology 149, 1884–1895 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Maust, J. D., Frankowski-McGregor, C. L., Bankhead, A. 3rd, Simeone, D. M. & Sebolt-Leopold, J. S. Cyclooxygenase-2 influences response to cotargeting of MEK and CDK4/6 in a subpopulation of pancreatic cancers. Mol. Cancer Ther. 17, 2495–2506 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Dasgupta, S., Menezes, M. E., Das, S. K., Emdad, L., Janjic, A., Bhatia, S. et al. Novel role of MDA-9/syntenin in regulating urothelial cell proliferation by modulating EGFR signaling. Clin. Cancer Res. 19, 4621–4633 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Friand, V., David, G. & Zimmermann, P. Syntenin and syndecan in the biogenesis of exosomes. Biol. Cell 107, 331–341 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Tudor, C., te Riet, J., Eich, C., Harkes, R., Smisdom, N., Bouhuijzen Wenger, J. et al. Syntenin-1 and ezrin proteins link activated leukocyte cell adhesion molecule to the actin cytoskeleton. J. Biol. Chem. 289, 13445–13460 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Cho, W., Kim, H., Lee, J. H., Hong, S. H. & Choe, J. Syntenin is exoressed in human follicular dendritic cells and involved in the activation of focal adhesion kinase. Immune Netw. 13, 199–204 (2013).

    Article  Google Scholar 

  16. 16.

    Gimferrer, I., Ibanez, A., Farnos, M., Sarrias, M. R., Fenutría, R., Roselló, S. et al. The lymphocyte receptor CD6 interacts with syntenin-1, a scaffolding protein containing PDZ domains. J. Immunol. 175, 1406–1414 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    Latysheva, N., Muratov, G., Rajesh, S., Padgett, M., Hotchin, N. A., Overduin, M. et al. Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol. Cell. Biol. 26, 7707–7718 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Chen, F., Du, Y., Zhang, Z., Chen, G., Zhang, M., Shu, H. B. et al. Syntenin negatively regulates TRAF6-mediated IL-1R/TLR4 signaling. Cell Signal. 20, 666–674 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Beekman, J. M., Verhagen, L. P., Geijsen, N. & Coffer, P. J. Regulation of myelopoiesis through syntenin-mediated modulation of IL-5 receptor output. Blood 114, 3917–3927 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Geijsen, N., Uings, I. J., Pals, C., Armstrong, J., McKinnon, M., Raaijmakers, J. A. et al. Cytokine-specific transcriptional regulation through an IL-5Ralpha interacting protein. Science 293, 1136–1138 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    Sala-Valdes, M., Gordon-Alonson, M., Tejera, E., Ibáñez, A., Cabrero, J. R., Ursa, A. et al. Association of syntenin-1 with M-RIP polarizes Rac-1 activation during chemotaxis and immune interactions. J. Cell Sci. 125, 1235–1246 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Tamura, K., Ikutani, M., Yoshida, T., Tanaka-Hayashi, A., Yanagibashi, T., Inoue, R. et al. Increased production of intestinal immunoglobulins in syntenin-1-deficient mice. Immunobiology 220, 597–604 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Sobin, L. H., Gospodarowicz, M. K., Wittekind, C. (eds) TNM Classification of Malignant Tumors 7th edn (Wiley‑Blackwell, 2011).

  24. 24.

    Ohara, N., Haraguchi, N., Koseki, J., Nishizawa, Y., Kawai, K., Takahashi, H. et al. Low expression of the GOPC is a poor prognostic marker in colorectal cancer. Oncol. Lett. 14, 4483–4490 (2017).

    Article  Google Scholar 

  25. 25.

    Berg, K. C. G., Eide, P. W., Eilertsen, I. A., Johannessen, B., Bruun, J., Danielsen, S. A. et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol. Cancer 16, 116 (2017).

    Article  Google Scholar 

  26. 26.

