Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular and Molecular Biology

CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer

Abstract

Background

Toward identifying new strategies to target gastric cancer stem-like cells (CSCs), we evaluated the function of the tumour suppressor CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) in gastric CSC maintenance.

Methods

We examined the expression of CDK5RAP3 and CD44 in gastric cancer patients. The function and mechanisms of CDK5RAP3 were checked in human and mouse gastric cancer cell lines and in mouse xenograft.

Results

We show that CDK5RAP3 is weakly expressed in gastric CSCs and is negatively correlated with the gastric CSC marker CD44. CDK5RAP3 overexpression decreased expression of CSC markers, spheroid formation, invasion and migration, and reversed chemoresistance in gastric CSCs in vitro and vivo. CDK5RAP3 expression was found to be regulated by extracellular-related kinase (ERK) signalling. ERK inhibitors decreased spheroid formation, migration and invasion, and the expression of epithelial-to-mesenchymal transition (EMT)-related proteins in both GA cells and organoids derived from a genetically engineered mouse model of GA. Finally, CDK5RAP3 expression was associated with reduced lymph-node metastasis and better prognosis, even in the presence of high expression of the EMT transcription factor Snail, among patients with CD44-positive GA.

Conclusions

Our results demonstrate that CDK5RAP3 is suppressed by ERK signalling and negatively regulates the self-renewal and EMT of gastric CSCs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The relation of CDK5RAP3 and CD44 expression in tumours of GA patients and gastric cell lines.
Fig. 2: Effect of CDK5RAP3 on EMT and acquisition of CSC phenotypes in gastric epithelial cells.
Fig. 3: Effect of CDK5RAP3 in gastric CSCs.
Fig. 4: Effect of CDK5RAP3 on chemotherapy resistance in gastric CSCs and gastric cancer xenografts.
Fig. 5: ERK signalling promotes CSC phenotypes and inhibits expression of CDK5RAP3 in gastric cancer cells.
Fig. 6: ERK-signalling inhibition and CDK5RAP3 negatively regulate EMT and metastasis in gastric CSCs.

References

  1. 1.

    Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet‐Tieulent, J. & Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wagner, A. D., Grothe, W., Haerting, J., Kleber, G., Grothey, A. & Fleig, W. E. Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data. J. Clin. Oncol. 24, 2903–2909 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Easwaran, H., Tsai, H. C. & Baylin, S. B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell. 54, 716–727 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Pan, Y., Ma, S., Cao, K., Zhou, S., Zhao, A., Li, M. et al. Therapeutic approaches targeting cancer stem cells. J. Cancer Res. Ther. 14, 1469–1475 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Nguyen, P. H., Giraud, J., Chambonnier, L., Dubus, P., Wittkop, L., Belleannée, G. et al. Characterization of biomarkers of tumorigenic and chemoresistant cancer stem cells in human gastric carcinoma. Clin. Cancer Res. 23, 1586–1597 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Bekaii‐Saab, T. & El‐Rayes, B. Identifying and targeting cancer stem cells in the treatment of gastric cancer. Cancer 123, 1303–1312 (2017).

    Article  Google Scholar 

  8. 8.

    Wang, L., Zuo, X., Xie, K. & Wei, D. in Cancer Stem Cells (Springer, 2018) pp 31–42.

  9. 9.

    Takaishi, S., Okumura, T., Tu, S., Wang, S. S., Shibata, W., Vigneshwaran, R. et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27, 1006–CD1020 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  Google Scholar 

  11. 11.

    Jiang, H., Wu, J., He, C., Yang, W. & Li, H. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation. Cell Res. 19, 458–468 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Wang, J., An, H., Mayo, M. W., Baldwin, A. S. & Yarbrough, W. G. LZAP, a putative tumor suppressor, selectively inhibits NF-κB. Cancer Cell. 12, 239–251 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    Wang, J. B., Wang, Z. W., Li, Y., Huang, C. Q., Zheng, C. H., Li, P. et al. CDK5RAP3 acts as a tumor suppressor in gastric cancer through inhibition of β-catenin signaling. Cancer Lett. 385, 188–197 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Zheng, C. H., Wang, J. B., Lin, M. Q., Zhang, P. Y., Liu, L. C., Lin, J. X. et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J. Exp. Clin. Cancer Res. 37, 59 (2018).

    Article  Google Scholar 

  15. 15.

    Cho, S. J., Kook, M. C., Lee, J. H., Shin, J. Y., Park, J., Bae, Y. K. et al. Peroxisome proliferator‐activated receptor γ upregulates galectin‐9 and predicts prognosis in intestinal‐type gastric cancer. Int. J. Cancer 136, 810–820 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Yoon, C., Cho, S. J., Aksoy, B. A., Park, D. J., Schultz, N., Ryeom, S. W. et al. Chemotherapy resistance in diffuse-type gastric adenocarcinoma is mediated by RhoA activation in cancer stem-like cells. Clin. Cancer Res. 22, 971–983 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Masters, J., Twentyman, P., Daley, R., Davis, J., Doyle, A., Dyer, S. et al. UKCCCR guidelines for the use of cell lines in cancer research. Br. J. Cancer 82, 1495–1509 (2000).

    Article  Google Scholar 

  18. 18.