    Sugimura, K., Fujiwara, Y., Omori, T., Motoori, M., Miyoshi, N., Akita, H. et al. Clinical importance of a transcription reverse-transcription concerted (TRC) diagnosis using peritoneal lavage fluids obtained pre- and post-lymphadenectomy from gastric cancer patients. Surg. Today 46, 654–660 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Kawai, K., Uemura, M., Munakata, K., Takahashi, H., Haraguchi, N., Nishimura, J. et al. Fructose-bisphosphate aldolase A is a key regulator of hypoxic adaptation in colorectal cancer cells and involved in treatment resistance and poor prognosis. Int. J. Oncol. 50, 525–534 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Munakata, K., Uemura, M., Takemasa, I., Ozaki, M., Konno, M., Nishimura, J. et al. SCGB2A1 is a novel prognostic marker for colorectal cancer associated with chemoresistance and radioresistance. Int. J. Oncol. 44, 1521–1528 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Hokonohara, K., Nishida, N., Miyoshi, N., Takahashi, H., Haraguchi, N., Hata, T. et al. Involvement of MAF1 homolog, negative regulator of RNA polymerase III in colorectal cancer progression. Int. J. Oncol. 54, 1001–1009 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Boukerche, H., Aissaoui, H., Prévost, C., Hirbec, H., Das, S. K., Su, Z. Z. et al. Src kinase activation is mandatory for MDA-9/syntenin-mediated activation of nuclear factor-kappaB. Oncogene 29, 3054–3066 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Yang, Y., Hong, Q., Shi, P., Liu, Z., Luo, J. & Shao, Z. Elevated expression of syntenin in breast cancer is correlated with lymph node metastasis and poor patient survival. Breast Cancer Res. 15, R50 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Zhong, D., Ran, J. H., Tang, W. Y., Zhang, X. D., Tan, Y., Chen, G. J. et al. Mda-9/syntenin promotes human brain glioma migration through focal adhesion kinase (FAK)-JNK and FAK-AKT signaling. Asian Pac. J. Cancer Prev. 13, 2897–2901 (2012).

    Article  Google Scholar 

  33. 33.

    Qian, X. L., Li, Y. Q., Yu, B., Gu, F., Liu, F. F., Li, W. D. et al. Syndecan binding protein (SDCBP) is overexpressed in estrogen receptor negative breast cancers, and is a potential promoter for tumor proliferation. PLoS ONE 8, e60046 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Kegelman, T. P., Das, S. K., Hu, B., Bacolod, M. D., Fuller, C. E., Menezes, M. E. et al. MDA-9/syntenin is a key regulator of glioma pathogenesis. Neuro Oncol. 16, 50–61 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Cui, L., Cheng, S., Liu, X., Messadi, D., Yang, Y. & Hu, S. Syntenin-1 is a promoter and prognostic marker of head and neck squamous cell carcinoma invasion and metastasis. Oncotarget 50, 82634–82647 (2016).

    Article  Google Scholar 

  36. 36.

    Kurtova, A. V., Xiao, J., Mo, Q., Pazhanisamy, S., Krasnow, R., Lerner, S. P. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Egea-Jimenez, A. L., Gallardo, R., Garcia-Pino, A., Ivarsson, Y., Wawrzyniak, A. M., Kashyap, R. et al. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling. Nat. Commun. 7, 12101 (2016).

    CAS  Article  Google Scholar 

Download references


We thank the Center for Medical Research and Education, Graduate School of Medicine, Osaka University for technical assistance. We are grateful to Makoto Fujii, Ph.D. (Department of Mathematical Health Science, Osaka University Graduate School of Medicine Division of Health Sciences) for statistical evaluation.

Author information




K.I. and H.T. contributed to the study conception and design and wrote this manuscript. D.O. contributed to the data analysis and interpretation and provided a method for IPA. H.O., T.O., N.M., M.U., C.M., H.Y. and T.M. contributed to the data acquisition, and critical evaluation of the results. M.M., Y.D. and H.E. supervised the entire research project, including proofreading and final confirmation of the manuscript.

Corresponding author

Correspondence to Hidekazu Takahashi.

Ethics declarations

Ethics approval and consent to participate

All experimental protocols described in this study were approved by the Institutional Ethical Review Committee (UMIN 15046-3: comprehensive agreement) and conform to the provisions of the Declaration of Helsinki. All patients provided written informed consent.

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

The present study was supported by JSPS KAKENHI Grant Numbers 18K16357 and 18K08678.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iwamoto, K., Takahashi, H., Okuzaki, D. et al. Syntenin-1 promotes colorectal cancer stem cell expansion and chemoresistance by regulating prostaglandin E2 receptor. Br J Cancer (2020).

Download citation