    Cho, S. J., Yoon, C., Lee, J. H., Chang, K. K., Lin, J. X., Kim, Y. H. et al. KMT2C mutations in diffuse type gastric adenocarcinoma promote epithelial-to-mesenchymal transition. Clin. Cancer Res. 1679, 2017 (2018).

    Google Scholar 

  19. 19.

    Yoon, C., Park, D. J., Schmidt, B., Thomas, N. J., Lee, H. J., Kim, T. S. et al. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin. Cancer Res. 20, 3974–3988 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Bisson, I. & Prowse, D. M. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 19, 683–697 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Yoon, S. S., Eto, H., Lin, C. M., Nakamura, H., Pawlik, T. M., Song, S. U. et al. Mouse endostatin inhibits the formation of lung and liver metastases. Cancer Res. 59, 6251–6256 (1999).

    CAS  PubMed  Google Scholar 

  22. 22.

    Till, J. E., Yoon, C., Kim, B. J., Roby, K., Addai, P., Jonokuchi, E. et al. Oncogenic KRAS and p53 loss drive gastric tumorigenesis in mice that can be attenuated by E-cadherin expression. Cancer Res. 77, 5349–5359 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Vlachogiannis, G., Hedayat, S., Vatsiou, A., Jamin, Y., Fernández-Mateos, J., Khan, K. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Hong, D., Fritz, A. J., Zaidi, S. K., van Wijnen, A. J., Nickerson, J. A., Imbalzano, A. N. et al. Epithelial-to-mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. J. Cell Physiol. 233, 9136–9144 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    McCracken, K. W., Catá., E. M., Crawford, C. M., Sinagoga, K. L., Schumacher, M., Rockich, B. E. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Mak, G. W. Y., Chan, M. M. L., Leong, V. Y. L., Lee, J. M. F., Yau, T. O., Ng, I. O. L. et al. Overexpression of a novel activator of PAK4, the CDK5 kinase associated protein CDK5RAP3, promotes hepatocellular carcinoma metastasis. Cancer Res. 71, 2949–2958 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Wamsley, J., Gary, C., Biktasova, A., Hajek, M., Bellinger, G., Virk, R. et al. Loss of LZAP inactivates p53 and regulates sensitivity of cells to DNA damage in a p53-dependent manner. Oncogenesis 6, e314 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Maehara, O., Suda, G., Natsuizaka, M., Ohnishi, S., Komatsu, Y., Sato, F. et al. Fibroblast growth factor-2–mediated FGFR/Erk signaling supports maintenance of cancer stem-like cells in esophageal squamous cell carcinoma. Carcinogenesis 38, 1073–1083 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Beck, B., Lapouge, G., Rorive, S., Drogat, B., Desaedelaere, K., Delafaille, S. et al. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16, 67–79 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Guo, W., Keckesova, Z., Donaher, J. L., Shibue, T., Tischler, V., Reinhardt, F. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Ye, X., Tam, W. L., Shibue, T., Kaygusuz, Y., Reinhardt, F., Eaton, E. N. et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Hassan Ashktorab and Dr. Duane T. Smoot for providing the HFE-145 cell line. We also thank MSKCC senior editor Jessica Moore for reviewing this manuscript.

Author information

Affiliations

Authors

Contributions

Conception and design: J.X.L., C.H.Y., S.S.Y. and C.M.H. Development of methodology: J.X.L., C.H.Y., P.L., S.W.R. and S.J.C. Acquisition of data: J.X.L., C.H.Y., C.H.Z., J.W.X., J.B.W. and J.L. Analysis and interpretation of data: J.X.L., C.H.Y., P.L., S.S.Y. and C.M.H. Writing, review and/or revision of the manuscript: J.X.L., C.H.Y., C.H.Z., J.W.X., S.S.Y. and C.M.H. Administrative, technical and material support: P.L., S.W.R. and S.J.C. Study Supervision: S.S.Y. and C.M.H.

Corresponding authors

Correspondence to Sam S. Yoon or Chang-ming Huang.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the institutional review board of the Memorial Sloan Kettering Cancer Center (MSKCC) and Fujian Medical University Union Hospital. All animal procedures were done accordingly with the MSKCC Institutional Animal Care and Use Committee. The use of human tissue samples and clinical data was approved by the ethics committee of FMUUH. The requirement of informed consent from the patients was waived because of the retrospective design of this study, and patients’ information was protected. All procedures performed in the study involving human participants were in accordance with the Declaration of Helsinki.

Data availability

All data and material presented in this article and in the supplementary information are available upon request from the corresponding authors.

Competing interests

The authors declare no competing interests.

Funding information

This study was funded by National Natural Science Foundation of China (No. 81871899); Construction Project of Fujian Province Minimally Invasive Medical Center, China (No. [2017]171); NIH grants R01 CA158301 (SSY) and P30 CA008748; Project supported by the Science Foundation of the Fujian Province, China (No. 2018J01307); Joint Funds for the Innovation of Scientific and Technological, Fujian Province (No. 2018Y9008). The general project of sailing fund of Fujian Medical University (2017XQ1026).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Jx., Yoon, C., Li, P. et al. CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer. Br J Cancer 123, 1131–1144 (2020). https://doi.org/10.1038/s41416-020-0963-y

Download citation

Further reading

Search

Quick links